Advances in Nanostructured Fluorescence Sensors for H2O2 Detection: Current Status and Future Direction
Abstract
:1. Introduction
2. Evolution of Fluorescence Sensors for H2O2 Detection: From Inception to AI Integration
3. Various Types of Fluorescence Sensors
3.1. Fluorescence Quenching/Activation
3.2. Fluorescence Resonance Energy Transfer (FRET)
3.3. Through Bond Energy Transfer (TBET)
3.4. Ratiometric Fluorescence Sensors
3.5. Multifunctional Fluorescence Sensors
3.6. Nanostructure-Based Fluorescence Sensors
3.7. Comparative Analysis of Fluorescence Sensors
Sensor Type | Response Time | Limit of Detection (LOD) | Excitation and Emission | Applications |
---|---|---|---|---|
Fluorescence Quenching/ Activation | 1 to 30 min | 10 µM to 1 mM | 300–700 nm | Environmental monitoring, Intracellular H2O2 detection |
FRET (Fluorescence Resonance Energy Transfer) | 10 min to 1 h | 0.87 µM to 10 µM | 400–700 nm | Protein-protein interaction, live cell H2O2 sensing |
TBET (Through Bond Energy Transfer) | 10 s to 10 min | 1 µM to 100 µM | 450–750 nm | Bioimaging |
Ratiometric Fluorescence | 1 to 30 min | 7.7 ppb to 26.9 nM | 400–800 nm | Intracellular pH sensing, food and water analysis |
4. Nanomaterials Utilized in Fluorescence Sensors for H2O2 Detection
4.1. QDs Used in Fluorescence Sensors for Detecting H2O2
4.2. Inorganic Carbon-Based Nanomaterials for H2O2 Detection
4.3. Metal Oxide NPs in Fluorescence Sensors
4.4. Metallic Nanoclusters Used in Fluorescence Sensors
4.5. Other Nanostructures Used in Fluorescence Sensors
5. Applications of Detecting Liquid H2O2 by Using Nanostructured Fluorescence Sensors
5.1. Non-Biomedical Applications for Liquid H2O2 Detection
5.2. Biomedical Applications for Liquid H2O2 Detection
6. Detection of Vaporized H2O2 (vH2O2) by Using Nanostructured Fluorescence Sensors
7. Current Challenges and Future Perspectives
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AF | amino fluorescein |
AgNCs | Ag nanoclusters |
AI | artificial intelligence |
AIEE | aggregation-induced emission enhancement |
AuNCs | gold nanoclusters |
BPEI-CQDs | branched poly(ethylenimine)-capped CQDs |
BSA | bovine serum albumin |
CL | chemiluminescence |
CQDs | carbon quantum dots |
DAT-B | 2,5-bis((((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)carbonyl)amino)terephthalate |
DAT-N | diethyl 2,5-diaminoterephthalate |
DHLA | dihydrolipoic acid |
DHLA-AuNCs | dihydrolipoic acid-protected AuNCs |
Fe3O4 | iron oxide |
FRET | Förster resonance energy transfer |
g-C3N4 | graphitic carbon nitride |
H2O2 | hydrogen peroxide |
HMTD | hexamethylene triperoxide diamine |
HRP | horseradish peroxidase |
IFE | inner filter effect |
LOD | limit of detection |
ML | machine learning |
MnO2-rGO | manganese oxide on reduced graphene oxide nanosheets |
MNPs | magnetite nanoparticles |
MOFs | metal–organic frameworks |
NCs | metallic nanoclusters |
NIR | near-infrared |
NPs | nanoparticles |
NRs | nanorods |
OPD | oxidized o-phenylenediamine |
PEs | peroxide-based explosives |
PET | photoinduced electron transfer |
PVA | polyvinyl alcohol |
QDs | quantum dots |
ROS | reactive oxygen species |
SEM | scanning electron microscopy |
SERS | surface-enhanced Raman spectroscopy |
SWCNTs | single-walled carbon nanotubes |
TATP | triacetone triperoxide |
TiO2 | titanium dioxide |
TNT | 2,4,6-trinitrotoluene |
UCNPs | upconversion nanoparticles |
vH2O2 | vaporized H2O2 |
ZnO | zinc oxide |
References
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, X.; Leng, X.; He, M.; Wang, J.; Cheng, S.; Wu, H. Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections. Arch. Virol. 2017, 162, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Rababa’h, A.M.; Guillory, A.N.; Mustafa, R.; Hijjawi, T. Oxidative stress and cardiac remodeling: An updated edge. Curr. Cardiol. Rev. 2018, 14, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef]
- Moßhammer, M.; Kühl, M.; Koren, K. Possibilities and Challenges for Quantitative Optical Sensing of Hydrogen Peroxide. Chemosensors 2017, 5, 28. [Google Scholar] [CrossRef]
- Duanghathaipornsuk, S.; Farrell, E.J.; Alba-Rubio, A.C.; Zelenay, P.; Kim, D.S. Detection technologies for reactive oxygen species: Fluorescence and electrochemical methods and their applications. Biosensors 2021, 11, 30. [Google Scholar] [CrossRef]
- Fang, X.; Zheng, Y.; Duan, Y.; Liu, Y.; Zhong, W. Recent advances in design of fluorescence-based assays for high-throughput screening. Anal. Chem. 2018, 91, 482–504. [Google Scholar] [CrossRef]
- Wang, W.; Li, H.; Huang, W.; Chen, C.; Xu, C.; Ruan, H.; Li, B.; Li, H. Recent development and trends in the detection of peroxide-based explosives. Talanta 2023, 264, 124763. [Google Scholar] [CrossRef]
- An, X.; Liu, Y.; Sun, Y.; Zhang, X.; Liu, Y.; Tao, Y.; Guo, L.; Jiang, X.; Gao, M. Portable multifunctional sensing platform for ratiometric H2O2 detection and photodynamic anti-bacteria using an AIE-featured electrospinning film. Chem. Eng. J. 2024, 487, 150675. [Google Scholar] [CrossRef]
- Demchenko, A.P. Nanoparticles and nanocomposites for fluorescence sensing and imaging. Methods Appl. Fluoresc. 2013, 1, 022001. [Google Scholar] [CrossRef]
- Ng, S.M.; Koneswaran, M.; Narayanaswamy, R. A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Adv. 2016, 6, 21624–21661. [Google Scholar] [CrossRef]
- Sharma, A.; Majdinasab, M.; Khan, R.; Li, Z.; Hayat, A.; Marty, J.L. Nanomaterials in fluorescence-based biosensors: Defining key roles. Nano-Struct. Nano-Objects 2021, 27, 100774. [Google Scholar] [CrossRef]
- Zhong, W. Nanomaterials in fluorescence-based biosensing. Anal. Bioanal. Chem. 2009, 394, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Singh, J.; Goyat, R.; Saharan, Y.; Chaudhry, V.; Umar, A.; Ibrahim, A.A.; Akbar, S.; Ameen, S.; Baskoutas, S. Nanomaterials-based biosensor and their applications: A review. Heliyon 2023, 9, e19929. [Google Scholar] [CrossRef]
- Schubert, F.; Wang, F.; Rinneberg, H. Fibre optic fluorometric enzyme sensors for hydrogen peroxide and lactate, based on horseradish peroxidase and lactate oxidase. Microchim. Acta 1995, 121, 237–247. [Google Scholar] [CrossRef]
- Liang, A.-H.; Zhou, S.-M.; Jiang, Z.-L. A simple and sensitive resonance scattering spectral method for determination of hydroxyl radical in Fenton system using rhodamine S and its application to screening the antioxidant. Talanta 2006, 70, 444–448. [Google Scholar] [CrossRef]
- Qian, Y.-Y.; Xue, L.; Hu, D.-X.; Li, G.-P.; Jiang, H. Quinoline-based fluorescent probe for ratiometric detection of hydrogen peroxide in aqueous solution. Dye. Pigment. 2012, 95, 373–376. [Google Scholar] [CrossRef]
- Gong, C.; Chen, J.; Shen, Y.; Song, Y.; Song, Y.; Wang, L. Microperoxidase-11/metal–organic framework/macroporous carbon for detecting hydrogen peroxide. RSC Adv. 2016, 6, 79798–79804. [Google Scholar]
- Bandi, R.; Dadigala, R.; Gangapuram, B.R.; Guttena, V. Green synthesis of highly fluorescent nitrogen-doped carbon dots from Lantana camara berries for effective detection of lead (II) and bioimaging. J. Photochem. Photobiol. B Biol. 2018, 178, 330–338. [Google Scholar] [CrossRef]
- O’Banion, C.P.; Yasuda, R. Fluorescent sensors for neuronal signaling. Curr. Opin. Neurobiol. 2020, 63, 31–41. [Google Scholar] [CrossRef]
- Fang, B.; Shen, Y.; Peng, B.; Bai, H.; Wang, L.; Zhang, J.; Hu, W.; Fu, L.; Zhang, W.; Li, L. Small-Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angew. Chem. 2022, 134, e202207188. [Google Scholar] [CrossRef]
- Cao, D.; Zhu, L.; Liu, Z.; Lin, W. Through bond energy transfer (TBET)-based fluorescent chemosensors. J. Photochem. Photobiol. C Photochem. Rev. 2020, 44, 100371. [Google Scholar] [CrossRef]
- Battisti, A.; Samal, S.K.; Puppi, D. Biosensing systems based on graphene oxide fluorescence quenching effect. Micromachines 2023, 14, 1522. [Google Scholar] [CrossRef]
- Genovese, D.; Cingolani, M.; Rampazzo, E.; Prodi, L.; Zaccheroni, N. Static quenching upon adduct formation: A treatment without shortcuts and approximations. Chem. Soc. Rev. 2021, 50, 8414–8427. [Google Scholar] [CrossRef] [PubMed]
- Molaei, M.J. Principles, mechanisms, and application of carbon quantum dots in sensors: A review. Anal. Methods 2020, 12, 1266–1287. [Google Scholar]
- Ashley, J.; Manikova, P. Fluorescent sensors. Fundam. Sens. Technol. 2023, 2023, 147–161. [Google Scholar] [CrossRef]
- Sargazi, S.; Fatima, I.; Kiani, M.H.; Mohammadzadeh, V.; Arshad, R.; Bilal, M.; Rahdar, A.; Díez-Pascual, A.M.; Behzadmehr, R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int. J. Biol. Macromol. 2022, 206, 115–147. [Google Scholar] [CrossRef]
- Karmakar, A.; Samanta, P.; Dutta, S.; Ghosh, S.K. Fluorescent “turn-on” sensing based on metal–organic frameworks (MOFs). Chem.–Asian J. 2019, 14, 4506–4519. [Google Scholar] [CrossRef]
- Germain, M.E.; Knapp, M.J. Optical explosives detection: From color changes to fluorescence turn-on. Chem. Soc. Rev. 2009, 38, 2543–2555. [Google Scholar] [CrossRef]
- Olenin, A.Y.; Yagov, V. Using the Turn-On Fluorescence Effect in Chemical and Biochemical Analysis. J. Anal. Chem. 2022, 77, 1082–1110. [Google Scholar] [CrossRef]
- Li, P.; Li, S.F. Recent advances in fluorescence probes based on carbon dots for sensing and speciation of heavy metals. Nanophotonics 2020, 10, 877–908. [Google Scholar] [CrossRef]
- Yang, W.C.; Li, S.Y.; Ni, S.; Liu, G. Advances in FRET-based biosensors from donor-acceptor design to applications. Aggregate 2024, 5, 460. [Google Scholar] [CrossRef]
- Zuo, Y.; Gou, Z.; Lan, Y.; Yan, M. Design strategies of logic gate sensors based on FRET mechanism. TrAC Trends Anal. Chem. 2023, 167, 117271. [Google Scholar] [CrossRef]
- Verma, A.K.; Noumani, A.; Yadav, A.K.; Solanki, P.R. FRET Based Biosensor: Principle Applications Recent Advances and Challenges. Diagnostics 2023, 13, 1375. [Google Scholar] [CrossRef]
- Fang, C.; Huang, Y.; Zhao, Y. Review of FRET biosensing and its application in biomolecular detection. Am. J. Transl. Res. 2023, 15, 694. [Google Scholar]
- Bhupathi, P.; Elhassan A-Elgadir, T.M.; Mohammed Ali, R.H.; Sanaan Jabbar, H.; Gulnoza, D.; Joshi, S.; Kadhem Abid, M.; Ahmed Said, E.; Alawadi, A.; Alsaalamy, A. Fluorescence Resonance Energy Transfer (FRET)-Based Sensor for Detection of Foodborne Pathogenic Bacteria: A Review. Crit. Rev. Anal. Chem. 2023, 55, 233–250. [Google Scholar] [CrossRef]
- Shen, S.-L.; Ning, J.-Y.; Zhang, X.-F.; Miao, J.-Y.; Zhao, B.-X. Through-bond energy transfer-based ratiometric fluorescent probe for the imaging of HOCl in living cells. Sens. Actuators B Chem. 2017, 244, 907–913. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, W.; Cai, Y.; Kwok, R.T.; Hu, Y.; Lam, J.W.; Gu, X.; He, Z.; Zhao, Z.; Zheng, X. AIEgens for dark through-bond energy transfer: Design, synthesis, theoretical study and application in ratiometric Hg2+ sensing. Chem. Sci. 2017, 8, 2047–2055. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, G.; Zhuo, J.; Wang, J.; Li, X.; Zhang, Z. A visible-near-infrared fluorescent probe for peroxynitrite with large pseudo-Stokes and emission shift via through-bond energy and charge transfers controlled by energy matching. J. Mater. Chem. B 2018, 6, 2489–2496. [Google Scholar] [CrossRef]
- Liu, L.; Ga, L.; Ai, J. Ratiometric fluorescence sensing with logical operation: Theory, design and applications. Biosens. Bioelectron. 2022, 213, 114456. [Google Scholar] [CrossRef]
- Wen, Y.; Sun, D.; Zhang, Y.; Zhang, Z.; Chen, L.; Li, J. Molecular imprinting-based ratiometric fluorescence sensors for environmental and food analysis. Analyst 2023, 148, 3971–3985. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Min, H.; Shi, W.; Cheng, P. Multicenter metal–organic framework-based ratiometric fluorescent sensors. Adv. Mater. 2020, 32, 1805871. [Google Scholar] [CrossRef]
- Han, Y.; Yang, W.; Luo, X.; He, X.; Zhao, H.; Tang, W.; Yue, T.; Li, Z. Carbon dots based ratiometric fluorescent sensing platform for food safety. Crit. Rev. Food Sci. Nutr. 2022, 62, 244–260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hou, D.; Wang, Z.; Cai, N.; Au, C. Nanomaterial-based dual-emission ratiometric fluorescent sensors for biosensing and cell imaging. Polymers 2021, 13, 2540. [Google Scholar] [CrossRef]
- Liang, X.; Xu, X.; Qiao, D.; Yin, Z.; Shang, L. Dual Mechanism of an Intramolecular Charge Transfer (ICT)–FRET-Based Fluorescent Probe for the Selective Detection of Hydrogen Peroxide. Chem. Asian J. 2017, 12, 3187–3194. [Google Scholar] [CrossRef]
- Duan, N.; Yang, S. Research progress on multifunctional fluorescent probes for biological imaging, food and environmental detection. Crit. Rev. Anal. Chem. 2024, 54, 775–817. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, R.; Lei, X.; Xue, S.; Wang, Z.; Zhang, J.; Yan, L.; Xu, Z.; Chen, Z.; Zou, P. Design, synthesis, application and research progress of fluorescent probes. J. Fluoresc. 2024, 34, 965–975. [Google Scholar] [CrossRef]
- Ashafaq, M.; Khalid, M.; Raizada, M.; Ahmad, M.S.; Khan, M.S.; Shahid, M.; Ahmad, M. A Zn-based fluorescent coordination polymer as bifunctional sensor: Sensitive and selective aqueous-phase detection of picric acid and heavy metal ion. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4496–4509. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, H.; Chen, W.; Zhang, J. Nanomaterials used in fluorescence polarization based biosensors. Int. J. Mol. Sci. 2022, 23, 8625. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768. [Google Scholar] [CrossRef]
- Chen, M.; Liang, Z.; Fan, X.; Qu, R.; Wang, H.; Chen, T. A ratiometric ESIPT fluorescent probe for detection of anticancer-associated H2O2 level in vitro and in vivo. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 276, 121163. [Google Scholar] [CrossRef]
- Chen, X.; He, D.; Shentu, J.; Yang, S.; Yang, Y.; Wang, Y.; Zhang, R.; Wang, K.; Qian, J.; Long, L. Smartphone-assisted colorimetric and near-infrared ratiometric fluorescent sensor for on-spot detection of H2O2 in food samples. Chem. Eng. J. 2023, 472, 144900. [Google Scholar] [CrossRef]
- Chawre, Y.; Satnami, M.L.; Kujur, A.B.; Ghosh, K.K.; Nagwanshi, R.; Karbhal, I.; Pervez, S.; Deb, M.K. Forster Resonance Energy Transfer between Multicolor Emissive N-Doped Carbon Quantum Dots and Gold Nanorods for the Detection of H2O2, Glucose, Glutathione, and Acetylcholinesterase. ACS Appl. Nano Mater. 2023, 6, 8046–8058. [Google Scholar] [CrossRef]
- Liu, F.-T.; Wang, S.; Wang, Y.-P.; Jiang, P.-F.; Miao, J.-Y.; Zhao, B.-X.; Lin, Z.-M. A near-infrared fluorescent probe based FRET for ratiometric sensing of H2O2 and viscosity in live cells. Talanta 2024, 275, 126135. [Google Scholar] [CrossRef] [PubMed]
- Velusamy, N.; Thirumalaivasan, N.; Bobba, K.N.; Podder, A.; Wu, S.P.; Bhuniya, S. FRET-based dual channel fluorescent probe for detecting endogenous/exogenous H2O2/H2S formation through multicolor images. J. Photochem. Photobiol. B Biol. 2019, 191, 99–106. [Google Scholar] [CrossRef]
- Wan, P.; Fu, H.; Zhang, Y.; Liao, C.; Lu, Q.; Xu, H.; Mei, Q. Engineering a polymer-encapsulated manganese dioxide/upconversion nanoprobe for FRET-based hydrogen peroxide detection. Anal. Bioanal. Chem. 2023, 415, 4333–4341. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Yang, M.; Wang, P.; Gu, Y. FRET-based upconversion nanoprobe sensitized by Nd3+ for the ratiometric detection of hydrogen peroxide in vivo. ACS Appl. Mater. Interfaces. 2019, 11, 7441–7449. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhou, C.; Yang, Q.; Chu, Z.; Jia, N. A FRET-based fluorescent probe for hydrogen peroxide based on the use of carbon quantum dots conjugated to gold nanoclusters. Microchim. Acta. 2019, 186, 294. [Google Scholar] [CrossRef]
- Li, Y.; Gu, X.; Zhao, J.; Xi, F. Fabrication of a ratiometric fluorescence sensor based on carbon dots as both luminophores and nanozymes for the sensitive detection of hydrogen peroxide. Molecules 2022, 27, 7379. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, L.; Sun, X.; Luo, C.; Li, R.; Zhang, W.; Wang, Z.; Xiao, H.; Shu, W. An ESIPT-based ratiometric fluorescent probe for detecting H2O2 in water environment and biosystems. Sci. Total Environ. 2023, 867, 161609. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Wang, G.; Huang, C.; Jia, N. A new mitochondria-targeting fluorescent probe for ratiometric detection of H2O2 in live cells. Anal. Chim. Acta 2020, 1097, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Burmistrova, N.A.; Kolontaeva, O.A.; Duerkop, A. New nanomaterials and luminescent optical sensors for detection of hydrogen peroxide. Chemosensors 2015, 3, 253–273. [Google Scholar] [CrossRef]
- Cao, J.; Jiang, H.; Wu, Y.; Yu, X. Visual detection of H2O2 and glucose by HBcAb-HRP fluorescence-enhanced CdTe QDs/CDs ratiometric fluorescence sensing platform. Colloids Surf. B Biointerfaces 2024, 235, 113774. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yang, L.; Huang, L.; Liao, Y.; Liu, Y.; Xiao, Q. A novel fluorescent probe for H2O2detection based on CdSe@ ZnS quantum dots/Ag nanocluster hybrid. Anal. Chim. Acta. 2020, 1106, 176–182. [Google Scholar] [CrossRef]
- Dai, L.; Chang, D.W.; Baek, J.B.; Lu, W. Carbon nanomaterials for advanced energy conversion and storage. Small 2012, 8, 1130–1166. [Google Scholar] [CrossRef]
- Ledesma, F.; Nishitani, S.; Cunningham, F.J.; Hubbard, J.D.; Yim, D.; Lui, A.; Chio, L.; Murali, A.; Landry, M.P. Covalent Attachment of Horseradish Peroxidase to Single-Walled Carbon Nanotubes for Hydrogen Peroxide Detection. Adv. Funct. Mater. 2024, 34, 2316028. [Google Scholar] [CrossRef]
- Mu, H.; Zhang, Y.; Zheng, P.; Zhang, M. Ultrafast fluorescence probe to H2O2 vapor based on organic-inorganic hybrid silica nanoparticles. Talanta 2022, 237, 122914. [Google Scholar] [CrossRef]
- Liu, J.-W.; Luo, Y.; Wang, Y.-M.; Duan, L.-Y.; Jiang, J.-H.; Yu, R.-Q. Graphitic carbon nitride nanosheets-based ratiometric fluorescent probe for highly sensitive detection of H2O2 and glucose. ACS Appl. Mater. Interfaces. 2016, 8, 33439–33445. [Google Scholar] [CrossRef]
- Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J.D.; Doonan, C.J. Application of metal and metal oxide nanoparticles@ MOFs. Coord. Chem. Rev. 2016, 307, 237–254. [Google Scholar] [CrossRef]
- Zheng, J.; Li, X.; Li, Y.; Zhang, S. Engineered Fe3O4 nanoreactor as a high-performance hydrogen peroxide sensor. Sens. Actuators B Chem. 2024, 402, 135116. [Google Scholar] [CrossRef]
- Quyen, T.T.B.; My, N.N.T.; Pham, D.T.; Thien, D.V.H. Synthesis of TiO2 nanosheets/graphene quantum dots and its application for detection of hydrogen peroxide by photoluminescence spectroscopy. Talanta Open 2022, 5, 100103. [Google Scholar] [CrossRef]
- Chen, L.; Gao, Y.; Fu, Y.; Zhu, D.; He, Q.; Cao, H.; Cheng, J. Borate ester endcapped fluorescent hyperbranched conjugated polymer for trace peroxide explosive vapor detection. RSC Adv. 2015, 5, 29624–29630. [Google Scholar] [CrossRef]
- Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2010, 2, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tu, L.; Zhao, S.; Liu, G.; Wang, Y.; Wang, Y.; Yue, Z. Fluorescent gold nanoclusters based photoelectrochemical sensors for detection of H2O2 and glucose. Biosens. Bioelectron. 2015, 67, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-J.; Song, J.-A.; Choi, J.-H.; Shin, J.-H.; Myeong, J.-W.; Lee, K.-P.; Kim, T.; Park, K.-E.; Oh, B.-K. Horseradish peroxidase-encapsulated fluorescent bio-nanoparticle for ultra-sensitive and easy detection of hydrogen peroxide. Biosensors 2023, 13, 289. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Lu, H.; Xu, S. Smartphone-based ratiometric fluorescence sensor for sensitive visual detection of H2O2 and glucose based on B-CDs-Ag NPRs-OPD ternary system. J. Lumin. 2024, 275, 120755. [Google Scholar] [CrossRef]
- Mi, W.; Tang, S.; Jin, Y.; Shao, N. Au/Ag bimetallic nanoclusters stabilized by glutathione and lysozyme for ratiometric sensing of H2O2 and hydroxyl radicals. ACS Appl. Nano Mater. 2021, 4, 1586–1595. [Google Scholar] [CrossRef]
- Tran, V.-K.; Gupta, P.K.; Park, Y.; Son, S.E.; Hur, W.; Lee, H.B.; Park, J.Y.; Kim, S.N.; Seong, G.H. Functionalized bimetallic IrPt alloy nanoparticles: Multi-enzyme mimics for colorimetric and fluorometric detection of hydrogen peroxide and glucose. J. Taiwan Inst. Chem. Eng. 2021, 120, 336–343. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, B.; Liu, H.; Liu, Z.; Zhang, X.; Zheng, X.; Liu, Q. FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sens. Actuators B Chem. 2018, 259, 775–783. [Google Scholar] [CrossRef]
- Lu, X.-Y.; Wu, D.-C.; Li, Z.-J.; Chen, G.-Q. Polymer nanoparticles. Prog. Mol. Biol. Transl. Sci. 2011, 104, 299–323. [Google Scholar] [CrossRef]
- Sun, H.; Xu, Q.; Ren, M.; Kong, F. A biocompatible chitosan-based fluorescent polymer for efficient H2O2 detection in living cells and water samples. Int. J. Biol. Macromol. 2024, 257, 128760. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Y.; Mu, Z.; Wu, S.; Wang, J.; Yang, Y.; Zhao, M.; Wang, Y. Label-free fluorescence detection of hydrogen peroxide and glucose based on the Ni-MOF nanozyme–induced self-ligand emission. Microchim. Acta 2022, 189, 219. [Google Scholar] [CrossRef]
- Nazari, A.; Raeesi, M.; Salehi-Mobarakeh, H.; Mahdavian, A.R. Ready-to-use optical H2O2 sensor based on stimuli-responsive polyacrylic film and nanofibers containing spiropyran. Dye. Pigment. 2022, 204, 110399. [Google Scholar] [CrossRef]
- Xing, L.; Zhang, W.; Fu, L.; Lorenzo, J.M.; Hao, Y. Fabrication and application of electrochemical sensor for analyzing hydrogen peroxide in food system and biological samples. Food Chem. 2022, 385, 132555. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wang, Y.; Xu, B.; Zhang, W.; Xie, Y.; Chen, Y.; Wang, L.; Wang, X. A colorimetric and fluorescence dual-signal determination for iron (II) and H2O2 in food based on sulfur quantum dots. Food Chem. 2022, 366, 130613. [Google Scholar] [CrossRef]
- Johnson, M.S.; Sajeev, S.; Nair, R.S. Role of Nanosensors in agriculture. In Proceedings of the 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), Dubai, United Arab Emirates, 17–18 March 2021; pp. 58–63. [Google Scholar]
- Wu, H.; Nißler, R.; Morris, V.; Herrmann, N.; Hu, P.; Jeon, S.-J.; Kruss, S.; Giraldo, J.P. Monitoring plant health with near-infrared fluorescent H2O2 nanosensors. Nano Lett. 2020, 20, 2432–2442. [Google Scholar] [CrossRef]
- Ali, H.R.H.; Hassan, A.I.; Hassan, Y.F.; El-Wekil, M.M. One pot fabrication of fluorescein functionalized manganese dioxide for fluorescence “Turn OFF–ON” sensing of hydrogen peroxide in water and cosmetic samples. RSC Adv. 2020, 10, 17506–17514. [Google Scholar] [CrossRef]
- Kyomuhimbo, H.D.; Feleni, U.; Haneklaus, N.H.; Brink, H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers 2023, 15, 3492. [Google Scholar] [CrossRef]
- Duong, H.D.; Rhee, J.I. Development of ratiometric fluorescence sensors based on CdSe/ZnS quantum dots for the detection of hydrogen peroxide. Sensors 2019, 19, 4977. [Google Scholar] [CrossRef]
- Kailasa, S.K.; Vajubhai, G.N.; Koduru, J.R.; Park, T.J. Recent progress of nanomaterials for colorimetric and fluorescence sensing of reactive oxygen species in biological and environmental samples. Trends Environ. Anal. Chem. 2023, 37, e00196. [Google Scholar] [CrossRef]
- Jain, V.; Bhagat, S.; Singh, S. Bovine serum albumin decorated gold nanoclusters: A fluorescence-based nanoprobe for detection of intracellular hydrogen peroxide. Sens. Actuators B Chem. 2021, 327, 128886. [Google Scholar] [CrossRef]
- Yan, K.C.; Sedgwick, A.C.; Zang, Y.; Chen, G.R.; He, X.P.; Li, J.; Yoon, J.; James, T.D. Sensors, Imaging Agents, and Theranostics to Help Understand and Treat Reactive Oxygen Species Related Diseases. Small Methods 2019, 3, 190003. [Google Scholar] [CrossRef]
- Sobhanan, J.; Rival, J.V.; Anas, A.; Shibu, E.S.; Takano, Y.; Biju, V. Luminescent Quantum Dots: Synthesis, Optical Properties, Bioimaging and Toxicity. Adv. Drug Delivery Rev. 2023, 197, 114830. [Google Scholar] [CrossRef]
- Li, Z.; Guo, S.; Yuan, Z.; Lu, C. Carbon quantum dot-gold nanocluster nanosatellite for ratiometric fluorescence probe and imaging for hydrogen peroxide in living cells. Sens. Actuators B Chem. 2017, 241, 821–827. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, Z.; Zhou, J.; Zhu, M.; Liu, J.; James, T.D. Recent progress in the development of fluorescent probes for imaging pathological oxidative stress. Chem. Soc. Rev. 2023, 52, 3873–3926. [Google Scholar] [CrossRef]
- Hu, X.; Liu, J.; Jin, H.; Huang, F.; Wang, Z.; Wang, F.; Dai, Z. Ultrasensitive determination of intracellular hydrogen peroxide by equipping quantum dots with a sensing layer via self-passivation. Nano Res. 2022, 15, 4350–4356. [Google Scholar] [CrossRef]
- Chen, B.; Wang, F. Emerging frontiers of upconversion nanoparticles. Trends Chem. 2020, 2, 427–439. [Google Scholar] [CrossRef]
- Wu, S.; Butt, H.J. Near-infrared-sensitive materials based on upconverting nanoparticles. Adv. Mater. 2016, 28, 1208–1226. [Google Scholar] [CrossRef]
- Lu, C.; Joulin, E.; Tang, H.; Pouri, H.; Zhang, J. Upconversion nanostructures applied in theranostic systems. Int. J. Mol. Sci. 2022, 23, 9003. [Google Scholar] [CrossRef]
- Wang, F.; Qu, X.; Liu, D.; Ding, C.; Zhang, C.; Xian, Y. Upconversion nanoparticles-MoS2 nanoassembly as a fluorescent turn-on probe for bioimaging of reactive oxygen species in living cells and zebrafish. Sens. Actuators B Chem. 2018, 274, 180–187. [Google Scholar] [CrossRef]
- Alnadari, F.; Xue, Y.; Almakas, A.; Mohedein, A.; Samie, A.; Abdel-Shafi, M.; Abdin, M. Large batch production of galactooligosaccharides using β-glucosidase immobilized on chitosan-functionalized magnetic nanoparticle. J. Food Biochem. 2021, 45, e13589. [Google Scholar] [CrossRef] [PubMed]
- Star, B.G.; Shahlaei, M.; Karami, C. A novel fluorescent turn-on probe for hydrogen peroxide based on carbon dots. J. Mater.Sci. Mater. Electron. 2021, 32, 5615–5623. [Google Scholar]
- Maier, D.; Laubender, E.; Basavanna, A.; Schumann, S.; Guder, F.; Urban, G.A.; Dincer, C. Toward continuous monitoring of breath biochemistry: A paper-based wearable sensor for real-time hydrogen peroxide measurement in simulated breath. ACS Sens. 2019, 4, 2945–2951. [Google Scholar] [CrossRef] [PubMed]
- Quimbar, M.E.; Davis, S.Q.; Al-Farra, S.T.; Hayes, A.; Jovic, V.; Masuda, M.; Lippert, A.R. Chemiluminescent measurement of hydrogen peroxide in the exhaled breath condensate of healthy and asthmatic adults. Anal. Chem. 2020, 92, 14594–14600. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Xu, Z.; Wang, Y. In situ anchoring Cu nanoclusters on Cu-MOF: A new strategy for a combination of catalysis and fluorescence toward the detection of H2O2 and 2, 4-DNP. Chem. Eng. J. 2024, 479, 147508. [Google Scholar] [CrossRef]
- Ambard, C.; Duée, N.; Pereira, F.; Portehault, D.; Méthivier, C.; Pradier, C.-M.; Sanchez, C. Improvements in photostability and sensing properties of EuVO4 nanoparticles by microwave-assisted sol–gel route for detection of H2O2 vapors. J. Sol-Gel Sci. Technol. 2016, 79, 381–388. [Google Scholar] [CrossRef]
- Caron, T.; Palmas, P.; Frénois, C.; Méthivier, C.; Pasquinet, E.; Pradier, C.-M.; Serein-Spirau, F.; Hairault, L.; Montméat, P. Detection of hydrogen peroxide using dioxazaborocanes: Elucidation of the sensing mechanism at the molecular level by NMR and XPS measurements. New J. Chem. 2020, 44, 4114–4121. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, L.; Guo, K.; Yang, J.; Han, J.M. Expedite Fluorescent Sensor Prototype for Hydrogen Peroxide Detection with Long-Life Test Substrates. ACS Omega 2021, 6, 11447–11457. [Google Scholar] [CrossRef]
- Garreffi, B.P.; Guo, M.; Tokranova, N.; Cady, N.C.; Castracane, J.; Levitsky, I.A. Highly sensitive and selective fluorescence sensor based on nanoporous silicon-quinoline composite for trace detection of hydrogen peroxide vapors. Sens. Actuators B Chem. 2018, 276, 466–471. [Google Scholar] [CrossRef]
- Hui-Yu, C.; Zhen-Zhen, C.; Yu-Shu, L.; Guang-Fa, W.; Xin-Cun, D. Colorimetric-fluorescent dual-mode sensing of peroxide explosives based on inner filter effect with boosted sensitivity and selectivity. Chin. J. Anal. Chem. 2022, 50, 4–12. [Google Scholar] [CrossRef]
- Zheng, P.; Abdurahman, A.; Zhang, Z.; Feng, Y.; Zhang, Y.; Ai, X.; Li, F.; Zhang, M. A simple organic multi-analyte fluorescent prober: One molecule realizes the detection to DNT, TATP and Sarin substitute gas. J. Hazard. Mater. 2021, 409, 124500. [Google Scholar] [CrossRef]
- Fu, Y.; Yao, J.; Xu, W.; Fan, T.; Jiao, Z.; He, Q.; Zhu, D.; Cao, H.; Cheng, J. Schiff Base Substituent-Triggered Efficient Deboration Reaction and Its Application in Highly Sensitive Hydrogen Peroxide Vapor Detection. Anal. Chem. 2016, 88, 5507–5512. [Google Scholar] [CrossRef]
- Larsson, K.; Aldén, M.; Bood, J. Simultaneous visualization of hydrogen peroxide and water concentrations using photofragmentation laser-induced fluorescence. Appl. Spectrosc. 2017, 71, 2118–2127. [Google Scholar] [CrossRef]
- Matsumoto, A.; Nishiyabu, R.; Kubo, Y. Synthesis of a borylated boron–dibenzopyrromethene dye enabling the visual detection of H2O2 vapor. RSC Adv. 2014, 4, 37973–37978. [Google Scholar] [CrossRef]
- Sakakibara, K.; Takahashi, Y.; Nishiyabu, R.; Kubo, Y. A Zn2+-coordinated boronate dipyrrin as a chemodosimeter toward hydrogen peroxide. J. Mater. Chem. 2017, 5, 3684–3691. [Google Scholar] [CrossRef]
- Sanchez, J.C.; Trogler, W.C. Polymerization of a boronate-functionalized fluorophore by double transesterification: Applications to fluorescence detection of hydrogen peroxide vapor. J. Mater. Chem. 2008, 18, 5134–5141. [Google Scholar] [CrossRef]
- Xu, M.; Han, J.M.; Zhang, Y.; Yang, X.; Zang, L. A selective fluorescence turn-on sensor for trace vapor detection of hydrogen peroxide. Chem. Commun. 2013, 49, 11779–11781. [Google Scholar] [CrossRef]
- Yuan, M.; Xu, W.; Zhang, W.; Zhao, J.; Li, H.; He, Q.; Huang, W.; Cheng, J.; Fu, Y. Efficient fluorescent vapour sensing induced by ZnO buffer. Dyes Pigm. 2023, 218, 111420. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Han, J.-M. Catalyst-integrated dual-fluorescent sensor array for highly efficient detection of triacetone triperoxide via simplified quadrantal pattern recognition. Sens. Actuators B Chem. 2023, 385, 133680. [Google Scholar] [CrossRef]
- Zhu, D.; Hua, K.; He, Q.; Cheng, J.; Cao, H. Quantum dots/polymer composite system for turn-on fluorescent detection of peroxide hydrogen. In Proceedings of the SENSORS, 2013 IEEE, Baltimore, MD, USA, 3–6 November 2013; pp. 1–4. [Google Scholar]
- Wu, Y.; Huang, H.; Jing, F.; Wang, Y.; Chen, S.; Wang, L.; Li, Y.; Hou, S. A fluorescent probe based on the ESIPT (excited state intramolecular proton transfer) mechanism for rapid detection of endogenous and exogenous H2O2 (hydrogen peroxide) in cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 304, 123394. [Google Scholar] [CrossRef]
- Bai, W.; Zhang, K.; Yu, S.; Zhang, J.; Jin, L. The preparation of MnO2/BSA/CdTe quantum dots complex for ratiometric fluorescence/T1-weighted MRI detection of H2O2. Talanta 2023, 252, 123774. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, X.; Liu, H.; Sun, B. Amino-Acid-Encoded Supramolecular Self-Assembly Architectures: Near-Infrared Fluorescence–Photothermal Temperature Dual-Signal Sensing of Hydrogen Peroxide. ACS Sustain. Chem. Eng. 2024, 12, 4803–4812. [Google Scholar] [CrossRef]
- Wang, L.; Shi, J.; Wang, P.; Rong, R. High-sensitive detection of H2O2 in biological systems by persistent luminescent nanoprobes. Chem. Eng. J. 2024, 486, 150291. [Google Scholar] [CrossRef]
- Saygili, E.; Ersoz-Gulseven, E.; Kıbrıs, E.; Cakan-Akdogan, G.; Ucuncu, M. A novel 2-aminophenalenone-based fluorescent probe designed for monitoring H2O2 for in vitro and in vivo bioimaging. Talanta 2024, 271, 125669. [Google Scholar] [CrossRef]
- Sawayama, J.; Takeuchi, S. Long-term continuous glucose monitoring using a fluorescence-based biocompatible hydrogel glucose sensor. Adv. Healthc. Mater. 2021, 10, 2001286. [Google Scholar] [CrossRef]
- Soto, R.J.; Hall, J.R.; Brown, M.D.; Taylor, J.B.; Schoenfisch, M.H. In vivo chemical sensors: Role of biocompatibility on performance and utility. Anal. Chem. 2017, 89, 276–299. [Google Scholar] [CrossRef]
- Yan, Q.; Yao, X.; Li, Y.; Zhong, K.; Tang, L.; Yan, X. A red fluorescence probe for reversible detection of HSO3−/H2O2 and its application in food samples and bioimaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 299, 122882. [Google Scholar] [CrossRef]
- Du, W.; Shen, Z.; Liang, Y.; Gong, S.; Meng, Z.; Li, M.; Wang, Z.; Wang, S. A highly effective “naked eye” colorimetric and fluorimetric curcumin-based fluorescent sensor for specific and sensitive detection of H2O2 in vivo and in vitro. Analyst 2023, 148, 1824–1837. [Google Scholar] [CrossRef]
- Cao, Y.; Shi, H.; Zheng, Y.; Tan, Z.; Xie, Z.; Zhang, C.; Chen, Z. Polyaniline/Prussian blue nanolayer enhanced electrochemical sensing of H2O2 in EBC using an integrated condensation facemask. Sens. Actuators B Chem. 2023, 393, 134189. [Google Scholar] [CrossRef]
- Xu, M.; Bunes, B.R.; Zang, L. Paper-Based Vapor Detection of Hydrogen Peroxide: Colorimetric Sensing with Tunable Interface. ACS Appl. Mater. Interfaces 2011, 3, 642–647. [Google Scholar] [CrossRef]
- Vahidpour, F.; Alghazali, Y.; Akca, S.; Hommes, G.; Schöning, M.J. An enzyme-based Interdigitated electrode-type biosensor for detecting low concentrations of H2O2 vapor/aerosol. Chemosensors 2022, 10, 202. [Google Scholar] [CrossRef]
- Riaz, M.A.; Chen, Y. Electrodes and electrocatalysts for electrochemical hydrogen peroxide sensors: A review of design strategies. Nanoscale Horiz. 2022, 7, 463–479. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Gao, N.; Zhu, L.; Hunter, M.; Chen, S.; Zang, L. PEDOT: PSS/PEDOT film chemiresistive sensors for hydrogen peroxide vapor detection under ambient conditions. Chemosensors 2023, 11, 124. [Google Scholar] [CrossRef]
- Lee, J.-S.; Jeong, D.-W.; Byun, Y.T. Porphyrin nanofiber/single-walled carbon nanotube nanocomposite-based sensors for monitoring hydrogen peroxide vapor. Sens. Actuators B Chem. 2020, 306, 127518. [Google Scholar] [CrossRef]
- Xie, X.; Gao, N.; Hunter, M.; Zhu, L.; Yang, X.; Chen, S.; Zang, L. PEDOT Films Doped with Titanyl Oxalate as Chemiresistive and Colorimetric Dual-Mode Sensors for the Detection of Hydrogen Peroxide Vapor. Sensors 2023, 23, 3120. [Google Scholar] [CrossRef]
- Tian, L.; Sun, X.; Zhou, L.; Zhong, K.; Li, S.; Yan, X.; Tang, L. Reversible colorimetric and NIR fluorescent probe for sensing SO2/H2O2 in living cells and food samples. Food Chem. 2023, 407, 135031. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Sun, X.; Zhong, K.; Tang, L. An AIE mechanism-based fluorescent probe for relay recognition of HSO3−/H2O2 and its application in food detection and bioimaging. Talanta 2023, 258, 124412. [Google Scholar] [CrossRef]
Sensing Material | Fluorescence Response | Limit of Detection | Application |
---|---|---|---|
Imine derivatives of 4-(phenyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)amino)benzaldehyde (OTBXAs) (Organic Thin-Film Probe) | Fluorescence quenching | 4.1 ppt | Explosive Detection |
PFLIF System (Photofragmentation Laser-Induced Fluorescence) | Hydroxyl group (OH) fragment fluorescence | 20 ppm | Pharmaceutical or Aseptic Food Packaging for Sterilization |
Boron–Dibenzopyrromethene Dye with Pinacolboryl Group (1) | Fluorescence decrease at 642 nm due to H2O2-mediated oxidation of Pinacolboryl group | 8.43 ppb | Visual Detection of H2O2 Vapor; Selective Detection over Common Solvents |
Dipyrrin (1) with 4-Pinacolborylbenzyloxy Groups | H2O2-triggered color change from reddish-violet to blue, dual-mode sensing: colorimetric and turn-on fluorescence | 73.3 ppb | Visual Detection of H2O2 Vapor; Selective Detection over Common Solvents |
Poly-30,60-bis(1,3,2-dioxaborinane)fluoran (PolyF-1) | Oxidative deprotection of boronate functionalities, fluorescence turn-on response | 3 ppb (Vapor), 1 ppm (Liquid) | Vapor-Phase Sensor for H2O2; Detection in Areas Such as Cargo Shipments, Chemical Facilities, and Pulp Bleaching |
2-hexyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-benzo-[de]isoquinoline-1,3(2H)-dione (C6NIB) | Charge transfer transition (ICT) upon reaction with H2O2, fluorescence turn-on | Below 5 ppb | Trace Vapor Detection of H2O2; Security Scenarios, Explosive Monitoring |
ZnO Film on Quartz Substrate | Acceleration of sensing process, catalytic activity of ZnO buffer fluorescence quenching | Not reported | Detection and Alarm of Toxic and Harmful Gases (H2O2, Methamphetamine, Diethyl Chlorophosphate) |
C6NIB and C6NIN 1,8-Naphthalimides | C6NIB: fluorescence turn-on/enhancement due to ICT after boronate oxidation with H2O2 vapor; C6NIN: polarity quenching sensitive to TATP and acetone vapors | 1.1 ppb | On-site, Real-time, Sensitive Vapor Detection of TATP with Fewer Materials and Simplified Processing |
T1 | DNT: fluorescence quenching; H2O2: fluorescence enhancement; DCP: fluorometric–colorimetric dual-channel response | 0.11 ppb | Multi-Analyte Detection of DNT, H2O2, and DCP Vapors; Counter-Terrorism and Anti-War Applications |
PEI/QDs Composite Film | Fluorescence turn-on mode | Not reported | Detection of H2O2 Vapor; Immune to Interference from Other Volatile Organic Vapors; Stable Under Light Irradiation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pouri, H.; Panta, R.; Bharathan, P.; Fang, J.; Zhang, J. Advances in Nanostructured Fluorescence Sensors for H2O2 Detection: Current Status and Future Direction. Micro 2025, 5, 15. https://doi.org/10.3390/micro5020015
Pouri H, Panta R, Bharathan P, Fang J, Zhang J. Advances in Nanostructured Fluorescence Sensors for H2O2 Detection: Current Status and Future Direction. Micro. 2025; 5(2):15. https://doi.org/10.3390/micro5020015
Chicago/Turabian StylePouri, Hossein, Rakshya Panta, Prabhu Bharathan, Jiye Fang, and Jin Zhang. 2025. "Advances in Nanostructured Fluorescence Sensors for H2O2 Detection: Current Status and Future Direction" Micro 5, no. 2: 15. https://doi.org/10.3390/micro5020015
APA StylePouri, H., Panta, R., Bharathan, P., Fang, J., & Zhang, J. (2025). Advances in Nanostructured Fluorescence Sensors for H2O2 Detection: Current Status and Future Direction. Micro, 5(2), 15. https://doi.org/10.3390/micro5020015