- Article
Spectroscopic Real-Time Monitoring of Plasmonic Gold Nanoparticle Formation in ZnO Thin Films via Pulsed Laser Annealing
- Edgar B. Sousa,
- N. F. Cunha and
- Joel Borges
- + 1 author
We demonstrate that pulsed laser annealing induces plasmonic gold nanoparticles in ZnO thin films, monitored in real-time via pulse-by-pulse spectroscopy. Initially embedded gold nanoparticles (smaller than 5 nm) in sputtered ZnO films were annealed using 532 nm pulses from a Q-switched Nd:YAG laser while monitoring transmission spectra in situ. A plasmonic resonance dip emerged after ~100 pulses in the 530–550 nm region, progressively deepening with continued exposure. Remarkably, different incident energies converged to a thermodynamically stable optical state centered near 555 nm, indicating robust nanoparticle configurations. After several hundred laser shots, the process stabilized, producing larger nanoparticles (40–200 nm diameter) with significant surface protrusion. SEM analysis confirmed substantial gold nanoparticle growth. Theoretical modeling supports these observations, correlating spectral evolution with particle size and embedding depth. The protruding gold nanoparticles can be functionalized to detect specific biomolecules, offering significant advantages for biosensing applications. This approach offers superior spatial selectivity and real-time process monitoring compared to conventional thermal annealing, with potential for optimizing uniform nanoparticle distributions with pronounced plasmonic resonances for biosensing applications.
24 December 2025


