Quantum Dots Affect Actin Cytoskeleton Reorganization, Resulting in Impaired HeLa and THLE-2 Cell Motility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Cd/Se/ZnS QDs
2.2. Quantum Dot Preparation
2.3. Quantum Dot Colocalization with Lysosomes
2.4. Cell Culture
2.5. XTT Viability Assay
2.6. Confocal Visualization of THLE-2 Attachment Protrusions
2.7. Actin Filament Fluorescence Microscopy
2.8. Talin Adhesion Protein Fluorescence Microscopy
2.9. Migration Assay
2.10. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Quantum Dots
3.2. Colocalization of QDs and Lysosomes in THLE-2 and HeLa Cells
3.3. Impacts of Different QDs on THLE-2 and HeLa Cell Viability
3.4. Confocal Visualization Revealed Morphological Changes in THLE-2 Cells
3.5. Fluorescence Microscopy Displayed Redistribution of Actin Filaments
3.6. Fluorescence Microscopy Showed Decreased Talin Structures
3.7. QDs Decreased Cell Migration in THLE-2 and HeLa
4. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schroeder, J.E.; Shweky, I.; Shmeeda, H.; Banin, U.; Gabizon, A. Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles. J. Control. Release 2007, 124, 28–34. [Google Scholar] [CrossRef]
- Bharali, D.J.; Lucey, D.W.; Jayakumar, H.; Pudavar, H.E.; Prasad, P.N. Folate-Receptor-Mediated Delivery of InP Quantum Dots for Bioimaging Using Confocal and Two-Photon Microscopy. J. Am. Chem. Soc. 2005, 127, 11364–11371. [Google Scholar] [CrossRef] [PubMed]
- Mangeolle, T.; Yakavets, I.; Lequeux, N.; Pons, T.; Bezdetnaya, L.; Marchal, F. The targeting ability of fluorescent quantum dots to the folate receptor rich tumors. Photodiagn. Photodyn. Ther. 2019, 26, 150–156. [Google Scholar] [CrossRef]
- Pandey, S.; Choudhary, P.; Gajbhiye, V.; Jadhav, S.; Bodas, D. In Vivo imaging of prostate tumor-targeted folic acid conjugated quantum dots. Cancer Nanotechnol. 2023, 14, 30. [Google Scholar] [CrossRef]
- Morosini, V.; Bastogne, T.; Frochot, C.; Schneider, R.; François, A.; Guillemin, F.; Barberi-Heyob, M. Quantum dot-folic acid conjugates as potential photosensitizers in photodynamic therapy of cancer. Photochem. Photobiol. Sci. 2011, 10, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Saljoughi, H.; Khakbaz, F.; Mahani, M. Synthesis of folic acid conjugated photoluminescent carbon quantum dots with ultrahigh quantum yield for targeted cancer cell fluorescence imaging. Photodiagn. Photodyn. Ther. 2020, 30, 101687. [Google Scholar] [CrossRef]
- Suriamoorthy, P.; Zhang, X.; Hao, G.; Joly, A.G.; Singh, S.; Hossu, M.; Sun, X.; Chen, W. Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting. Cancer Nanotechnol. 2010, 1, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; So, M.K.; Rao, J. Protease-Modulated Cellular Uptake of Quantum Dots. Nano Lett. 2006, 6, 1988–1992. [Google Scholar] [CrossRef]
- Li, M.-M.; Cao, J.; Yang, J.-C.; Shen, Y.-J.; Cai, X.-L.; Chen, Y.-W.; Qu, C.-Y.; Zhang, Y.; Shen, F.; Xu, L.-M. Effects of arginine–glycine–aspartic acid peptide-conjugated quantum dots-induced photodynamic therapy on pancreatic carcinoma In Vivo. Int. J. Nanomed. 2017, 12, 2769–2779. [Google Scholar] [CrossRef]
- Farkhani, S.M.; Johari-ahar, M.; Zakeri-Milani, P.; Mojarrad, J.S.; Valizadeh, H. Enhanced cellular internalization of CdTe quantum dots mediated by arginine- and tryptophan-rich cell-penetrating peptides as efficient carriers. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1424–1428. [Google Scholar] [CrossRef]
- Abdel-Hakim, A.; Belal, F.; Hammad, M.A.; Kishikawa, N.; El-Maghrabey, M. Adoption of self-exothermic reaction for synthesis of multifunctional carbon quantum dots: Applications to vincristine sensing and cell imaging. Talanta 2025, 282, 126971. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Z.; Yang, Y.; Liu, Z.; Wang, J.; Xu, Y.; Zhang, Y. Novel β-1,3-d-glucan porous microcapsule enveloped folate-functionalized liposomes as a Trojan horse for facilitated oral tumor-targeted co-delivery of chemotherapeutic drugs and quantum dots. J. Mater. Chem. B 2020, 8, 2307–2320. [Google Scholar] [CrossRef] [PubMed]
- Mansur, A.A.; Paiva, M.R.; Cotta, O.A.; Silva, L.M.; Carvalho, I.C.; Capanema, N.S.; Carvalho, S.M.; Costa, É.A.; Martin, N.R.; Ecco, R.; et al. Carboxymethylcellulose biofunctionalized ternary quantum dots for subcellular-targeted brain cancer nanotheranostics. Int. J. Biol. Macromol. 2022, 210, 530–544. [Google Scholar] [CrossRef] [PubMed]
- Pareek, A.; Kumar, D.; Pareek, A.; Gupta, M.M. Advancing Cancer Therapy with Quantum Dots and Other Nanostructures: A Review of Drug Delivery Innovations, Applications, and Challenges. Cancers 2025, 17, 878. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, Y.; Tang, M.; Kong, L.; Ying, J.; Wu, T.; Xue, Y.; Pu, Y. Liver Toxicity of Cadmium Telluride Quantum Dots (CdTe QDs) Due to Oxidative Stress In Vitro and In Vivo. Int. J. Mol. Sci. 2015, 16, 23279–23299. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Gong, Y.; Han, R. Cadmium Telluride Quantum Dots (CdTe-QDs) and Enhanced Ultraviolet-B (UV-B) Radiation Trigger Antioxidant Enzyme Metabolism and Programmed Cell Death in Wheat Seedlings. PLoS ONE 2014, 9, e110400. [Google Scholar] [CrossRef]
- Rossi, R.; Ruotolo, R.; De Giorgio, G.; Marmiroli, M.; Villani, M.; Zappettini, A.; Marmiroli, N. Cadmium Sulfide Quantum Dots Adversely Affect Gametogenesis in Saccharomyces cerevisiae. Nanomaterials 2022, 12, 2208. [Google Scholar] [CrossRef] [PubMed]
- Jigyasu, A.K.; Siddiqui, S.; Lohani, M.; Khan, I.A.; Arshad, M. Chemically synthesized CdSe quantum dots inhibit growth of human lung carcinoma cells via ROS generation. EXCLI J. 2016, 15, 54–63. [Google Scholar] [CrossRef]
- Zhou, Z.; Cen, J.; Wang, H.; Sun, Y.; Yang, L. Interactions of CdSe and CdSe@ZnS quantum dots with transferrin and effects on the iron ions release. Chem. Pap. 2023, 77, 3703–3712. [Google Scholar] [CrossRef]
- Mei, J.; Yang, L.-Y.; Lai, L.; Xu, Z.-Q.; Wang, C.; Zhao, J.; Jin, J.-C.; Jiang, F.-L.; Liu, Y. The interactions between CdSe quantum dots and yeast Saccharomyces cerevisiae: Adhesion of quantum dots to the cell surface and the protection effect of ZnS shell. Chemosphere 2014, 112, 92–99. [Google Scholar] [CrossRef]
- Derfus, A.M.; Chan, W.C.W.; Bhatia, S.N. Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Lett. 2004, 4, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Hens, B.; Smothers, J.; Rizvanovic, H.; Patel, R.; Wu, Q.; Kim, K. The Future of Anticancer Drugs: A Cytotoxicity Assessment Study of CdSe/ZnS Quantum Dots. J. Nanotheranostics 2020, 1, 19–38. [Google Scholar] [CrossRef]
- Peng, L.; He, M.; Chen, B.; Wu, Q.; Zhang, Z.; Pang, D.; Zhu, Y.; Hu, B. Cellular uptake, elimination and toxicity of CdSe/ZnS quantum dots in HepG2 cells. Biomaterials 2013, 34, 9545–9558. [Google Scholar] [CrossRef]
- Harris, S.; Kim, K. Apoptotic pathway protein expression variance in metal oxide and quantum dot treated HeLa cells. MicroPubl. Biol. 2023, 2023, 17912. [Google Scholar] [CrossRef]
- Zhang, M.; Kim, D.S.; Patel, R.; Wu, Q.; Kim, K. Intracellular Trafficking and Distribution of Cd and InP Quantum Dots in HeLa and ML-1 Thyroid Cancer Cells. Nanomaterials 2022, 12, 1517. [Google Scholar] [CrossRef] [PubMed]
- Davenport, V.; Horstmann, C.; Patel, R.; Wu, Q.; Kim, K. An Assessment of InP/ZnS as Potential Anti-Cancer Therapy: Quantum Dot Treatment Increases Apoptosis in HeLa Cells. J. Nanotheranostics 2021, 2, 16–32. [Google Scholar] [CrossRef]
- Harris, S.; Kim, K. A Comparison of Common Quantum Dot Alternatives to Cadmium-Based Quantum Dots on the Basis of Liver Cytotoxicity. Nanomaterials 2024, 14, 1086. [Google Scholar] [CrossRef]
- Chand, A.; Le, N.; Kim, K. CdSe/ZnS Quantum Dots’ Impact on In Vitro Actin Dynamics. Int. J. Mol. Sci. 2024, 25, 4179. [Google Scholar] [CrossRef] [PubMed]
- Urban, J.M.; Chiang, W.; Hammond, J.W.; Cogan, N.M.B.; Litzburg, A.; Burke, R.; Stern, H.A.; Gelbard, H.A.; Nilsson, B.L.; Krauss, T.D. Quantum Dots for Improved Single-Molecule Localization Microscopy. J. Phys. Chem. B 2021, 125, 2566–2576. [Google Scholar] [CrossRef]
- Hao, S.; Suebka, S.; Su, J. Single 5-nm quantum dot detection via microtoroid optical resonator photothermal microscopy. Light Sci. Appl. 2024, 13, 195. [Google Scholar] [CrossRef]
- Yao, L.; Zhao, M.-M.; Luo, Q.-W.; Zhang, Y.-C.; Liu, T.-T.; Yang, Z.; Liao, M.; Tu, P.; Zeng, K.-W. Carbon Quantum Dots-Based Nanozyme from Coffee Induces Cancer Cell Ferroptosis to Activate Antitumor Immunity. ACS Nano 2022, 16, 9228–9239. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Wang, H.; Liu, Z.-Y.; Liu, J.; Wu, J.-Z. Realgar quantum dots induce apoptosis and necrosis in HepG2 cells through endoplasmic reticulum stress. Biomed. Rep. 2015, 3, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Opo, F.A.D.M.; Asiri, A.M. Cytotoxicity Study of Cadmium-Selenium Quantum Dots (Cdse QDs) for Destroying the Human HepG2 Liver Cancer Cell. J. Biomed. Nanotechnol. 2021, 17, 2153–2164. [Google Scholar] [CrossRef]
- Wu, D.; Lu, J.; Ma, Y.; Cao, Y.; Zhang, T. Mitochondrial dynamics and mitophagy involved in MPA-capped CdTe quantum dots-induced toxicity in the human liver carcinoma (HepG2) cell line. Environ. Pollut. 2021, 274, 115681. [Google Scholar] [CrossRef] [PubMed]
- Paesano, L.; Perotti, A.; Buschini, A.; Carubbi, C.; Marmiroli, M.; Maestri, E.; Iannotta, S.; Marmiroli, N. Markers for toxicity to HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria. Toxicology 2016, 374, 18–28. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Chang, Q.; Sun, Z.-X.; Liu, J.; Deng, X.; Liu, Y.; Cao, A.; Wang, H. Fate of CdSe/ZnS quantum dots in cells: Endocytosis, translocation and exocytosis. Colloids Surf. B Biointerfaces 2021, 208, 112140. [Google Scholar] [CrossRef]
- Singh, V.; Kashyap, S.; Yadav, U.; Srivastava, A.; Singh, A.V.; Singh, R.K.; Singh, S.K.; Saxena, P.S. Nitrogen doped carbon quantum dots demonstrate no toxicity under In Vitro conditions in a cervical cell line and In Vivo in Swiss albino mice. Toxicol. Res. 2019, 8, 395–406. [Google Scholar] [CrossRef]
- Haque, M.M.; Im, H.; Seo, J.; Hasan, M.; Woo, K.; Kwon, O. Acute toxicity and tissue distribution of CdSe/CdS-MPA quantum dots after repeated intraperitoneal injection to mice. J. Appl. Toxicol. 2012, 33, 940–950. [Google Scholar] [CrossRef]
- Kato, S.; Itoh, K.; Yaoi, T.; Tozawa, T.; Yoshikawa, Y.; Yasui, H.; Kanamura, N.; Hoshino, A.; Manabe, N.; Yamamoto, K.; et al. Organ distribution of quantum dots after intraperitoneal administration, with special reference to area-specific distribution in the brain. Nanotechnology 2010, 21, 335103. [Google Scholar] [CrossRef]
- Hunt, N.J.; Lockwood, G.P.; Le Couteur, F.H.; McCourt, P.A.G.; Singla, N.; Kang, S.W.S.; Burgess, A.; Kuncic, Z.; Le Couteur, D.G.; Cogger, V.C. Rapid Intestinal Uptake and Targeted Delivery to the Liver Endothelium Using Orally Administered Silver Sulfide Quantum Dots. ACS Nano 2020, 14, 1492–1507. [Google Scholar] [CrossRef]
- Serban, A.I.; Stanca, L.; Sima, C.; Staicu, A.C.; Zarnescu, O.; Dinischiotu, A. Complex responses to Si quantum dots accumulation in carp liver tissue: Beyond oxidative stress. Chem. Biol. Interact. 2015, 239, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.M.; Middleton, C.A. Morphology and locomotion of individual epithelial cells in culture. J. Cell Sci. 1985, 78, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.; Redmann, A.-L.; Terentjev, E.M. Universal Kinetics of the Onset of Cell Spreading on Substrates of Different Stiffness. Biophys. J. 2019, 116, 551–559. [Google Scholar] [CrossRef]
- Frisch, T.; Thoumine, O. Predicting the kinetics of cell spreading. J. Biomech. 2002, 35, 1137–1141. [Google Scholar] [CrossRef]
- Cuvelier, D.; Théry, M.; Chu, Y.-S.; Dufour, S.; Thiéry, J.-P.; Bornens, M.; Nassoy, P.; Mahadevan, L. The Universal Dynamics of Cell Spreading. Curr. Biol. 2007, 17, 694–699. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, S.; Wang, L.; Qu, C.; Zhang, C.; Hong, L.; Yuan, L.; Huang, Z.; Wang, Z.; Liu, S.; et al. CdSe Quantum Dot (QD)-Induced Morphological and Functional Impairments to Liver in Mice. PLoS ONE 2011, 6, e24406. [Google Scholar] [CrossRef]
- Dinger, N.; Russo, C.; Fusco, S.; Netti, P.A.; Sirignano, M.; Panzetta, V. Carbon quantum dots in breast cancer modulate cellular migration via cytoskeletal and nuclear structure. Nanotoxicology 2024, 18, 618–644. [Google Scholar] [CrossRef]
- Stan, M.; Sima, C.; Cinteza, L.O.; Dinischiotu, A. Silicon-based quantum dots induce inflammation in human lung cells and disrupt extracellular matrix homeostasis. FEBS J. 2015, 282, 2914–2929. [Google Scholar] [CrossRef]
- Rahikainen, R.; Öhman, T.; Turkki, P.; Varjosalo, M.; Hytönen, V.P. Talin-mediated force transmission and talin rod domain unfolding independently regulate adhesion signaling. J. Cell Sci. 2019, 132, jcs.226514. [Google Scholar] [CrossRef]
- Burridge, K. Talin: A protein designed for mechanotransduction. Emerg. Top. Life Sci. 2018, 2, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Sakai, Y.; Shimizu, T.; Tsunekawa, M.; Hisamoto, N.; Matsumoto, K. Rhotekin regulates axon regeneration through the talin–Vinculin–Vinexin axis in Caenorhabditis elegans. PLoS Genet. 2023, 19, e1011089. [Google Scholar] [CrossRef]
- Wang, S.; Watanabe, T.; Matsuzawa, K.; Katsumi, A.; Kakeno, M.; Matsui, T.; Ye, F.; Sato, K.; Murase, K.; Sugiyama, I.; et al. Tiam1 interaction with the PAR complex promotes talin-mediated Rac1 activation during polarized cell migration. J. Cell Biol. 2012, 199, 331–345. [Google Scholar] [CrossRef] [PubMed]
- ARidley, A.J.; Schwartz, M.A.; Burridge, K.; Firtel, R.A.; Ginsberg, M.H.; Borisy, G.; Parsons, J.T.; Horwitz, A.R. Cell Migration: Integrating Signals from Front to Back. Science 2003, 302, 1704–1709. [Google Scholar] [CrossRef]
- Symons, M. Rac1 activation comes full circle: Rac1 activation comes full circle. EMBO J. 2011, 30, 3875–3877. [Google Scholar] [CrossRef] [PubMed]
- Akbari, A.; Nemati, M.; Lighvan, Z.M.; Khanamiri, F.N.; Rezaie, J.; Rasmi, Y. Synthesis of metformin-derived fluorescent quantum dots: Uptake, cytotoxicity, and inhibition in human breast cancer cells through autophagy pathway. J. Biol. Eng. 2024, 18, 38. [Google Scholar] [CrossRef]
- Wahab, R.; Kaushik, N.; Khan, F.; Kaushik, N.K.; Lee, S.-J.; Choi, E.H.; Al-Khedhairy, A.A. Gold quantum dots impair the tumorigenic potential of glioma stem-like cells via β-catenin downregulation In Vitro. Int. J. Nanomed. 2019, 14, 1131–1148. [Google Scholar] [CrossRef]
- Arslan, Z.; Ates, M.; McDuffy, W.; Agachan, M.S.; Farah, I.O.; Yu, W.W.; Bednar, A.J. Probing metabolic stability of CdSe nanoparticles: Alkaline extraction of free cadmium from liver and kidney samples of rats exposed to CdSe nanoparticles. J. Hazard. Mater. 2011, 192, 192–199. [Google Scholar] [CrossRef]
- Kays, J.C.; Saeboe, A.M.; Toufanian, R.; Kurant, D.E.; Dennis, A.M. Shell-Free Copper Indium Sulfide Quantum Dots Induce Toxicity In Vitro and In Vivo. Nano Lett. 2020, 20, 1980–1991. [Google Scholar] [CrossRef]
- Chen, N.; He, Y.; Su, Y.; Li, X.; Huang, Q.; Wang, H.; Zhang, X.; Tai, R.; Fan, C. The cytotoxicity of cadmium-based quantum dots. Biomaterials 2012, 33, 1238–1244. [Google Scholar] [CrossRef] [PubMed]
- Contreras, E.Q.; Cho, M.; Zhu, H.; Puppala, H.L.; Escalera, G.; Zhong, W.; Colvin, V.L. Toxicity of Quantum Dots and Cadmium Salt to Caenorhabditis elegans after Multigenerational Exposure. Environ. Sci. Technol. 2013, 47, 1148–1154. [Google Scholar] [CrossRef] [PubMed]
- Hardman, R. A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors. Environ. Health Perspect. 2006, 114, 165–172. [Google Scholar] [CrossRef]
- Soenen, S.J.; Montenegro, J.-M.; Abdelmonem, A.M.; Manshian, B.B.; Doak, S.H.; Parak, W.J.; De Smedt, S.C.; Braeckmans, K. The effect of nanoparticle degradation on poly(methacrylic acid)-coated quantum dot toxicity: The importance of particle functionality assessment in toxicology. Acta Biomater. 2014, 10, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-T.; Wang, X.; Wang, H.; Lu, F.; Luo, P.G.; Cao, L.; Meziani, M.J.; Liu, J.-H.; Liu, Y.; Chen, M.; et al. Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents. J. Phys. Chem. C 2009, 113, 18110–18114. [Google Scholar] [CrossRef]
- Kuznietsova, H.; Géloën, A.; Dziubenko, N.; Zaderko, A.; Alekseev, S.; Lysenko, V.; Skryshevsky, V. In Vitro and In Vivo toxicity of carbon dots with different chemical compositions. Discov. Nano 2023, 18, 111. [Google Scholar] [CrossRef]
- Desmond, L.J.; Phan, A.N.; Gentile, P. Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy. Environ. Sci. Nano 2021, 8, 848–862. [Google Scholar] [CrossRef]
- Puck, T.T.; Marcus, P.I.; Cieciura, S.J. Clonal Growth of Mammalian Cells In Vitro. J. Exp. Med. 1956, 103, 273–284. [Google Scholar] [CrossRef]
- Pfeifer, A.M.; Cole, K.E.; Smoot, D.T.; Weston, A.; Groopman, J.D.; Shields, P.G.; Vignaud, J.M.; Juillerat, M.; Lipsky, M.M.; Trump, B.F. Simian virus 40 large tumor antigen-immortalized normal human liver epithelial cells express hepatocyte characteristics and metabolize chemical carcinogens. Proc. Natl. Acad. Sci. USA 1993, 90, 5123–5127. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metcalf, M.; Chand, A.; Kim, K. Quantum Dots Affect Actin Cytoskeleton Reorganization, Resulting in Impaired HeLa and THLE-2 Cell Motility. Micro 2025, 5, 29. https://doi.org/10.3390/micro5020029
Metcalf M, Chand A, Kim K. Quantum Dots Affect Actin Cytoskeleton Reorganization, Resulting in Impaired HeLa and THLE-2 Cell Motility. Micro. 2025; 5(2):29. https://doi.org/10.3390/micro5020029
Chicago/Turabian StyleMetcalf, Mileah, Abhishu Chand, and Kyoungtae Kim. 2025. "Quantum Dots Affect Actin Cytoskeleton Reorganization, Resulting in Impaired HeLa and THLE-2 Cell Motility" Micro 5, no. 2: 29. https://doi.org/10.3390/micro5020029
APA StyleMetcalf, M., Chand, A., & Kim, K. (2025). Quantum Dots Affect Actin Cytoskeleton Reorganization, Resulting in Impaired HeLa and THLE-2 Cell Motility. Micro, 5(2), 29. https://doi.org/10.3390/micro5020029