Journal Description
Micro
Micro
is an international, peer-reviewed, open access journal on microscale and nanoscale research and applications in physics, chemistry, materials, biology, medicine, food, environment technology, engineering, etc., published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science) and other databases.
- Journal Rank: CiteScore - Q2 (Engineering (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 28.1 days after submission; acceptance to publication is undertaken in 4.7 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Micro is a companion journal of Micromachines.
Impact Factor:
1.9 (2024);
5-Year Impact Factor:
2.0 (2024)
Latest Articles
Size-Dependent Interactions of γH2AX and p53 Proteins with Graphene Quantum Dots
Micro 2025, 5(3), 41; https://doi.org/10.3390/micro5030041 - 30 Aug 2025
Abstract
p53 protein is a nuclear phosphoprotein that is a critical tumor suppressor, playing a key role in regulating the cell cycle and initiating apoptosis in response to DNA damage. As a transcription factor, it also activates genes involved in DNA repair and cell
[...] Read more.
p53 protein is a nuclear phosphoprotein that is a critical tumor suppressor, playing a key role in regulating the cell cycle and initiating apoptosis in response to DNA damage. As a transcription factor, it also activates genes involved in DNA repair and cell cycle arrest. H2AX is a histone H2A variant, which is vital for detecting DNA double-strand breaks. When phosphorylated at Serine 139, it forms γH2AX, which recruits DNA repair proteins to damage sites. The interaction between p53 and γH2AX is central to the DNA damage response, where p53 activates repair pathways and γH2AX flags the DNA lesions. It is known that impairing γH2AX while preserving p53 activity may slow cancer progression. Towards understanding this, graphene quantum dots (GQDs) offer a promising solution for tracking γH2AX and analyzing DNA damage, where they can help visualize it by investigating how p53 contributes to DNA repair at sites marked by γH2AX. This study examines the interactions between γH2AX and p53 with three different-sized two-layered GQDs (2 × 3 nm, 5 × 6 nm, and 8 × 9 nm) using the Molecular Dynamics (MD) approach. Our analysis revealed that both proteins adsorbed strongly to the 5 × 6 nm and 8 × 9 nm GQDs, with 5 × 6 nm GQD having the highest stability, making it a key candidate for future biosensing and cancer research, whereas the 8 × 9 nm GQD has the greatest potential to denature the proteins.
Full article
(This article belongs to the Section Microscale Biology and Medicines)
►
Show Figures
Open AccessReview
Comprehensive Review of Graphene Synthesis Techniques: Advancements, Challenges, and Future Directions
by
Joys Alisa Angelina Hutapea, Yosia Gopas Oetama Manik, Sun Theo Constan Lotebulo Ndruru, Jingfeng Huang, Ronn Goei, Alfred Iing Yoong Tok and Rikson Siburian
Micro 2025, 5(3), 40; https://doi.org/10.3390/micro5030040 - 21 Aug 2025
Abstract
Graphene, a two-dimensional material with remarkable electrical, thermal, and mechanical properties, has revolutionized the fields of electronics, energy storage, and nanotechnology. This review presents a comprehensive analysis of graphene synthesis techniques, which can be classified into two primary approaches: top-down and bottom-up. Top-down
[...] Read more.
Graphene, a two-dimensional material with remarkable electrical, thermal, and mechanical properties, has revolutionized the fields of electronics, energy storage, and nanotechnology. This review presents a comprehensive analysis of graphene synthesis techniques, which can be classified into two primary approaches: top-down and bottom-up. Top-down methods, such as mechanical exfoliation, oxidation-reduction, unzipping carbon nanotubes, and liquid-phase exfoliation, are highlighted for their scalability and cost-effectiveness, albeit with challenges in controlling defects and uniformity. In contrast, bottom-up methods, including chemical vapor deposition (CVD), arc discharge, and epitaxial growth on silicon carbide, offer superior structural control and quality but are often constrained by high costs and limited scalability. The interplay between synthesis parameters, material properties, and application requirements is critically examined to provide insights into optimizing graphene production. This review also emphasizes the growing demand for sustainable and environmentally friendly approaches, aligning with the global push for green nanotechnology. By synthesizing current advancements and identifying critical research gaps, this work offers a roadmap for selecting the most suitable synthesis techniques and fostering innovations in scalable and high-quality graphene production. The findings serve as a valuable resource for researchers and industries aiming to harness graphene’s full potential in diverse technological applications.
Full article
(This article belongs to the Section Microscale Materials Science)
►▼
Show Figures

Figure 1
Open AccessReview
Nanocurcumin and Curcumin-Loaded Nanoparticles in Antimicrobial Photodynamic Therapy: Mechanisms and Emerging Applications
by
Edith Dube and Grace Emily Okuthe
Micro 2025, 5(3), 39; https://doi.org/10.3390/micro5030039 - 18 Aug 2025
Abstract
The growing threat of antimicrobial resistance has necessitated the development of alternative, non-antibiotic therapies for effective microbial control. Antimicrobial photodynamic therapy, which uses photosensitizers activated by light to generate reactive oxygen species, offers a promising solution. Among natural photosensitizers, curcumin, a polyphenolic compound
[...] Read more.
The growing threat of antimicrobial resistance has necessitated the development of alternative, non-antibiotic therapies for effective microbial control. Antimicrobial photodynamic therapy, which uses photosensitizers activated by light to generate reactive oxygen species, offers a promising solution. Among natural photosensitizers, curcumin, a polyphenolic compound from Curcuma longa, has demonstrated broad-spectrum antimicrobial activity through reactive oxygen species-mediated membrane disruption and intracellular damage. However, curcumin’s poor water solubility, low stability, and limited bioavailability hinder its clinical utility. Nanotechnology has emerged as a transformative strategy to overcome these limitations. This review comprehensively explores advances in nanocurcumin- and curcumin-loaded nanoparticles, highlighting their physicochemical enhancements, photodynamic mechanisms, and antimicrobial efficacy against multidrug-resistant and biofilm-associated pathogens. A range of nanocarriers, including chitosan, liposomes, nanobubbles, hybrid metal composites, metal–organic frameworks, and covalent organic frameworks, demonstrate improved microbial targeting, light activation efficiency, and therapeutic outcomes. Applications span wound healing, dental disinfection, food preservation, water treatment, and medical device sterilization. Conclusions and future directions are given, emphasizing the integration of smart nanocarriers and combinatorial therapies to enhance curcumin’s clinical translation.
Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials—2nd Edition)
►▼
Show Figures

Figure 1
Open AccessReview
Properties and Preparation of Alumina Nanomaterials and Their Application in Catalysis
by
Hairuo Zhu, Kangyu Liu, Zhaorui Meng, Huanhuan Wang and Yuming Li
Micro 2025, 5(3), 38; https://doi.org/10.3390/micro5030038 - 12 Aug 2025
Abstract
Nanomaterials are materials in which at least one dimension in three-dimensional space is at the nanoscale. In recent years, nano-alumina has attracted much attention due to its large specific surface area and pore volume, as well as novel optical, magnetic, electronic, and catalytic
[...] Read more.
Nanomaterials are materials in which at least one dimension in three-dimensional space is at the nanoscale. In recent years, nano-alumina has attracted much attention due to its large specific surface area and pore volume, as well as novel optical, magnetic, electronic, and catalytic properties. This review summarizes the preparation methods of nano-alumina based on the basic phases and properties of alumina materials, focusing on one-dimensional, two-dimensional, and three-dimensional nano-alumina preparation methods, which can provide some theoretical guidance for the subsequent development of efficient nano-alumina materials. Finally, the application of nano-alumina materials in catalysis is reviewed, and some suggestions are provided for improving the use of nano-alumina in the catalysis field.
Full article
(This article belongs to the Special Issue Nanomaterials for Sustainable Waste Conversion, Energy Production, and Environmental Applications)
►▼
Show Figures

Figure 1
Open AccessReview
The Quest Towards Superhydrophobic Cellulose and Bacterial Cellulose Membranes and Their Perspective Applications
by
Iliana Ntovolou, Despoina Farkatsi and Kosmas Ellinas
Micro 2025, 5(3), 37; https://doi.org/10.3390/micro5030037 - 31 Jul 2025
Abstract
Over the last few decades, the growing demand for sustainable resources has made biopolymers increasingly popular, as they offer an eco-friendly alternative to conventional synthetic polymers, which are often associated with environmental issues such as the formation of microplastics and toxic substances. Functionalization
[...] Read more.
Over the last few decades, the growing demand for sustainable resources has made biopolymers increasingly popular, as they offer an eco-friendly alternative to conventional synthetic polymers, which are often associated with environmental issues such as the formation of microplastics and toxic substances. Functionalization of biomaterials involves modifying their physical, chemical, or biological properties to improve their performance for specific applications. Cellulose and bacterial cellulose are biopolymers of interest, due to the plethora of hydroxyl groups, their high surface area, and high porosity, which makes them ideal candidates for several applications. However, there are applications, which require precise control of their wetting properties. In this review, we present the most effective fabrication methods for modifying both the morphology and the chemical properties of cellulose and bacterial cellulose, towards the realization of superhydrophobic bacterial cellulose films and surfaces. Such materials can find a wide variety of applications, yet in this review we target and discuss applications deriving from the wettability control, such as antibacterial surfaces, wound healing films, and separation media.
Full article
(This article belongs to the Section Microscale Materials Science)
►▼
Show Figures

Figure 1
Open AccessReview
Bioactive Compounds and the Performance of Proteins as Wall Materials for Their Encapsulation
by
Therys Senna de Castro Oliveira, Jhonathan Valente Ferreira Gusmão, Thaís Caroline Buttow Rigolon, Daiana Wischral, Pedro Henrique Campelo, Evandro Martins and Paulo Cesar Stringheta
Micro 2025, 5(3), 36; https://doi.org/10.3390/micro5030036 - 31 Jul 2025
Abstract
The encapsulation of bioactive compounds using proteins as wall materials has emerged as an effective strategy to enhance their stability, bioavailability, and controlled release. Proteins offer unique functional properties, including amphiphilic behavior, gel-forming ability, and interactions with bioactives, making them ideal candidates for
[...] Read more.
The encapsulation of bioactive compounds using proteins as wall materials has emerged as an effective strategy to enhance their stability, bioavailability, and controlled release. Proteins offer unique functional properties, including amphiphilic behavior, gel-forming ability, and interactions with bioactives, making them ideal candidates for encapsulation. Animal-derived proteins, such as whey and casein, exhibit superior performance in stabilizing lipophilic compounds, whereas plant proteins, including soy and pea protein, demonstrate greater affinity for hydrophilic bioactives. Advances in protein modification and the formation of protein–polysaccharide complexes have further improved encapsulation efficiency, particularly for heat- and pH-sensitive compounds. This review explores the physicochemical characteristics of proteins used in encapsulation, the interactions between proteins and bioactives, and the main encapsulation techniques, including spray drying, complex coacervation, nanoemulsions, and electrospinning. Furthermore, the potential applications of encapsulated bioactives in functional foods, pharmaceuticals, and nutraceuticals are discussed, highlighting the role of emerging technologies in optimizing delivery systems. Understanding the synergy between proteins, bioactives, and encapsulation methods is essential for developing more stable, bioavailable, and sustainable functional products.
Full article
(This article belongs to the Section Microscale Biology and Medicines)
Open AccessArticle
Effect of Zr Doping on BNT–5BT Lead-Free Ceramics: Substitutional and Excess Incorporation Analysis
by
Mauro Difeo, Miriam Castro and Leandro Ramajo
Micro 2025, 5(3), 35; https://doi.org/10.3390/micro5030035 - 28 Jul 2025
Abstract
This study evaluates the effect of zirconium (Zr) incorporation on the structural, microstructural, and functional properties of lead-free ceramics based on the 0.95(Bi0.5Na0.5)TiO3–0.05BaTiO3 (BNT–5BT) system. Two distinct doping strategies were investigated: (i) the substitutional incorporation of
[...] Read more.
This study evaluates the effect of zirconium (Zr) incorporation on the structural, microstructural, and functional properties of lead-free ceramics based on the 0.95(Bi0.5Na0.5)TiO3–0.05BaTiO3 (BNT–5BT) system. Two distinct doping strategies were investigated: (i) the substitutional incorporation of Zr4+ at the Ti4+ site (BNT–5BT–xZrsub), and (ii) the addition of ZrO2 in excess (BNT–5BT–xZrexc). The samples were synthesized via conventional solid-state reaction and characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM/EDS), and electrical measurements, including dielectric, ferroelectric, and piezoelectric responses. Both doping routes were found to influence phase stability and electromechanical performance. Substitutional doping notably reduced the coercive field while preserving high remanent polarization, resulting in an enhanced piezoelectric coefficient (d33). These results highlight the potential of Zr-modified BNT–5BT ceramics for lead-free energy harvesting applications.
Full article
(This article belongs to the Special Issue Nanomaterials for Sustainable Waste Conversion, Energy Production, and Environmental Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Investigation of Corrosion and Fouling in a Novel Biocide-Free Antifouling Coating on Steel
by
Polyxeni Vourna, Pinelopi P. Falara and Nikolaos D. Papadopoulos
Micro 2025, 5(3), 34; https://doi.org/10.3390/micro5030034 - 15 Jul 2025
Abstract
►▼
Show Figures
Antifouling coatings are integral to the maritime economy. The efficacy of the applied painting system is closely correlated with susceptibility to fouling and the adhesion strength of contaminants. A fouled hull might result in an elevated fuel consumption and journey expenses. Biofouling on
[...] Read more.
Antifouling coatings are integral to the maritime economy. The efficacy of the applied painting system is closely correlated with susceptibility to fouling and the adhesion strength of contaminants. A fouled hull might result in an elevated fuel consumption and journey expenses. Biofouling on ship hulls also has detrimental environmental consequences due to the release of biocides during maritime travel. Therefore, it is imperative to develop eco-friendly antifouling paints that inhibit the robust adhesion of marine organisms. This study aimed to assess a biocide-free antifouling coating formulated with polymers intended to diminish molecular adhesion interactions between marine species’ adhesives and the coating. The evaluation included laboratory corrosion experiments in artificial seawater and the immersion of samples in a marine environment in Attica, Greece, for varying durations. The research indicates that an antifouling coating applied to naval steel in an artificial seawater solution improves corrosion resistance by more than 60%. The conductive polymer covering, comprising polyaniline and graphene oxide, diminishes corrosion current values, lowers the corrosion rate, and enhances corrosion potentials. The impedance parameters exhibit analogous behavior, with the coating preventing water absorption and displaying corrosion resistance. The coating serves as a low-permeability barrier, exhibiting exceptional durability for naval steel over time, with an operational performance up to 98%.
Full article

Figure 1
Open AccessArticle
Multifunctional Green-Synthesized Cu2O-Cu(OH)2 Nanocomposites Grown on Cu Microfibers for Water Treatment Applications
by
Hala Al-Jawhari, Nuha A. Alhebshi, Roaa Sait, Reem Altuwirqi, Laila Alrehaili, Noorah Al-Ahmadi and Nihal Elbialy
Micro 2025, 5(3), 33; https://doi.org/10.3390/micro5030033 - 5 Jul 2025
Abstract
Free-standing copper oxide (Cu2O)-copper hydroxide (Cu(OH)2) nanocomposites with enhanced catalytic and antibacterial functionalities were synthesized on copper mesh using a green method based on spinach leaf extract and glycerol. EDX, SEM, and TEM analyses confirmed the chemical composition and
[...] Read more.
Free-standing copper oxide (Cu2O)-copper hydroxide (Cu(OH)2) nanocomposites with enhanced catalytic and antibacterial functionalities were synthesized on copper mesh using a green method based on spinach leaf extract and glycerol. EDX, SEM, and TEM analyses confirmed the chemical composition and morphology. The resulting Cu2O-Cu(OH)2@Cu mesh exhibited notable hydrophobicity, achieving a contact angle of 137.5° ± 0.6, and demonstrated the ability to separate thick oils, such as HD-40 engine oil, from water with a 90% separation efficiency. Concurrently, its photocatalytic performance was evaluated by the degradation of methylene blue (MB) under a weak light intensity of 5 mW/cm2, achieving 85.5% degradation within 30 min. Although its application as a functional membrane in water treatment may raise safety concerns, the mesh showed significant antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria under both dark and light conditions. Using the disk diffusion method, strong bacterial inhibition was observed after 24 h of exposure in the dark. Upon visible light irradiation, bactericidal efficiency was further enhanced—by 17% for S. aureus and 2% for E. coli. These findings highlight the potential of the Cu2O-Cu(OH)2@Cu microfibers as a multifunctional membrane for industrial wastewater treatment, capable of simultaneously removing oil, degrading organic dyes, and inactivating pathogenic bacteria through photo-assisted processes.
Full article
(This article belongs to the Special Issue Nanomaterials for Sustainable Waste Conversion, Energy Production, and Environmental Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Automated SILAR System for High-Precision Deposition of CZTS Semiconductor Thin Films
by
Perla J. Vázquez-González, Martha L. Paniagua-Chávez, Rafael Mota-Grajales and Carlos A. Hernández-Gutiérrez
Micro 2025, 5(3), 32; https://doi.org/10.3390/micro5030032 - 24 Jun 2025
Abstract
In this work, we present the development and validation of an automated system for the Successive Ionic Layer Adsorption and Reaction (SILAR) method, aimed at depositing Cu2ZnSnS4 (CZTS) thin films. The system is based on a Raspberry Pi Pico microcontroller
[...] Read more.
In this work, we present the development and validation of an automated system for the Successive Ionic Layer Adsorption and Reaction (SILAR) method, aimed at depositing Cu2ZnSnS4 (CZTS) thin films. The system is based on a Raspberry Pi Pico microcontroller programmed in Micro-Python (Thonny 4.0.2), allowing precise control over immersion sequences, timing intervals, and substrate positioning along two degrees of freedom. Automation enhances reproducibility, safety, and reduces human error compared with manual operation. CZTS films were deposited on borosilicate glass and optically and structurally characterized. A gradual darkening of the films with increasing deposition cycles indicates controlled material accumulation. X-ray diffraction (XRD) and Raman spectroscopy confirmed the presence of CZTS phases, although with a partially amorphous structure. The estimated optical bandgap of ~1.34 eV is consistent with photovoltaic applications. These results validate the functionality of the automated SILAR platform for repeatable and scalable thin-film fabrication, offering a low-cost alternative for producing semiconductor absorber layers in solar energy technologies.
Full article
(This article belongs to the Section Microscale Materials Science)
►▼
Show Figures

Figure 1
Open AccessArticle
Fe-Doped ZnS Quantum Dot Photocatalysts for the Degradation of Cefalexin in Water
by
Sonia J. Bailon-Ruiz, Yarilyn Cedeño-Mattei and Luis Alamo-Nole
Micro 2025, 5(3), 31; https://doi.org/10.3390/micro5030031 - 22 Jun 2025
Abstract
This study reports the synthesis, structural characterization, adsorption studies, nanoscale interaction, and photocatalytic application of pure and Fe-doped ZnS quantum dots for the degradation of the antibiotic cefalexin in aqueous solution. Nanoparticles were synthesized via the microwave-assisted method, and Fe doping was introduced
[...] Read more.
This study reports the synthesis, structural characterization, adsorption studies, nanoscale interaction, and photocatalytic application of pure and Fe-doped ZnS quantum dots for the degradation of the antibiotic cefalexin in aqueous solution. Nanoparticles were synthesized via the microwave-assisted method, and Fe doping was introduced at a 1% molar ratio. HRTEM images confirmed quasi-spherical morphology and high crystallinity, with particle sizes averaging 2.4 nm (pure) and 3.5 nm (doped). XRD analysis showed a consistent cubic ZnS structure. UV-vis spectra showed strong absorption at 316 nm for both samples, and PL measurements revealed emission quenching upon Fe doping. Photocatalytic tests under UV light demonstrated significantly higher degradation rates of 10 ppm cefalexin with Fe-doped ZnS, reaching near-complete removal within 90 min. Adsorption experiments revealed higher affinity and adsorption capacity of Fe-doped ZnS toward cefalexin compared to pure ZnS, as demonstrated by the Freundlich isotherm analyses, contributing significantly to enhanced photocatalytic degradation performance. High-resolution QTOF LC-MS analysis confirmed the breakdown of the β-lactam and thiazolidine rings of cefalexin and the formation of low-mass degradation products, including fragments at m/z 122.0371, 116.0937, and 318.2241. These findings provide strong evidence for the structural destruction of the antibiotic and validate the enhanced photocatalytic performance of Fe-doped ZnS.
Full article
(This article belongs to the Special Issue Nanomaterials for Sustainable Waste Conversion, Energy Production, and Environmental Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Tailoring of Albumin Nanoparticles Modified with Mannose for Effective Targeting in Immunosuppressive Tumor Microenvironment
by
Alyona B. Kuznetsova, Valentina I. Gorbacheva, Ekaterina P. Kolesova and Vera S. Egorova
Micro 2025, 5(2), 30; https://doi.org/10.3390/micro5020030 - 13 Jun 2025
Abstract
In the tumor microenvironment, M2 tumor-associated macrophages play a crucial role in promoting tumor growth, vascularization, and metastasis through their anti-inflammatory and tissue-repairing functions. To reprogram M2 cells into a more benign M1 phenotype and enhance the patient’s intrinsic immune response against cancer,
[...] Read more.
In the tumor microenvironment, M2 tumor-associated macrophages play a crucial role in promoting tumor growth, vascularization, and metastasis through their anti-inflammatory and tissue-repairing functions. To reprogram M2 cells into a more benign M1 phenotype and enhance the patient’s intrinsic immune response against cancer, siRNA and small molecules are used, which can be encapsulated into nanoparticles to enhance their stability, circulation time, and bioavailability. Albumin nanoparticles are ideal candidates for the delivery of such cargo because of their low toxicity, biocompatibility, biodegradability, prolonged circulation in the bloodstream, and feasible particle modification. In this study, we optimized a one-step desolvation method using the standard cross-linker glutaraldehyde and D-mannose as a second cross-linker for the synthesis of mannosylated albumin nanoparticles. The obtained nanoparticles demonstrated favorable physical characteristics, high encapsulation efficiency, and the most effective targeting into activated M2 macrophages overexpressing the mannose receptor in comparison to M1 macrophages and cancer cells in vitro.
Full article
(This article belongs to the Collection Advances in Microtechnology for Cell/Tissue Engineering and Biosensing)
►▼
Show Figures

Figure 1
Open AccessArticle
Quantum Dots Affect Actin Cytoskeleton Reorganization, Resulting in Impaired HeLa and THLE-2 Cell Motility
by
Mileah Metcalf, Abhishu Chand and Kyoungtae Kim
Micro 2025, 5(2), 29; https://doi.org/10.3390/micro5020029 - 12 Jun 2025
Abstract
Quantum dots (QDs) are nanoparticles with intrinsic fluorescence. Recent studies have found that metal-based QDs often impart toxic effects on the biological systems they interact with. Their undefined limitations have offset their potential for biomedical application. Our study aimed to address the research
[...] Read more.
Quantum dots (QDs) are nanoparticles with intrinsic fluorescence. Recent studies have found that metal-based QDs often impart toxic effects on the biological systems they interact with. Their undefined limitations have offset their potential for biomedical application. Our study aimed to address the research gap regarding QDs’ impacts on the intracellular actin cytoskeleton and the associated structures. Our XTT viability assays revealed that QDs only reduced viability in transformed human liver epithelial (THLE-2) cells, whereas HeLa cells remained viable after QD treatment. We also used confocal microscopy to evaluate the morphological changes in THLE-2 induced by QDs. We further investigated cell protrusion morphology using phalloidin-Alexa488 which selectively labels F-actin. The fluorescent microscopy of this phalloidin label revealed that QD treatment resulted in the redistribution of actin filaments within both THLE-2 and HeLa cells. We also report that the average number of focal adhesions decreased in QD-treated cells. As actin filaments at the cell are peripherally linked to the extracellular matrix via talin and integrin and are thus a crucial component of cell motility, we conducted a migration assay. The migration assay revealed that cell motility was significantly reduced in both THLE-2 and HeLa cells following QD treatment. Our findings establish that the internalization of QDs reduces cell motility by rearranging actin filaments.
Full article
(This article belongs to the Section Microscale Biology and Medicines)
►▼
Show Figures

Figure 1
Open AccessArticle
Microsystem for Improving Energy Efficiency by Minimizing Room-Level Greenhouse Effects in Homes
by
Shuza Binzaid and Abhitej Divi
Micro 2025, 5(2), 28; https://doi.org/10.3390/micro5020028 - 3 Jun 2025
Abstract
The greenhouse effect, responsible for trapping heat in Earth’s atmosphere, has a parallel thermal phenomenon at the indoor scale known as the Room-Level Greenhouse Effect (RGHE), where solar radiation elevates room temperatures and increases energy consumption. The RGHE contributes to indoor temperature increases
[...] Read more.
The greenhouse effect, responsible for trapping heat in Earth’s atmosphere, has a parallel thermal phenomenon at the indoor scale known as the Room-Level Greenhouse Effect (RGHE), where solar radiation elevates room temperatures and increases energy consumption. The RGHE contributes to indoor temperature increases of 4–10 °C and elevates energy demands by 15–30% in high solar exposure zones, the effect being even worse in tropical zones. To address this problem, an innovative analog microarchitecture is proposed for real-time RGHE detection by sensing the sunlight intensity radiation factor (SIR). A compact analog system is introduced, comprising three stages: a Sensing Circuit Stage (SCS) that isolates the dynamic sunlight signal f (r) from static room condition factors (RCFs), an Amplification Stage (AS) that shifts and boosts the signal, and a Stabilized Peak Detection Stage (SPDS) that captures the peak solar intensity. The microsystem was tested across fixed f (m) levels of 0.75 V, 1.0 V, and 1.5 V, and varying f (r) values of 3 mV, 4 mV, and 5 mV. It successfully detects peak voltages ranging from 1.69 V to 1.92 V, with stabilization achieved within 60 µs, enabling accurate detection of the f (r) signal. The proposed microarchitecture offers a scalable approach to localized thermal monitoring in smart building environments using fully analog circuitry, designed and simulated in Cadence Virtuoso using the TSMC 180 nm technology library.
Full article
(This article belongs to the Section Microscale Engineering)
►▼
Show Figures

Figure 1
Open AccessReview
Atmospheric Microplastics: Inputs and Outputs
by
Christine C. Gaylarde, José Antônio Baptista Neto and Estefan M. da Fonseca
Micro 2025, 5(2), 27; https://doi.org/10.3390/micro5020027 - 30 May 2025
Abstract
The dynamic relationship between microplastics (MPs) in the air and on the Earth’s surface involves both natural and anthropogenic forces. MPs are transported from the ocean to the air by bubble scavenging and sea spray formation and are released from land sources by
[...] Read more.
The dynamic relationship between microplastics (MPs) in the air and on the Earth’s surface involves both natural and anthropogenic forces. MPs are transported from the ocean to the air by bubble scavenging and sea spray formation and are released from land sources by air movements and human activities. Up to 8.6 megatons of MPs per year have been estimated to be in air above the oceans. They are distributed by wind, water and fomites and returned to the Earth’s surface via rainfall and passive deposition, but can escape to the stratosphere, where they may exist for months. Anthropogenic sprays, such as paints, agrochemicals, personal care and cosmetic products, and domestic and industrial procedures (e.g., air conditioning, vacuuming and washing, waste disposal, manufacture of plastic-containing objects) add directly to the airborne MP load, which is higher in internal than external air. Atmospheric MPs are less researched than those on land and in water, but, in spite of the major problem of a lack of standard methods for determining MP levels, the clothing industry is commonly considered the main contributor to the external air pool, while furnishing fabrics, artificial ventilation devices and the presence and movement of human beings are the main source of indoor MPs. The majority of airborne plastic particles are fibers and fragments; air currents enable them to reach remote environments, potentially traveling thousands of kilometers through the air, before being deposited in various forms of precipitation (rain, snow or “dust”). The increasing preoccupation of the populace and greater attention being paid to industrial ecology may help to reduce the concentration and spread of MPs and nanoparticles (plastic particles of less than 100 nm) from domestic and industrial activities in the future.
Full article
(This article belongs to the Special Issue Microplastics: From Characterization to Environmental and Biological Impacts)
►▼
Show Figures

Figure 1
Open AccessArticle
High-Performance EMI Shielding Film Based on Low-Dk Polyimide and Trimodal Ag Ink for High-Speed Signal Integrity Enhancement
by
Moses Gu, Suin Chae, Seonwoo Kim, Yubin Kim, Shinui Kang, Soobin Park, Se-Hoon Park, Sung-Hoon Choa and Hyunjin Nam
Micro 2025, 5(2), 26; https://doi.org/10.3390/micro5020026 - 28 May 2025
Abstract
Electromagnetic interference (EMI) shielding is critical for maintaining signal integrity in high-speed electronic packaging. However, conventional shielding approaches face limitations in process complexity and spatial efficiency. In this study, an EMI shielding film based on trimodal silver (Ag) ink and low-dielectric polyimide (PI)
[...] Read more.
Electromagnetic interference (EMI) shielding is critical for maintaining signal integrity in high-speed electronic packaging. However, conventional shielding approaches face limitations in process complexity and spatial efficiency. In this study, an EMI shielding film based on trimodal silver (Ag) ink and low-dielectric polyimide (PI) resin was developed and comprehensively evaluated. The fabricated film exhibited an average shielding effectiveness (SE) of −99.7 dB in the 6–18 GHz frequency range and demonstrated a 50% increase in electrical conductivity after lamination (from 0.752 × 105 S/m to 1.13 × 105 S/m). The horizontal thermal conductivity reached 34.614 W/m·K, which was 3.4 times higher than the vertical value (10.249 W/m·K). Signal integrity simulations showed significant reductions in near-end crosstalk (NEXT, 77.8%) and far-end crosstalk (FEXT, 65%). Moreover, cyclic bending tests confirmed excellent mechanical durability, with a normalized resistance change below 0.6 after 1000 cycles at a bending radius of 4 mm. Notably, the film enabled a 50% reduction in signal line spacing while maintaining signal integrity, even without strict compliance with the 3W Rule. These results demonstrate the potential of the proposed EMI shielding film as a high-performance solution for advanced packaging applications requiring high-frequency operation, thermal management, and mechanical flexibility.
Full article
(This article belongs to the Section Microscale Materials Science)
►▼
Show Figures

Figure 1
Open AccessArticle
Cost-Effective and Simple Prototyping PMMA Microfluidic Chip and Open-Source Peristaltic Pump for Small Volume Applications
by
Oguzhan Panatli, Cansu Gurcan, Fikret Ari, Mehmet Altay Unal, Mehmet Yuksekkaya and Açelya Yilmazer
Micro 2025, 5(2), 25; https://doi.org/10.3390/micro5020025 - 27 May 2025
Cited by 2
Abstract
Microfluidic devices are tiny tools used to manipulate small volumes of liquids in various fields. However, these devices frequently require additional equipment to control fluid flow, increasing the cost and complexity of the systems and limiting their potential for widespread use in low-resource
[...] Read more.
Microfluidic devices are tiny tools used to manipulate small volumes of liquids in various fields. However, these devices frequently require additional equipment to control fluid flow, increasing the cost and complexity of the systems and limiting their potential for widespread use in low-resource biomedical applications. Here, we present a cost-effective and simple fabrication method for PMMA microfluidic chips using laser cutting technology, along with a low-cost and open-source peristaltic pump constructed with common hardware. The pump, programmed with an Arduino microcontroller, offers precise flow control in microfluidic devices for small volume applications. The developed application for controlling the peristaltic pump is user-friendly and open source. The microfluidic chip and pump system was tested using Jurkat cells. The cells were cultured for 24 h in conventional cell culture and a microfluidic chip. The LDH assay indicated higher cell viability in the microfluidic chip (111.99 ± 7.79%) compared to conventional culture (100 ± 15.80%). Apoptosis assay indicated 76.1% live cells, 18.7% early apoptosis in microfluidic culture and 99.2% live cells, with 0.5% early apoptosis in conventional culture. The findings from the LDH and apoptosis analyses demonstrated an increase in both cell proliferation and cellular stress in the microfluidic system. Despite the increased stress, the majority of cells maintained membrane integrity and continued to proliferate. In conclusion, the chip fabrication method and the pump offer advantages, including design flexibility and precise flow rate control. This study promises solutions that can be tailored to specific needs for biomedical applications.
Full article
(This article belongs to the Special Issue Functional Droplet-Based Microfluidic Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
Elucidation of the Nano-Mechanical Property Evolution of 3D-Printed Zirconia
by
Joshua Z. R. Dantzler, Diana Hazel Leyva, Amanda L. Borgaro, Md Shahjahan Mahmud, Alexis Lopez, Saqlain Zaman, Sabina Arroyo, Yirong Lin and Alba Jazmin Leyva
Micro 2025, 5(2), 24; https://doi.org/10.3390/micro5020024 - 15 May 2025
Abstract
Understanding the mechanical properties of three-dimensional (3D)-printed ceramics while keeping the parts intact is crucial for advancing their application in high-performance and biocompatible fields, such as biomedical and aerospace engineering. This study uses non-destructive nanoindentation techniques to investigate the mechanical performance of 3D-printed
[...] Read more.
Understanding the mechanical properties of three-dimensional (3D)-printed ceramics while keeping the parts intact is crucial for advancing their application in high-performance and biocompatible fields, such as biomedical and aerospace engineering. This study uses non-destructive nanoindentation techniques to investigate the mechanical performance of 3D-printed zirconia across pre-conditioned and sintered states. Vat photopolymerization-based additive manufacturing (AM) was employed to fabricate zirconia samples. The structural and mechanical properties of the printed zirconia samples were explored, focusing on hardness and elastic modulus variations influenced by printing orientation and post-processing conditions. Nanoindentation data, analyzed using the Oliver and Pharr method, provided insights into the elastic and plastic responses of the material, showing the highest hardness and elastic modulus in the 0° print orientation. The microstructural analysis, conducted via scanning electron microscopy (SEM), illustrated notable changes in grain size and porosity, emphasizing the influencing of the printing orientation and thermal treatment on material properties. This research uniquely investigates zirconia’s mechanical evolution at the nanoscale across different processing stages—pre-conditioned and sintered—using nanoindentation. Unlike prior studies, which have focused on bulk mechanical properties post-sintering, this work elucidates how nano-mechanical behavior develops throughout additive manufacturing, bridging critical knowledge gaps in material performance optimization.
Full article
(This article belongs to the Section Microscale Engineering)
►▼
Show Figures

Figure 1
Open AccessArticle
Development of Low-Dielectric Modified Polyimide with Low-Temperature Radical Curing for High-Frequency Flexible Printed Circuit Boards
by
Seonwoo Kim, Suin Chae, Mirae Seo, Yubin Kim, Soobin Park, Sehoon Park and Hyunjin Nam
Micro 2025, 5(2), 23; https://doi.org/10.3390/micro5020023 - 3 May 2025
Abstract
This study presents the development of a modified polyimide (MPI) with low dielectric properties and low-temperature curing capability for high-frequency flexible printed circuit boards (FPCBs). MPI was cured using dicumyl peroxide (DCP) at 80–140 °C through a radical process optimized via DSC analysis,
[...] Read more.
This study presents the development of a modified polyimide (MPI) with low dielectric properties and low-temperature curing capability for high-frequency flexible printed circuit boards (FPCBs). MPI was cured using dicumyl peroxide (DCP) at 80–140 °C through a radical process optimized via DSC analysis, while Fourier-transform infrared (FT-IR) confirmed the elimination of C=C bonds and the formation of imide structures. The MPI film exhibited low dielectric constants (Dk) of 1.759 at 20 GHz and 1.734 at 28 GHz, with ultra-low dissipation factors (Df) of 0.00165 and 0.00157. High-frequency S-parameter evaluations showed an excellent performance, with S11 of −32.92 dB and S21 of approximately −1 dB. Mechanical reliability tests demonstrated a strong peel strength of 0.8–1.2 kgf/mm (IPC TM-650 2.4.8 standard) and stable electrical resistance during bending to ~6 mm radius, with full recovery after severe deformation. These results highlight MPI’s potential as a high-performance dielectric material for next-generation FPCBs, combining superior electrical performance, mechanical flexibility, and compatibility with low-temperature processing.
Full article
(This article belongs to the Section Microscale Engineering)
►▼
Show Figures

Figure 1
Open AccessArticle
Process of Fabricating Hyaluronic Acid-Based Milli-to-Microneedles Using the Bi-Directional Drawing Method
by
Joon-Koo Kang, Kihak Lee, Yein Choi, Se-Gie Kim and Bonghwan Kim
Micro 2025, 5(2), 22; https://doi.org/10.3390/micro5020022 - 1 May 2025
Abstract
Microneedles (MNs) have emerged as a promising tool for pain-free drug delivery, offering an alternative to traditional syringe-based methods. Among various types of MNs, dissolving microneedles fabricated from hyaluronic acid (HA) have gained attention due to their biocompatibility and ability to deliver drugs
[...] Read more.
Microneedles (MNs) have emerged as a promising tool for pain-free drug delivery, offering an alternative to traditional syringe-based methods. Among various types of MNs, dissolving microneedles fabricated from hyaluronic acid (HA) have gained attention due to their biocompatibility and ability to deliver drugs with minimal discomfort. However, conventional HA MN fabrication techniques often limit needle lengths to a few hundred micrometers, which is insufficient for deeper drug penetration. This study introduces a novel fabrication method using bidirectional drawing lithography to extend the length of HA-based MNs. By adjusting the viscosity of HA solutions and employing a controlled pulling process, we demonstrate the feasibility of producing MNs with lengths ranging from millimeters to micrometers. An average height of 15 mm and tip diameters of approximately 80 μm were successfully produced. This advancement enhances the potential of HA MNs for transdermal drug delivery and interstitial fluid sampling.
Full article
(This article belongs to the Special Issue Innovative Materials for Bioelectronics in Wearable and Implantable Applications)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
3 September 2025
Join Us at the MDPI at the University of Toronto Career Fair, 23 September 2025, Toronto, ON, Canada
Join Us at the MDPI at the University of Toronto Career Fair, 23 September 2025, Toronto, ON, Canada

1 September 2025
MDPI INSIGHTS: The CEO’s Letter #26 – CUJS, Head of Ethics, Open Peer Review, AIS 2025, Reviewer Recognition
MDPI INSIGHTS: The CEO’s Letter #26 – CUJS, Head of Ethics, Open Peer Review, AIS 2025, Reviewer Recognition
Topics
Topic in
Coatings, Eng, Micro, Micromachines, Lubricants
Surface Engineering and Micro Additive Manufacturing
Topic Editors: Joško Valentinčič, Avik Samanta, Soham MujumdarDeadline: 28 February 2026
Topic in
Diagnostics, Electronics, Eng, Micro, Micromachines
Micro-Nanoelectronic Systems for Diagnosis and Therapies
Topic Editors: Wubin Bai, Jiho ShinDeadline: 30 June 2026
Topic in
Electronics, Eng, Materials, Micro, Micromachines
Wide Bandgap Semiconductor Electronics and Devices
Topic Editors: Joseph Bernstein, Asaf AlboDeadline: 31 July 2026
Topic in
Biomolecules, IJMS, Micro, Molecules, Antibiotics, Nanomaterials, Microorganisms, JFB
Antimicrobial Agents and Nanomaterials—2nd Edition
Topic Editors: Vasco D. B. Bonifácio, Sandra PintoDeadline: 31 December 2026

Conferences
Special Issues
Special Issue in
Micro
Microplastics: From Characterization to Environmental and Biological Impacts
Guest Editors: Estefan Monteiro Da Fonseca, Christine GaylardeDeadline: 31 October 2025
Special Issue in
Micro
Development of 3D Cancer Models in Microengineered Systems
Guest Editor: Sofia AvnetDeadline: 31 October 2025
Special Issue in
Micro
Nanomaterials for Sustainable Waste Conversion, Energy Production, and Environmental Applications
Guest Editors: Constantinos Salmas, Michalis Karakassides, Nikolaos ChalmpesDeadline: 30 November 2025
Special Issue in
Micro
Innovative Materials for Bioelectronics in Wearable and Implantable Applications
Guest Editors: Yang Zou, Zhou LiDeadline: 31 December 2025
Topical Collections
Topical Collection in
Micro
Advances in Microtechnology for Cell/Tissue Engineering and Biosensing
Collection Editor: Eiichi Tamiya
Topical Collection in
Micro
Microsystem and Nanosystem Research for Sensors, Actuators and Energy Conversion Devices
Collection Editors: Vittorio Ferrari, Marco Baù, Dario Zappa