- Article
Citrus-Derived Carbon Quantum Dots: Synthesis, Characterization, and Safety Evaluation in Zebrafish (Danio rerio) for Potential Biomedical and Nutritional Applications
- Vijayan Malavika,
- Muthuswami Ruby Rajan and
- Raman Krishnamoorthi
- + 2 authors
Carbon quantum dots (CQDs) are photoluminescent nanomaterials (<10 nm) with excellent hydrophilicity, biocompatibility, and low cytotoxicity, making them attractive for biological applications. However, their use in aquaculture nutrition has remained largely unexplored. This study investigated the effects of dietary CQDs on zebrafish (Danio rerio), a model organism with approximately 70% genetic homology with humans. CQDs were synthesized hydrothermally from unripe Citrus limon and characterized by UV–visible (UV-Vis) spectroscopy, UV–vis transillumination, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FT-IR), and photoluminescence (PL) spectroscopy. Zebrafish were fed diets containing varying CQD concentrations, and growth performance, condition factor (K), hematological parameters, enzymatic activity, and tissue morphology were assessed. Feeds supplemented with 2 mL CQDs produced significant improvements in growth and biochemical indicators without adverse effects. Hematological and enzymatic profiles remained within normal ranges, and histological examination revealed no morphological abnormalities, indicating the absence of toxicity. These findings suggest that citrus-derived CQDs can enhance zebrafish growth and maintain physiological health, thereby supporting their potential as safe functional feed additives in aquaculture. This approach may open new opportunities for the application of CQDs in sustainable fish farming and the broader food industry.
7 November 2025



