polymers-logo

Journal Browser

Journal Browser

Smart and Bio-Medical Polymers: 3rd Edition

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Smart and Functional Polymers".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1598

Special Issue Editors


E-Mail Website
Guest Editor
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
Interests: smart polymers; nanocomposites; biomedical polymers; hydrogels; polymer-based composites; elastomers; nanoenergy; tissue engineering; viscoelasticity; rheology; magnetorheological; electrorheological; carbon nanotube fibers; artificial muscles
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
State Key Lab of Metastable Materials and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
Interests: electrorheological fluids; electoactive elastomer; hydrogel; ionogel; flexible sensor; flexible actuator
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The intersection between materials science and bioscience is an interesting topic. On the one hand, we can prepare smart materials, such as shape memory materials, magnetostrictive materials and electrochromic materials, that imitate the intelligence of life. Among these materials, smart polymers have become particularly promising due to their diverse and flexible mechanical properties. On the other hand, these materials can be applied to repair human tissues or aid in the diagnosis and treatment of human health. Furthermore, the polymers present in the human body include proteins, DNA and hair. Therefore, biomedical polymers, such as biodegradable polymers, bioactive polymers and medical hydrogels, have succeeded in becoming promising biomedical materials. In recent decades, we have witnessed rapid developments in smart polymers and biomedical polymers, showing a trend of cross-fusion.

Recognizing the importance of smart polymers and biomedical polymers, this Special Issue (3rd Edition) of Polymers welcomes contributions that address several aspects of smart polymers and composites, such as shape memory polymers, magnetorheological elastomers, electrorheological elastomers, dielectric elastomers, artificial muscles, 4D printing technology, and topics related to biomedical polymers and composites, such as hydrogels, tissue engineering polymers, bioactive polymers and composites, and degradable polymers. The above list is by no means exhaustive; we welcome any article that presents original theoretical, experimental or application work, and review articles on smart polymers and biomedical polymers.

Prof. Dr. Xufeng Dong
Prof. Dr. Jianxun Ding
Prof. Dr. Yingdan Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • smart polymers and composites
  • shape memory polymers
  • piezoelectric polymers
  • magnetorheological elastomers
  • electrorheological elastomers
  • dielectric elastomers
  • magnetostrictive composites
  • artificial muscles
  • triboelectric nanogenerator
  • four-dimensional printing
  • biomedical polymers and composites
  • hydrogels
  • ionogels
  • tissue engineering
  • bioactive polymers and composites
  • degradable polymers and composites

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 1588 KB  
Article
Tailored Thermoresponsive Polyurethane Hydrogels: Structure–Property Relationships for Injectable Biomedical Applications
by Miriam Di Martino, Lucia Sessa, Federica Romano, Stefano Piotto and Simona Concilio
Polymers 2025, 17(17), 2350; https://doi.org/10.3390/polym17172350 - 29 Aug 2025
Viewed by 598
Abstract
Thermoresponsive hydrogels that undergo reversible sol-gel transitions near physiological temperatures are highly attractive for biomedical applications, such as injectable drug delivery and embolization therapies. In this study, a library of polyurethane-based hydrogels was synthesized via step-growth polymerization using polyethylene glycol (PEG) of varying [...] Read more.
Thermoresponsive hydrogels that undergo reversible sol-gel transitions near physiological temperatures are highly attractive for biomedical applications, such as injectable drug delivery and embolization therapies. In this study, a library of polyurethane-based hydrogels was synthesized via step-growth polymerization using polyethylene glycol (PEG) of varying molecular weights, different diisocyanates, and a series of functional diols derived from diethanolamine with increasing hydrophobicity. The resulting polymers exhibited sol–gel transition behaviors without the need for external crosslinkers, relying solely on non-covalent interactions. The thermal responsiveness was systematically investigated using UV–Vis turbidimetry, and the cloud point temperature (TCP) was found to be tunable within a range of 26–49 °C by modulating the monomer composition. Statistical modeling identified PEG molecular weight and diol structure as the primary determinants of TCP, while diisocyanate type and diol-to-PEG ratio had negligible effects. Only diethanolamine (DEA)-based polymers formed stable hydrogels above a critical gelation temperature (LCGT), attributed to enhanced intermolecular interactions via free amine groups. In vitro degradation assays confirmed good hydrolytic stability under physiological conditions over four weeks, with degradation profiles strongly influenced by the PEG chain length and hydrophobic content. These findings establish a structure–property framework for the rational design of injectable, thermoresponsive polyurethane hydrogels with tailored sol–gel behavior for biomedical applications. Full article
(This article belongs to the Special Issue Smart and Bio-Medical Polymers: 3rd Edition)
Show Figures

Graphical abstract

21 pages, 6478 KB  
Article
Localized Combination Therapy Using Collagen–Hydroxyapatite Bone Grafts for Simultaneous Bone Cancer Inhibition and Tissue Regeneration
by Alina Florentina Vladu, Madalina Georgiana Albu Kaya, Anton Ficai, Denisa Ficai, Raluca Tutuianu, Ludmila Motelica, Vasile Adrian Surdu, Ovidiu-Cristian Oprea, Roxana Doina Truşcă and Irina Titorencu
Polymers 2025, 17(16), 2239; https://doi.org/10.3390/polym17162239 - 18 Aug 2025
Viewed by 833
Abstract
The global burden of cancer continues to grow, with bone cancer—though rare—posing serious challenges in terms of treatment and post-surgical reconstruction. Autologous bone grafting remains the gold standard, yet limitations such as donor site morbidity drive the search for alternative solutions. Tissue engineering, [...] Read more.
The global burden of cancer continues to grow, with bone cancer—though rare—posing serious challenges in terms of treatment and post-surgical reconstruction. Autologous bone grafting remains the gold standard, yet limitations such as donor site morbidity drive the search for alternative solutions. Tissue engineering, combining biomaterials and therapeutic agents, offers promising avenues. This study focuses on the development of multifunctional scaffolds based on collagen and hydroxyapatite obtained by the freeze-drying technique and incorporating both synthetic (doxorubicin) and natural (caffeic acid) compounds for osteosarcoma treatment. These scaffolds aim to combine tumor inhibition with bone regeneration, addressing the dual need for local drug delivery and structural repair in bone cancer therapy. The characterization of these composite materials revealed that a spongious structure with interconnected pores and a homogeneous pore distribution, with pore sizes between 20 and 250 μm suitable for osteoblasts infiltration. The Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) and X-ray diffraction (XRD) analyses confirmed the formation of hydroxyapatite inside the collagen matrix. LDH and XTT assays confirmed that the antitumoral scaffolds possess great potential for osteosarcoma treatment, showing that after 3 days of culturing, the extracts containing doxorubicin-7A, both alone and in combination with caffeic acid-9A, significantly reduced the viability of cell lines to below 7% and 20%, respectively. Full article
(This article belongs to the Special Issue Smart and Bio-Medical Polymers: 3rd Edition)
Show Figures

Figure 1

Back to TopTop