Journal Description
Micro
Micro
is an international, peer-reviewed, open access journal on microscale and nanoscale research and applications in physics, chemistry, materials, biology, medicine, food, environment technology, engineering, etc., published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science) and other databases.
- Journal Rank: CiteScore - Q2 (Engineering (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 28.1 days after submission; acceptance to publication is undertaken in 4.7 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Micro is a companion journal of Micromachines.
Impact Factor:
1.9 (2024);
5-Year Impact Factor:
2.0 (2024)
Latest Articles
A Note on Computational Characterization of Dy@C82: Dopant for Solar Cells
Micro 2025, 5(4), 49; https://doi.org/10.3390/micro5040049 - 31 Oct 2025
Abstract
Dy@C82 is one of the metallofullerenes studied as dopants for improvements of stability and performance of solar cells. Calculations should help in formulating rules for selections of fullerene endohedrals for such new applications in photovoltaics. Structure, energetics, and relative equilibrium populations of
[...] Read more.
Dy@C82 is one of the metallofullerenes studied as dopants for improvements of stability and performance of solar cells. Calculations should help in formulating rules for selections of fullerene endohedrals for such new applications in photovoltaics. Structure, energetics, and relative equilibrium populations of two potential-energy-lowest IPR (isolated pentagon rule) isomers of Dy@C82 under high synthetic temperatures are calculated using the Gibbs energy based on molecular characteristics at the B3LYP/6-31G*∼SDD level. Dy@ -C82 and Dy@ -C82 are calculated as 58 and 42%, respectively, of their equilibrium mixture at a synthetic temperature of 1000 K, in agreement with observations. The Dy@ -C82 species is found as lower in the potential energy by 1.77 kcal/mol compared to the Dy@ -C82 isomer.
Full article
(This article belongs to the Collection Microsystem and Nanosystem Research for Sensors, Actuators and Energy Conversion Devices)
►
Show Figures
Open AccessReview
Early Insights into AI and Machine Learning Applications in Hydrogel Microneedles: A Short Review
by
Jannah Urifa and Kwok Wei Shah
Micro 2025, 5(4), 48; https://doi.org/10.3390/micro5040048 - 31 Oct 2025
Abstract
Hydrogel microneedles (HMNs) act as non-invasive devices that can effortlessly merge with the human body for drug delivery and diagnostic purposes. Nonetheless, their improvement is limited by intricate and repetitive issues related to material composition, structural geometry, manufacturing accuracy, and performance enhancement. At
[...] Read more.
Hydrogel microneedles (HMNs) act as non-invasive devices that can effortlessly merge with the human body for drug delivery and diagnostic purposes. Nonetheless, their improvement is limited by intricate and repetitive issues related to material composition, structural geometry, manufacturing accuracy, and performance enhancement. At present, there are only a limited number of studies accessible since artificial intelligence and machine learning (AI/ML) for HMN are just starting to emerge and are in the initial phase. Data is distributed across separate research efforts, spanning different fields. This review aims to tackle the disjointed and narrowly concentrated aspects of current research on AI/ML applications in HMN technologies by offering a cohesive, comprehensive synthesis of interdisciplinary insights, categorized into five thematic areas: (1) material and microneedle design, (2) diagnostics and therapy, (3) drug delivery, (4) drug development, and (5) health and agricultural sensing. For each domain, we detail typical AI methods, integration approaches, proven advantages, and ongoing difficulties. We suggest a systematic five-stage developmental pathway covering material discovery, structural design, manufacturing, biomedical performance, and advanced AI integration, intended to expedite the transition of HMNs from research ideas to clinically and commercially practical systems. The findings of this review indicate that AI/ML can significantly enhance HMN development by addressing design and fabrication constraints via predictive modeling, adaptive control, and process optimization. By synchronizing these abilities with clinical and commercial translation requirements, AI/ML can act as key facilitators in converting HMNs from research ideas into scalable, practical biomedical solutions.
Full article
(This article belongs to the Special Issue Responsive Polymeric Nanomaterials and Hydrogels: Synthesis, Characterization, and Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Spin-Coating of Sizing on Glass Fibres
by
James L. Thomason, Roya Akrami and Liu Yang
Micro 2025, 5(4), 47; https://doi.org/10.3390/micro5040047 - 25 Oct 2025
Abstract
►▼
Show Figures
Size is a surface coating applied to glass fibres during manufacture, and it is arguably the most important component in a glass-reinforced composite. Research and development on sizings and composite interfaces are severely limited, because conventional laboratory- scale glass fibre sizing analysis commonly
[...] Read more.
Size is a surface coating applied to glass fibres during manufacture, and it is arguably the most important component in a glass-reinforced composite. Research and development on sizings and composite interfaces are severely limited, because conventional laboratory- scale glass fibre sizing analysis commonly involves sample preparation by dip coating, resulting in a size layer up to two orders of magnitude thicker than industrially produced glass fibre products. This makes it difficult to make useful comparisons between industrial and lab-scale-prepared samples when investigating size performance. This paper presents a novel, but simple, use of laboratory spin coating to apply a size layer to glass fibres that are similar to industrial-sized fibres. Thermogravimetric analysis and electron microscopy were used to investigate the size layers of glass fibres spin-coated with two chemically different sizing formulations, under a range of conditions. The average size layer thickness on spin-coated glass fibres could be easily and simply controlled in a range from 0.05 to 0.6 µm, compared to 0.4–1.3 µm on samples dip coated with the same size formulation and 0.06–0.10 µm on industrial reference samples. This novel application of the spin coating method offers the potential of improved research sample preparation, as it eliminates the need to alter the concentration of the sizing formulations to unacceptably low levels to obtain normal size layer thicknesses.
Full article

Figure 1
Open AccessArticle
Explainable AI-Driven Raman Spectroscopy for Rapid Bacterial Identification
by
Dimitris Kalatzis, Angeliki I. Katsafadou, Dimitrios Chatzopoulos, Charalambos Billinis and Yiannis Kiouvrekis
Micro 2025, 5(4), 46; https://doi.org/10.3390/micro5040046 - 14 Oct 2025
Abstract
►▼
Show Figures
Raman spectroscopy is a rapid, label-free, and non-destructive technique for probing molecular structures, making it a powerful tool for clinical pathogen identification. However, interpreting its complex spectral data remains challenging. In this study, we evaluate and compare a suite of machine learning models—including
[...] Read more.
Raman spectroscopy is a rapid, label-free, and non-destructive technique for probing molecular structures, making it a powerful tool for clinical pathogen identification. However, interpreting its complex spectral data remains challenging. In this study, we evaluate and compare a suite of machine learning models—including Support Vector Machines (SVM), XGBoost, LightGBM, Random Forests, k-nearest Neighbors (k-NN), Convolutional Neural Networks (CNNs), and fully connected Neural Networks—with and without Principal Component Analysis (PCA) for dimensionality reduction. Using Raman spectral data from 30 clinically important bacterial and fungal species that collectively account for over 90% of human infections in hospital settings, we conducted rigorous hyperparameter tuning and assessed model performance based on accuracy, precision, recall, and F1-score. The SVM with an RBF kernel combined with PCA emerged as the top-performing model, achieving the highest accuracy (0.9454) and F1-score (0.9454). Ensemble methods such as LightGBM and XGBoost also demonstrated strong performance, while CNNs provided competitive results among deep learning approaches. Importantly, interpretability was achieved via SHAP (Shapley Additive exPlanations), which identified class-specific Raman wavenumber regions critical to prediction. These interpretable insights, combined with strong classification performance, underscore the potential of explainable AI-driven Raman analysis to accelerate clinical microbiology diagnostics, optimize antimicrobial therapy, and improve patient outcomes.
Full article

Figure 1
Open AccessArticle
Biogenic TiO2–ZnO Nanocoatings: A Sustainable Strategy for Visible-Light Self-Sterilizing Surfaces in Healthcare
by
Ali Jabbar Abd Al-Hussain Alkawaz, Maryam Sabah Naser and Ali Jalil Obaid
Micro 2025, 5(4), 45; https://doi.org/10.3390/micro5040045 - 30 Sep 2025
Abstract
Introduction: Hospital-acquired infections remain a significant healthcare concern due to the persistence of pathogens such as Staphylococcus aureus and Escherichia coli on frequently touched surfaces. Conventional TiO2 coatings are limited to UV activation, which restricts their application under normal indoor light. Combining
[...] Read more.
Introduction: Hospital-acquired infections remain a significant healthcare concern due to the persistence of pathogens such as Staphylococcus aureus and Escherichia coli on frequently touched surfaces. Conventional TiO2 coatings are limited to UV activation, which restricts their application under normal indoor light. Combining TiO2 with ZnO and employing green synthesis methods may overcome these limitations. Methodology: Biogenic TiO2 and ZnO nanoparticles were synthesized using Bacillus subtilis under mild aqueous conditions. The nanoparticles were characterized by SEM, XRD, UV-Vis, and FTIR, confirming nanoscale size, crystalline phases, and organic capping. A multilayer TiO2/ZnO coating was fabricated on glass substrates through layer-by-layer deposition. Antibacterial activity was tested against S. aureus and E. coli using disk diffusion, direct contact assays, ROS quantification (FOX assay), and scavenger experiments. Statistical significance was evaluated using ANOVA. Results: The TiO2/ZnO multilayer exhibited superior antibacterial activity under visible light, with inhibition zones of ~15 mm (S. aureus) and ~12 mm (E. coli), significantly outperforming single-component coatings. Direct contact assays confirmed strong bactericidal effects, while scavenger tests verified ROS-mediated mechanisms. FOX assays detected elevated H2O2 generation, correlating with antibacterial performance. Discussion: Synergistic effects of band-gap narrowing, Zn2+ release, and ROS generation enhanced visible-light photocatalysis. The multilayer structure improved light absorption and charge separation, providing higher antimicrobial efficacy than individual oxides. Conclusion: Biogenic TiO2/ZnO multilayers represent a sustainable, visible-light-activated antimicrobial strategy with strong potential for reducing nosocomial infections on hospital surfaces and surgical instruments. Future studies should assess long-term durability and clinical safety.
Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials—2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Nano-Biomechanical Analysis of a Corticosteroid Drug for Targeted Delivery into the Alveolar Air—Water Interface Using Molecular Dynamics Simulation
by
Zohurul Islam, Khalid Bin Kaysar, Shakhawat Hossain, Akram Hossain, Suvash C. Saha, Toufik Tayeb Naas and Kwang-Yong Kim
Micro 2025, 5(4), 44; https://doi.org/10.3390/micro5040044 - 25 Sep 2025
Abstract
The enhancement of drug delivery into the lung surfactant is facilitated by research on the interaction between drugs and the lung surfactant. Drug designers must have a thorough theoretical understanding of a drug before performing clinical tests to reduce the experimental cost. The
[...] Read more.
The enhancement of drug delivery into the lung surfactant is facilitated by research on the interaction between drugs and the lung surfactant. Drug designers must have a thorough theoretical understanding of a drug before performing clinical tests to reduce the experimental cost. The current study uses a coarse-grained molecular dynamics (MD) approach with the MARTINI force field to parameterize the corticosteroid drug mometasone furoate, which is used to treat lung inflammation. Here, we investigate the accurate parametrization of drug molecules and validate the parameters with the help of umbrella sampling simulations. A collection of thermodynamic parameters was studied during the parametrization procedure. The Gibbs free energy gradient was used to calculate the partition coefficient value of mometasone furoate, which was approximately 10.49 based on our umbrella sampling simulation. The value was then matched with the experimental and predicted the partition coefficient of the drug, showing good agreement. The drug molecule was then delivered into the lung surfactant monolayer membrane at the alveolar air–water interface, resulting a concentration-dependent drop in surface tension while controlling the underlying continual compression–expansion of alveoli that maintains the exhalation–inhalation respiratory cycle. The dynamical properties of the monolayer demonstrate that the drug’s capacity to diffuse into the monolayer is considerably diminished in larger clusters, and this effect is intensified when there are more drug molecules present in the monolayer. The monolayer microstructure analysis shows that the drug concentration controls monolayer morphology. The results of this investigation may be helpful for corticosteroid drug delivery into the lung alveoli, which can be applied to comprehend how the drug interacts with lung surfactant monolayers or bilayers.
Full article
(This article belongs to the Collection Advances in Microtechnology for Cell/Tissue Engineering and Biosensing)
►▼
Show Figures

Figure 1
Open AccessArticle
Spatial and Temporal Distribution of Large (1–5 mm) Microplastics on the Strandline of a Macrotidal Sandy Beach (Polzeath, Southwest England) and Their Association with Beach-Cast Seaweed
by
Catherine Beale and Andrew Turner
Micro 2025, 5(3), 43; https://doi.org/10.3390/micro5030043 - 19 Sep 2025
Abstract
Microplastics (MPs) are ubiquitous and persistent contaminants of the marine environment, but a clear understanding of their cycling, fate, and impacts in coastal zones is lacking. In this study, large MPs (1–5 mm) were sampled spatially and temporally from the strandline of a
[...] Read more.
Microplastics (MPs) are ubiquitous and persistent contaminants of the marine environment, but a clear understanding of their cycling, fate, and impacts in coastal zones is lacking. In this study, large MPs (1–5 mm) were sampled spatially and temporally from the strandline of a macrotidal, sandy beach (Polzeath) in southwest England. MPs encompassing a diversity of sources were categorised by morphology (foams, nurdles, biobeads, fragments, fibres, films) and quantified by number and mass, with a selection analysed for polymer type. A total of about 17,600 particles of around 350 g in mass were retrieved from 30 samples over a period of five months, with an abundance ranging from 35 and 2048 per m2. The space- and time-integrated average mass of MPs on the beach strandline was about 2 kg and was dominated (>90%) by fragments, nurdles, and biobeads of polyethylene or polypropylene construction. Nurdles, biobeads, fragments, and, to a lesser extent, fibres were correlated with strandline seaweed abundance, which itself was correlated with previous storm activity. Relationships with seaweed abundance were also supported by visible associations of these MP morphologies with macroalgal deposits through entanglement and adhesion. These observations, coupled with a lack of MPs below the sand’s surface (50 cm depth), suggest that the majority of MPs are transported from an offshore stock with floating organic debris, resulting in a transitory strandline repository and a habitat enriched with small plastics.
Full article
(This article belongs to the Special Issue Microplastics: From Characterization to Environmental and Biological Impacts)
►▼
Show Figures

Figure 1
Open AccessArticle
Transparent SU-8 Micronozzle Array with Minimal Dead Volume for Parallel Liquid-to-Liquid Sample Ejection
by
Kentaro Tanagi, Anuj Tiwari, Sho Kawaharada, Shunya Okamoto, Takayuki Shibata, Tuhin Subhra Santra and Moeto Nagai
Micro 2025, 5(3), 42; https://doi.org/10.3390/micro5030042 - 18 Sep 2025
Abstract
High-throughput biological and chemical assays increasingly require parallel sample manipulation using arrays of micronozzle apertures. Liquid-to-liquid ejection avoids air–liquid interfaces, thereby reducing sample evaporation and mechanical stress while simplifying device operation. However, existing microfluidic platforms for parallel handling suffer from high dead volume,
[...] Read more.
High-throughput biological and chemical assays increasingly require parallel sample manipulation using arrays of micronozzle apertures. Liquid-to-liquid ejection avoids air–liquid interfaces, thereby reducing sample evaporation and mechanical stress while simplifying device operation. However, existing microfluidic platforms for parallel handling suffer from high dead volume, limited optical access, and poor scalability due to thick structural layers. Here, we present a transparent three-layer 4 × 4 micronozzle array with 40 μm diameter openings and a photolithographically fabricated SU-8 membrane. Our sacrificial layer process yields a 30 µm SU-8 membrane—approximately a 70% reduction in thickness—thereby lowering vertical channel dead volume and eliminating the need for costly glass etching. The resulting architecture enables parallel particle and nanoliter liquid manipulation with real-time optical clarity and enables water-to-water ejection, avoiding air–liquid interfaces. This work demonstrates the water-to-water ejection of 0.5–10 µm microparticles using a transparent, low-dead volume SU-8/PDMS micronozzle array and provides a basis for future studies on substrate deposition and cell handling workflows.
Full article
(This article belongs to the Collection Advances in Microtechnology for Cell/Tissue Engineering and Biosensing)
►▼
Show Figures

Figure 1
Open AccessArticle
Size-Dependent Interactions of γH2AX and p53 Proteins with Graphene Quantum Dots
by
Hassan Arif, Sachi Mehta and Isaac Macwan
Micro 2025, 5(3), 41; https://doi.org/10.3390/micro5030041 - 30 Aug 2025
Abstract
p53 protein is a nuclear phosphoprotein that is a critical tumor suppressor, playing a key role in regulating the cell cycle and initiating apoptosis in response to DNA damage. As a transcription factor, it also activates genes involved in DNA repair and cell
[...] Read more.
p53 protein is a nuclear phosphoprotein that is a critical tumor suppressor, playing a key role in regulating the cell cycle and initiating apoptosis in response to DNA damage. As a transcription factor, it also activates genes involved in DNA repair and cell cycle arrest. H2AX is a histone H2A variant, which is vital for detecting DNA double-strand breaks. When phosphorylated at Serine 139, it forms γH2AX, which recruits DNA repair proteins to damage sites. The interaction between p53 and γH2AX is central to the DNA damage response, where p53 activates repair pathways and γH2AX flags the DNA lesions. It is known that impairing γH2AX while preserving p53 activity may slow cancer progression. Towards understanding this, graphene quantum dots (GQDs) offer a promising solution for tracking γH2AX and analyzing DNA damage, where they can help visualize it by investigating how p53 contributes to DNA repair at sites marked by γH2AX. This study examines the interactions between γH2AX and p53 with three different-sized two-layered GQDs (2 × 3 nm, 5 × 6 nm, and 8 × 9 nm) using the Molecular Dynamics (MD) approach. Our analysis revealed that both proteins adsorbed strongly to the 5 × 6 nm and 8 × 9 nm GQDs, with 5 × 6 nm GQD having the highest stability, making it a key candidate for future biosensing and cancer research, whereas the 8 × 9 nm GQD has the greatest potential to denature the proteins.
Full article
(This article belongs to the Section Microscale Biology and Medicines)
►▼
Show Figures

Figure 1
Open AccessReview
Comprehensive Review of Graphene Synthesis Techniques: Advancements, Challenges, and Future Directions
by
Joys Alisa Angelina Hutapea, Yosia Gopas Oetama Manik, Sun Theo Constan Lotebulo Ndruru, Jingfeng Huang, Ronn Goei, Alfred Iing Yoong Tok and Rikson Siburian
Micro 2025, 5(3), 40; https://doi.org/10.3390/micro5030040 - 21 Aug 2025
Cited by 3
Abstract
Graphene, a two-dimensional material with remarkable electrical, thermal, and mechanical properties, has revolutionized the fields of electronics, energy storage, and nanotechnology. This review presents a comprehensive analysis of graphene synthesis techniques, which can be classified into two primary approaches: top-down and bottom-up. Top-down
[...] Read more.
Graphene, a two-dimensional material with remarkable electrical, thermal, and mechanical properties, has revolutionized the fields of electronics, energy storage, and nanotechnology. This review presents a comprehensive analysis of graphene synthesis techniques, which can be classified into two primary approaches: top-down and bottom-up. Top-down methods, such as mechanical exfoliation, oxidation-reduction, unzipping carbon nanotubes, and liquid-phase exfoliation, are highlighted for their scalability and cost-effectiveness, albeit with challenges in controlling defects and uniformity. In contrast, bottom-up methods, including chemical vapor deposition (CVD), arc discharge, and epitaxial growth on silicon carbide, offer superior structural control and quality but are often constrained by high costs and limited scalability. The interplay between synthesis parameters, material properties, and application requirements is critically examined to provide insights into optimizing graphene production. This review also emphasizes the growing demand for sustainable and environmentally friendly approaches, aligning with the global push for green nanotechnology. By synthesizing current advancements and identifying critical research gaps, this work offers a roadmap for selecting the most suitable synthesis techniques and fostering innovations in scalable and high-quality graphene production. The findings serve as a valuable resource for researchers and industries aiming to harness graphene’s full potential in diverse technological applications.
Full article
(This article belongs to the Section Microscale Materials Science)
►▼
Show Figures

Figure 1
Open AccessReview
Nanocurcumin and Curcumin-Loaded Nanoparticles in Antimicrobial Photodynamic Therapy: Mechanisms and Emerging Applications
by
Edith Dube and Grace Emily Okuthe
Micro 2025, 5(3), 39; https://doi.org/10.3390/micro5030039 - 18 Aug 2025
Abstract
The growing threat of antimicrobial resistance has necessitated the development of alternative, non-antibiotic therapies for effective microbial control. Antimicrobial photodynamic therapy, which uses photosensitizers activated by light to generate reactive oxygen species, offers a promising solution. Among natural photosensitizers, curcumin, a polyphenolic compound
[...] Read more.
The growing threat of antimicrobial resistance has necessitated the development of alternative, non-antibiotic therapies for effective microbial control. Antimicrobial photodynamic therapy, which uses photosensitizers activated by light to generate reactive oxygen species, offers a promising solution. Among natural photosensitizers, curcumin, a polyphenolic compound from Curcuma longa, has demonstrated broad-spectrum antimicrobial activity through reactive oxygen species-mediated membrane disruption and intracellular damage. However, curcumin’s poor water solubility, low stability, and limited bioavailability hinder its clinical utility. Nanotechnology has emerged as a transformative strategy to overcome these limitations. This review comprehensively explores advances in nanocurcumin- and curcumin-loaded nanoparticles, highlighting their physicochemical enhancements, photodynamic mechanisms, and antimicrobial efficacy against multidrug-resistant and biofilm-associated pathogens. A range of nanocarriers, including chitosan, liposomes, nanobubbles, hybrid metal composites, metal–organic frameworks, and covalent organic frameworks, demonstrate improved microbial targeting, light activation efficiency, and therapeutic outcomes. Applications span wound healing, dental disinfection, food preservation, water treatment, and medical device sterilization. Conclusions and future directions are given, emphasizing the integration of smart nanocarriers and combinatorial therapies to enhance curcumin’s clinical translation.
Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials—2nd Edition)
►▼
Show Figures

Figure 1
Open AccessReview
Properties and Preparation of Alumina Nanomaterials and Their Application in Catalysis
by
Hairuo Zhu, Kangyu Liu, Zhaorui Meng, Huanhuan Wang and Yuming Li
Micro 2025, 5(3), 38; https://doi.org/10.3390/micro5030038 - 12 Aug 2025
Cited by 1
Abstract
Nanomaterials are materials in which at least one dimension in three-dimensional space is at the nanoscale. In recent years, nano-alumina has attracted much attention due to its large specific surface area and pore volume, as well as novel optical, magnetic, electronic, and catalytic
[...] Read more.
Nanomaterials are materials in which at least one dimension in three-dimensional space is at the nanoscale. In recent years, nano-alumina has attracted much attention due to its large specific surface area and pore volume, as well as novel optical, magnetic, electronic, and catalytic properties. This review summarizes the preparation methods of nano-alumina based on the basic phases and properties of alumina materials, focusing on one-dimensional, two-dimensional, and three-dimensional nano-alumina preparation methods, which can provide some theoretical guidance for the subsequent development of efficient nano-alumina materials. Finally, the application of nano-alumina materials in catalysis is reviewed, and some suggestions are provided for improving the use of nano-alumina in the catalysis field.
Full article
(This article belongs to the Special Issue Nanomaterials for Sustainable Waste Conversion, Energy Production, and Environmental Applications)
►▼
Show Figures

Figure 1
Open AccessReview
The Quest Towards Superhydrophobic Cellulose and Bacterial Cellulose Membranes and Their Perspective Applications
by
Iliana Ntovolou, Despoina Farkatsi and Kosmas Ellinas
Micro 2025, 5(3), 37; https://doi.org/10.3390/micro5030037 - 31 Jul 2025
Abstract
Over the last few decades, the growing demand for sustainable resources has made biopolymers increasingly popular, as they offer an eco-friendly alternative to conventional synthetic polymers, which are often associated with environmental issues such as the formation of microplastics and toxic substances. Functionalization
[...] Read more.
Over the last few decades, the growing demand for sustainable resources has made biopolymers increasingly popular, as they offer an eco-friendly alternative to conventional synthetic polymers, which are often associated with environmental issues such as the formation of microplastics and toxic substances. Functionalization of biomaterials involves modifying their physical, chemical, or biological properties to improve their performance for specific applications. Cellulose and bacterial cellulose are biopolymers of interest, due to the plethora of hydroxyl groups, their high surface area, and high porosity, which makes them ideal candidates for several applications. However, there are applications, which require precise control of their wetting properties. In this review, we present the most effective fabrication methods for modifying both the morphology and the chemical properties of cellulose and bacterial cellulose, towards the realization of superhydrophobic bacterial cellulose films and surfaces. Such materials can find a wide variety of applications, yet in this review we target and discuss applications deriving from the wettability control, such as antibacterial surfaces, wound healing films, and separation media.
Full article
(This article belongs to the Section Microscale Materials Science)
►▼
Show Figures

Figure 1
Open AccessReview
Bioactive Compounds and the Performance of Proteins as Wall Materials for Their Encapsulation
by
Therys Senna de Castro Oliveira, Jhonathan Valente Ferreira Gusmão, Thaís Caroline Buttow Rigolon, Daiana Wischral, Pedro Henrique Campelo, Evandro Martins and Paulo Cesar Stringheta
Micro 2025, 5(3), 36; https://doi.org/10.3390/micro5030036 - 31 Jul 2025
Abstract
The encapsulation of bioactive compounds using proteins as wall materials has emerged as an effective strategy to enhance their stability, bioavailability, and controlled release. Proteins offer unique functional properties, including amphiphilic behavior, gel-forming ability, and interactions with bioactives, making them ideal candidates for
[...] Read more.
The encapsulation of bioactive compounds using proteins as wall materials has emerged as an effective strategy to enhance their stability, bioavailability, and controlled release. Proteins offer unique functional properties, including amphiphilic behavior, gel-forming ability, and interactions with bioactives, making them ideal candidates for encapsulation. Animal-derived proteins, such as whey and casein, exhibit superior performance in stabilizing lipophilic compounds, whereas plant proteins, including soy and pea protein, demonstrate greater affinity for hydrophilic bioactives. Advances in protein modification and the formation of protein–polysaccharide complexes have further improved encapsulation efficiency, particularly for heat- and pH-sensitive compounds. This review explores the physicochemical characteristics of proteins used in encapsulation, the interactions between proteins and bioactives, and the main encapsulation techniques, including spray drying, complex coacervation, nanoemulsions, and electrospinning. Furthermore, the potential applications of encapsulated bioactives in functional foods, pharmaceuticals, and nutraceuticals are discussed, highlighting the role of emerging technologies in optimizing delivery systems. Understanding the synergy between proteins, bioactives, and encapsulation methods is essential for developing more stable, bioavailable, and sustainable functional products.
Full article
(This article belongs to the Section Microscale Biology and Medicines)
Open AccessArticle
Effect of Zr Doping on BNT–5BT Lead-Free Ceramics: Substitutional and Excess Incorporation Analysis
by
Mauro Difeo, Miriam Castro and Leandro Ramajo
Micro 2025, 5(3), 35; https://doi.org/10.3390/micro5030035 - 28 Jul 2025
Abstract
This study evaluates the effect of zirconium (Zr) incorporation on the structural, microstructural, and functional properties of lead-free ceramics based on the 0.95(Bi0.5Na0.5)TiO3–0.05BaTiO3 (BNT–5BT) system. Two distinct doping strategies were investigated: (i) the substitutional incorporation of
[...] Read more.
This study evaluates the effect of zirconium (Zr) incorporation on the structural, microstructural, and functional properties of lead-free ceramics based on the 0.95(Bi0.5Na0.5)TiO3–0.05BaTiO3 (BNT–5BT) system. Two distinct doping strategies were investigated: (i) the substitutional incorporation of Zr4+ at the Ti4+ site (BNT–5BT–xZrsub), and (ii) the addition of ZrO2 in excess (BNT–5BT–xZrexc). The samples were synthesized via conventional solid-state reaction and characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM/EDS), and electrical measurements, including dielectric, ferroelectric, and piezoelectric responses. Both doping routes were found to influence phase stability and electromechanical performance. Substitutional doping notably reduced the coercive field while preserving high remanent polarization, resulting in an enhanced piezoelectric coefficient (d33). These results highlight the potential of Zr-modified BNT–5BT ceramics for lead-free energy harvesting applications.
Full article
(This article belongs to the Special Issue Nanomaterials for Sustainable Waste Conversion, Energy Production, and Environmental Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Investigation of Corrosion and Fouling in a Novel Biocide-Free Antifouling Coating on Steel
by
Polyxeni Vourna, Pinelopi P. Falara and Nikolaos D. Papadopoulos
Micro 2025, 5(3), 34; https://doi.org/10.3390/micro5030034 - 15 Jul 2025
Cited by 1
Abstract
►▼
Show Figures
Antifouling coatings are integral to the maritime economy. The efficacy of the applied painting system is closely correlated with susceptibility to fouling and the adhesion strength of contaminants. A fouled hull might result in an elevated fuel consumption and journey expenses. Biofouling on
[...] Read more.
Antifouling coatings are integral to the maritime economy. The efficacy of the applied painting system is closely correlated with susceptibility to fouling and the adhesion strength of contaminants. A fouled hull might result in an elevated fuel consumption and journey expenses. Biofouling on ship hulls also has detrimental environmental consequences due to the release of biocides during maritime travel. Therefore, it is imperative to develop eco-friendly antifouling paints that inhibit the robust adhesion of marine organisms. This study aimed to assess a biocide-free antifouling coating formulated with polymers intended to diminish molecular adhesion interactions between marine species’ adhesives and the coating. The evaluation included laboratory corrosion experiments in artificial seawater and the immersion of samples in a marine environment in Attica, Greece, for varying durations. The research indicates that an antifouling coating applied to naval steel in an artificial seawater solution improves corrosion resistance by more than 60%. The conductive polymer covering, comprising polyaniline and graphene oxide, diminishes corrosion current values, lowers the corrosion rate, and enhances corrosion potentials. The impedance parameters exhibit analogous behavior, with the coating preventing water absorption and displaying corrosion resistance. The coating serves as a low-permeability barrier, exhibiting exceptional durability for naval steel over time, with an operational performance up to 98%.
Full article

Figure 1
Open AccessArticle
Multifunctional Green-Synthesized Cu2O-Cu(OH)2 Nanocomposites Grown on Cu Microfibers for Water Treatment Applications
by
Hala Al-Jawhari, Nuha A. Alhebshi, Roaa Sait, Reem Altuwirqi, Laila Alrehaili, Noorah Al-Ahmadi and Nihal Elbialy
Micro 2025, 5(3), 33; https://doi.org/10.3390/micro5030033 - 5 Jul 2025
Abstract
Free-standing copper oxide (Cu2O)-copper hydroxide (Cu(OH)2) nanocomposites with enhanced catalytic and antibacterial functionalities were synthesized on copper mesh using a green method based on spinach leaf extract and glycerol. EDX, SEM, and TEM analyses confirmed the chemical composition and
[...] Read more.
Free-standing copper oxide (Cu2O)-copper hydroxide (Cu(OH)2) nanocomposites with enhanced catalytic and antibacterial functionalities were synthesized on copper mesh using a green method based on spinach leaf extract and glycerol. EDX, SEM, and TEM analyses confirmed the chemical composition and morphology. The resulting Cu2O-Cu(OH)2@Cu mesh exhibited notable hydrophobicity, achieving a contact angle of 137.5° ± 0.6, and demonstrated the ability to separate thick oils, such as HD-40 engine oil, from water with a 90% separation efficiency. Concurrently, its photocatalytic performance was evaluated by the degradation of methylene blue (MB) under a weak light intensity of 5 mW/cm2, achieving 85.5% degradation within 30 min. Although its application as a functional membrane in water treatment may raise safety concerns, the mesh showed significant antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria under both dark and light conditions. Using the disk diffusion method, strong bacterial inhibition was observed after 24 h of exposure in the dark. Upon visible light irradiation, bactericidal efficiency was further enhanced—by 17% for S. aureus and 2% for E. coli. These findings highlight the potential of the Cu2O-Cu(OH)2@Cu microfibers as a multifunctional membrane for industrial wastewater treatment, capable of simultaneously removing oil, degrading organic dyes, and inactivating pathogenic bacteria through photo-assisted processes.
Full article
(This article belongs to the Special Issue Nanomaterials for Sustainable Waste Conversion, Energy Production, and Environmental Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Automated SILAR System for High-Precision Deposition of CZTS Semiconductor Thin Films
by
Perla J. Vázquez-González, Martha L. Paniagua-Chávez, Rafael Mota-Grajales and Carlos A. Hernández-Gutiérrez
Micro 2025, 5(3), 32; https://doi.org/10.3390/micro5030032 - 24 Jun 2025
Abstract
In this work, we present the development and validation of an automated system for the Successive Ionic Layer Adsorption and Reaction (SILAR) method, aimed at depositing Cu2ZnSnS4 (CZTS) thin films. The system is based on a Raspberry Pi Pico microcontroller
[...] Read more.
In this work, we present the development and validation of an automated system for the Successive Ionic Layer Adsorption and Reaction (SILAR) method, aimed at depositing Cu2ZnSnS4 (CZTS) thin films. The system is based on a Raspberry Pi Pico microcontroller programmed in Micro-Python (Thonny 4.0.2), allowing precise control over immersion sequences, timing intervals, and substrate positioning along two degrees of freedom. Automation enhances reproducibility, safety, and reduces human error compared with manual operation. CZTS films were deposited on borosilicate glass and optically and structurally characterized. A gradual darkening of the films with increasing deposition cycles indicates controlled material accumulation. X-ray diffraction (XRD) and Raman spectroscopy confirmed the presence of CZTS phases, although with a partially amorphous structure. The estimated optical bandgap of ~1.34 eV is consistent with photovoltaic applications. These results validate the functionality of the automated SILAR platform for repeatable and scalable thin-film fabrication, offering a low-cost alternative for producing semiconductor absorber layers in solar energy technologies.
Full article
(This article belongs to the Section Microscale Materials Science)
►▼
Show Figures

Figure 1
Open AccessArticle
Fe-Doped ZnS Quantum Dot Photocatalysts for the Degradation of Cefalexin in Water
by
Sonia J. Bailon-Ruiz, Yarilyn Cedeño-Mattei and Luis Alamo-Nole
Micro 2025, 5(3), 31; https://doi.org/10.3390/micro5030031 - 22 Jun 2025
Cited by 1
Abstract
This study reports the synthesis, structural characterization, adsorption studies, nanoscale interaction, and photocatalytic application of pure and Fe-doped ZnS quantum dots for the degradation of the antibiotic cefalexin in aqueous solution. Nanoparticles were synthesized via the microwave-assisted method, and Fe doping was introduced
[...] Read more.
This study reports the synthesis, structural characterization, adsorption studies, nanoscale interaction, and photocatalytic application of pure and Fe-doped ZnS quantum dots for the degradation of the antibiotic cefalexin in aqueous solution. Nanoparticles were synthesized via the microwave-assisted method, and Fe doping was introduced at a 1% molar ratio. HRTEM images confirmed quasi-spherical morphology and high crystallinity, with particle sizes averaging 2.4 nm (pure) and 3.5 nm (doped). XRD analysis showed a consistent cubic ZnS structure. UV-vis spectra showed strong absorption at 316 nm for both samples, and PL measurements revealed emission quenching upon Fe doping. Photocatalytic tests under UV light demonstrated significantly higher degradation rates of 10 ppm cefalexin with Fe-doped ZnS, reaching near-complete removal within 90 min. Adsorption experiments revealed higher affinity and adsorption capacity of Fe-doped ZnS toward cefalexin compared to pure ZnS, as demonstrated by the Freundlich isotherm analyses, contributing significantly to enhanced photocatalytic degradation performance. High-resolution QTOF LC-MS analysis confirmed the breakdown of the β-lactam and thiazolidine rings of cefalexin and the formation of low-mass degradation products, including fragments at m/z 122.0371, 116.0937, and 318.2241. These findings provide strong evidence for the structural destruction of the antibiotic and validate the enhanced photocatalytic performance of Fe-doped ZnS.
Full article
(This article belongs to the Special Issue Nanomaterials for Sustainable Waste Conversion, Energy Production, and Environmental Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Tailoring of Albumin Nanoparticles Modified with Mannose for Effective Targeting in Immunosuppressive Tumor Microenvironment
by
Alyona B. Kuznetsova, Valentina I. Gorbacheva, Ekaterina P. Kolesova and Vera S. Egorova
Micro 2025, 5(2), 30; https://doi.org/10.3390/micro5020030 - 13 Jun 2025
Abstract
In the tumor microenvironment, M2 tumor-associated macrophages play a crucial role in promoting tumor growth, vascularization, and metastasis through their anti-inflammatory and tissue-repairing functions. To reprogram M2 cells into a more benign M1 phenotype and enhance the patient’s intrinsic immune response against cancer,
[...] Read more.
In the tumor microenvironment, M2 tumor-associated macrophages play a crucial role in promoting tumor growth, vascularization, and metastasis through their anti-inflammatory and tissue-repairing functions. To reprogram M2 cells into a more benign M1 phenotype and enhance the patient’s intrinsic immune response against cancer, siRNA and small molecules are used, which can be encapsulated into nanoparticles to enhance their stability, circulation time, and bioavailability. Albumin nanoparticles are ideal candidates for the delivery of such cargo because of their low toxicity, biocompatibility, biodegradability, prolonged circulation in the bloodstream, and feasible particle modification. In this study, we optimized a one-step desolvation method using the standard cross-linker glutaraldehyde and D-mannose as a second cross-linker for the synthesis of mannosylated albumin nanoparticles. The obtained nanoparticles demonstrated favorable physical characteristics, high encapsulation efficiency, and the most effective targeting into activated M2 macrophages overexpressing the mannose receptor in comparison to M1 macrophages and cancer cells in vitro.
Full article
(This article belongs to the Collection Advances in Microtechnology for Cell/Tissue Engineering and Biosensing)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Coatings, Eng, Micro, Micromachines, Lubricants
Surface Engineering and Micro Additive Manufacturing
Topic Editors: Joško Valentinčič, Avik Samanta, Soham MujumdarDeadline: 28 February 2026
Topic in
Diagnostics, Electronics, Eng, Micro, Micromachines
Micro-Nanoelectronic Systems for Diagnosis and Therapies
Topic Editors: Wubin Bai, Jiho ShinDeadline: 30 June 2026
Topic in
Electronics, Eng, Materials, Micro, Micromachines
Wide Bandgap Semiconductor Electronics and Devices
Topic Editors: Joseph Bernstein, Asaf AlboDeadline: 31 July 2026
Topic in
Biomolecules, IJMS, Micro, Molecules, Antibiotics, Nanomaterials, Microorganisms, JFB
Antimicrobial Agents and Nanomaterials—2nd Edition
Topic Editors: Vasco D. B. Bonifácio, Sandra PintoDeadline: 31 December 2026
Conferences
Special Issues
Special Issue in
Micro
Nanomaterials for Sustainable Waste Conversion, Energy Production, and Environmental Applications
Guest Editors: Constantinos Salmas, Michalis Karakassides, Nikolaos ChalmpesDeadline: 30 November 2025
Special Issue in
Micro
Innovative Materials for Bioelectronics in Wearable and Implantable Applications
Guest Editors: Yang Zou, Zhou LiDeadline: 31 December 2025
Special Issue in
Micro
Responsive Polymeric Nanomaterials and Hydrogels: Synthesis, Characterization, and Applications
Guest Editor: Nurettin SahinerDeadline: 31 December 2025
Special Issue in
Micro
Microplastics in Waste Treatment: Removal, Transformation, and Unintended Release
Guest Editor: Yunlong LuoDeadline: 31 January 2026
Topical Collections
Topical Collection in
Micro
Advances in Microtechnology for Cell/Tissue Engineering and Biosensing
Collection Editor: Eiichi Tamiya
Topical Collection in
Micro
Microsystem and Nanosystem Research for Sensors, Actuators and Energy Conversion Devices
Collection Editors: Vittorio Ferrari, Marco Baù, Dario Zappa


