Bioactive Compounds and the Performance of Proteins as Wall Materials for Their Encapsulation
Abstract
1. Introduction
2. Bioactive Compounds and Their Structural Characteristics
2.1. Hydrophilic Bioactive Compounds
2.1.1. Polyphenols
2.1.2. Water-Soluble Vitamins
2.1.3. Peptides
2.1.4. Polysaccharides
2.1.5. Saponins
2.2. Hydrophobic Bioactive Compounds
2.2.1. Carotenoids
2.2.2. Fatty Acids
2.2.3. Fat-Soluble Vitamins
2.3. Probiotics
3. Proteins as Encapsulating Material
3.1. Dairy Proteins
3.2. Egg Proteins
3.3. Meat Proteins
3.4. Vegetable Proteins
4. Encapsulation Techniques
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kaur, S.; Das, M. Functional Foods: An Overview. Food Sci. Biotechnol. 2011, 20, 861–875. [Google Scholar] [CrossRef]
- Perpetuini, G.; Prete, R.; Garcia-Gonzalez, N.; Khairul Alam, M.; Corsetti, A. Table Olives More than a Fermented Food. Foods 2020, 9, 178. [Google Scholar] [CrossRef]
- Bhushan, B.; Kumar, S.; Kaur, C.; Devi, V.; Chaudhary, D.P.; Singh, A.; Dagla, M.C.; Karjagi, C.G.; Saleena, L.A.K.; Chandran, D.; et al. Beyond Colors: The Health Benefits of Maize Anthocyanins. Appl. Food Res. 2024, 4, 100399. [Google Scholar] [CrossRef]
- Islam, F.; Khan, J.; Zehravi, M.; Das, R.; Haque, M.A.; Banu, A.; Parwaiz, S.; Nainu, F.; Nafady, M.H.; Shahriar, S.M.S.; et al. Synergistic Effects of Carotenoids: Therapeutic Benefits on Human Health. Process Biochem. 2024, 136, 254–272. [Google Scholar] [CrossRef]
- dos Santos, R.S.; Silva, V.F.; Ferreira, J.D.P.B.; Nascimento, M.S.D.; de Sousa, T.F.; Quemel, G.K.C.; Rivera, J.G.B. Análise das concentrações de cafeína em suplementos alimentares. Res. Soc. Dev. 2023, 12, e53121143707. [Google Scholar] [CrossRef]
- Cooney, J.M.; Barnett, M.P.; Dommels, Y.E.; Brewster, D.; Butts, C.A.; McNabb, W.C.; Laing, W.A.; Roy, N.C. A Combined Omics Approach to Evaluate the Effects of Dietary Curcumin on Colon Inflammation in the Mdr1a−/− Mouse Model of Inflammatory Bowel Disease. J. Nutr. Biochem. 2016, 27, 181–192. [Google Scholar] [CrossRef]
- Patel, S.S.; Acharya, A.; Ray, R.S.; Agrawal, R.; Raghuwanshi, R.; Jain, P. Cellular and Molecular Mechanisms of Curcumin in Prevention and Treatment of Disease. Crit. Rev. Food Sci. Nutr. 2020, 60, 887–939. [Google Scholar] [CrossRef]
- Tyagi, P.; Singh, M.; Kumari, H.; Kumari, A.; Mukhopadhyay, K.; Zhou, D. Bactericidal Activity of Curcumin I Is Associated with Damaging of Bacterial Membrane. PLoS ONE 2015, 10, e0121313. [Google Scholar] [CrossRef]
- Covas, M.-I.; Nyyssönen, K.; Poulsen, H.E.; Kaikkonen, J.; Zunft, H.-J.F.; Kiesewetter, H.; Gaddi, A.; de la Torre, R.; Mursu, J.; Bäumler, H.; et al. The Effect of Polyphenols in Olive Oil on Heart Disease Risk Factors: A Randomized Trial. Ann. Intern. Med. 2006, 145, 333–341. [Google Scholar] [CrossRef]
- Le Goff, M.; Le Ferrec, E.; Mayer, C.; Mimouni, V.; Lagadic-Gossmann, D.; Schoefs, B.; Ulmann, L. Microalgal Carotenoids and Phytosterols Regulate Biochemical Mechanisms Involved in Human Health and Disease Prevention. Biochimie 2019, 167, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Vuorio, A.; Kovanen, P.T. Decreasing the Cholesterol Burden in Heterozygous Familial Hypercholesterolemia Children by Dietary Plant Stanol Esters. Nutrients 2018, 10, 1842. [Google Scholar] [CrossRef]
- Ciupei, D.; Colişar, A.; Leopold, L.; Stănilă, A.; Diaconeasa, Z.M. Polyphenols: From Classification to Therapeutic Potential and Bioavailability. Foods 2024, 13, 4131. [Google Scholar] [CrossRef]
- Niness, K.R. Inulin and Oligofructose: What Are They? J. Nutr. 1999, 129, 1402S–1406S. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, A.S.; Brown, T.J.; Brainard, J.S.; Biswas, P.; Thorpe, G.C.; Moore, H.J.; Deane, K.H.; Alabdulghafoor, F.K.; Summerbell, C.D.; Worthington, H.V.; et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 7, CD003177. [Google Scholar] [CrossRef]
- Shen, L.; Luo, H.; Fan, L.; Tian, X.; Tang, A.; Wu, X.; Dong, K.; Su, Z. Potential Immunoregulatory Mechanism of Plant Saponins: A Review. Molecules 2023, 29, 113. [Google Scholar] [CrossRef]
- Jafari, D.; Esmaeilzadeh, A.; Mohammadi-Kordkhayli, M.; Rezaei, N. vitamin C and the Immune System. In Nutrition and Immunity; Mahmoudi, M., Rezaei, N., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 81–102. [Google Scholar] [CrossRef]
- Njus, D.; Kelley, P.M.; Tu, Y.-J.; Schlegel, H.B. Ascorbic Acid: The Chemistry Underlying Its Antioxidant Properties. Free Radic. Biol. Med. 2020, 159, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Didier, A.J.; Stiene, J.; Fang, L.; Watkins, D.; Dworkin, L.D.; Creeden, J.F. Antioxidant and Anti-Tumor Effects of Dietary Vitamins A, C, and E. Antioxidants 2023, 12, 632. [Google Scholar] [CrossRef]
- Chugh, B.; Kamal-Eldin, A. Bioactive Compounds Produced by Probiotics in Food Products. Curr. Opin. Food Sci. 2020, 32, 76–82. [Google Scholar] [CrossRef]
- Rautiainen, S.; Manson, J.E.; Lichtenstein, A.H.; Sesso, H.D. Dietary Supplements and Disease Prevention—A Global Overview. Nat. Rev. Endocrinol. 2016, 12, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Akolade, J.O.; Oloyede, H.O.B.; Onyenekwe, P.C. Encapsulation in Chitosan-Based Polyelectrolyte Complexes Enhances Antidiabetic Activity of Curcumin. J. Funct. Foods 2017, 35, 584–594. [Google Scholar] [CrossRef]
- Aditya, N.P.; Espinosa, Y.G.; Norton, I.T. Encapsulation Systems for the Delivery of Hydrophilic Nutraceuticals: Food Application. Biotechnol. Adv. 2017, 35, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Fallahasghari, E.Z.; Chronakis, I.S.; Mendes, A.C. Lipophilic Bioactive Compounds Nano-Micro Encapsulation via Coaxial Electrohydrodynamic Atomization: A Review. Food Hydrocoll. Health 2025, 7, 100202. [Google Scholar] [CrossRef]
- Martins, E.; Poncelet, D.; Rodrigues, R.C.; Renard, D. Oil Encapsulation Techniques Using Alginate as Encapsulating Agent: Applications and Drawbacks. J. Microencapsul. 2017, 34, 754–771. [Google Scholar] [CrossRef]
- Justus, A.; Benassi, M.D.T.; Ida, E.I.; Kurozawa, L.E. Estabilidade física e química de hidrolisados proteicos de okara microencapsulados por spray drying. Braz. J. Food Technol. 2020, 23, e2019135. [Google Scholar] [CrossRef]
- Rezagholizade-Shirvan, A.; Soltani, M.; Shokri, S.; Radfar, R.; Arab, M.; Shamloo, E. Bioactive Compound Encapsulation: Characteristics, Applications in Food Systems, and Implications for Human Health. Food Chem. X 2024, 24, 101953. [Google Scholar] [CrossRef] [PubMed]
- Mohammadian, M.; Waly, M.I.; Moghadam, M.; Emam-Djomeh, Z.; Salami, M.; Moosavi-Movahedi, A.A. Nanostructured Food Proteins as Efficient Systems for the Encapsulation of Bioactive Compounds. Food Sci. Hum. Wellness 2020, 9, 199–213. [Google Scholar] [CrossRef]
- Sorrenti, V.; Burò, I.; Consoli, V.; Vanella, L. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects. Int. J. Mol. Sci. 2023, 24, 2019. [Google Scholar] [CrossRef]
- Dahiya, D.; Terpou, A.; Dasenaki, M.; Nigam, P.S. Current Status and Future Prospects of Bioactive Molecules Delivered through Sustainable Encapsulation Techniques for Food Fortification. Sustain. Food Technol. 2023, 1, 500–510. [Google Scholar] [CrossRef]
- Xavier, J.R.; Sanjay, B.S.; Gupta, D.; Mehta, S.; Chauhan, O.P. Bioactive Compounds of Foods: Phytochemicals and Peptides. Food Humanit. 2024, 3, 100354. [Google Scholar] [CrossRef]
- Wan, Z.-L.; Guo, J.; Yang, X.-Q. Plant Protein-Based Delivery Systems for Bioactive Ingredients in Foods. Food Funct. 2015, 6, 2876–2889. [Google Scholar] [CrossRef]
- Mondal, S.; Ghosh, S.; Moulik, S.P. Stability of Curcumin in Different Solvent and Solution Media: UV–Visible and Steady-State Fluorescence Spectral Study. J. Photochem. Photobiol. B Biol. 2016, 158, 212–218. [Google Scholar] [CrossRef]
- Ye, Q.; Ge, F.; Wang, Y.; Woo, M.W.; Wu, P.; Chen, X.D.; Selomulya, C. On Improving Bioaccessibility and Targeted Release of Curcumin-Whey Protein Complex Microparticles in Food. Food Chem. 2021, 346, 128900. [Google Scholar] [CrossRef] [PubMed]
- Shori, A.B. Microencapsulation Improved Probiotics Survival During Gastric Transit. Hayati J. Biosci. 2017, 24, 1–5. [Google Scholar] [CrossRef]
- Zabot, G.L.; Rodrigues, F.S.; Ody, L.P.; Tres, M.V.; Herrera, E.; Palacin, H.; Córdova-Ramos, J.S.; Best, I.; Olivera-Montenegro, L. Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers 2022, 14, 4194. [Google Scholar] [CrossRef]
- Rezaei, A.; Fathi, M.; Jafari, S.M. Nanoencapsulation of Hydrophobic and Low-Soluble Food Bioactive Compounds within Different Nanocarriers. Food Hydrocoll. 2019, 88, 146–162. [Google Scholar] [CrossRef]
- McClements, D.; Decker, E.; Weiss, J. Emulsion-Based Delivery Systems for Lipophilic Bioactive Components. J. Food Sci. 2007, 72, R109–R124. [Google Scholar] [CrossRef]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and Bioefficacy of Polyphenols in Humans. I. Review of 97 Bioavailability Studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N.; Gillespie, J.R.; Fink, A.L. Why Are? Natively Unfolded? Proteins Unstructured under Physiologic Conditions? Proteins Struct. Funct. Genet. 2000, 41, 415–427. [Google Scholar] [CrossRef]
- Delaney, J.S. ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. J. Chem. Inf. Comput. Sci. 2004, 44, 1000–1005. [Google Scholar] [CrossRef]
- Hayes, M.; Tiwari, B.K. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities. Int. J. Mol. Sci. 2015, 16, 22485–22508. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Nascimento, T.C.; Jacob-Lopes, E.; Rosso, V.V.; Zepka, L.Q. Introductory Chapter: Carotenoids—A Brief Overview on Its Structure, Biosynthesis, Synthesis, and Applications. In Progress in Carotenoid Research; Zepka, L.Q., Jacob-Lopes, E., De Rosso, V.V., Eds.; InTech: Vienna, Austria, 2018. [Google Scholar] [CrossRef]
- Lee, S.J.; Umano, K.; Shibamoto, T.; Lee, K.G. Identification of Volatile Components in Basil (Ocimum basilicum L.) and Thyme Leaves (Thymus vulgaris L.) and Their Antioxidant Properties. Food Chem. 2005, 91, 131–137. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; Feliciano, A.S. Flavonoids: From Structure to Health Issues. Molecules 2017, 22, 477. [Google Scholar] [CrossRef]
- Sharma, N.; Mohite, A.M. Meat Products with Encapsulated Bioactive Ingredients. In Healthier Meat Products; Pathera, A.K., Kumar, H., Yadav, S., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 267–290. [Google Scholar] [CrossRef]
- Gaydhane, M.K.; Sharma, C.S.; Majumdar, S. Electrospun Nanofibres in Drug Delivery: Advances in Controlled Release Strategies. RSC Adv. 2023, 13, 7312–7328. [Google Scholar] [CrossRef]
- Geng, Y.; Liu, X.; Yu, Y.; Li, W.; Mou, Y.; Chen, F.; Hu, X.; Ji, J.; Ma, L. From Polyphenol to o -quinone: Occurrence, Significance, and Intervention Strategies in Foods and Health Implications. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3254–3291. [Google Scholar] [CrossRef]
- Xiao, J. Recent Advances on the Stability of Dietary Polyphenols. eFood 2022, 3, e21. [Google Scholar] [CrossRef]
- Honda, S.; Ishida, R.; Hidaka, K.; Masuda, T. Stability of Polyphenols under Alkaline Conditions and the Formation of a Xanthine Oxidase Inhibitor from Gallic Acid in a Solution at pH 7.4. Food Sci. Technol. Res. 2019, 25, 123–129. [Google Scholar] [CrossRef]
- Sigurdson, G.T.; Tang, P.; Giusti, M.M. Natural Colorants: Food Colorants from Natural Sources. Annu. Rev. Food Sci. Technol. 2017, 8, 261–280. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, D.; Sun, J.; Guo, H.; Ding, Q.; Liu, R.; Ren, F. Interaction of Milk Whey Protein with Common Phenolic Acids. J. Mol. Struct. 2014, 1058, 228–233. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, K.A.; Hashemi, S.M.B.; Es, I.; Gholamhosseinpour, A.; Loizzo, M.R.; Giardinieri, A.; Pacetti, D.; Pourmohammadi, K.; Ferreira, D.S. Water-Soluble Vitamins. In Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds; Elsevier: Cambridge, MA, USA, 2019; pp. 241–266. [Google Scholar] [CrossRef]
- Hrubša, M.; Siatka, T.; Nejmanová, I.; Vopršalová, M.; Krčmová, L.K.; Matoušová, K.; Javorská, L.; Macáková, K.; Mercolini, L.; Remião, F.; et al. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5. Nutrients 2022, 14, 484. [Google Scholar] [CrossRef] [PubMed]
- Malik, D.; Narayanasamy, N.; Pratyusha, V.A.; Thakur, J.; Sinha, N. Water-Soluble Vitamins. In Textbook of Nutritional Biochemistry; Springer Nature: Singapore, 2023; pp. 291–389. [Google Scholar] [CrossRef]
- Gonçalves, A.-C.; Portari, G.-V. The B-Complex Vitamins Related to Energy Metabolism and Their Role in Exercise Performance: A Narrative Review. Sci. Sports 2021, 36, 433–440. [Google Scholar] [CrossRef]
- Calderón-Ospina, C.A.; Nava-Mesa, M.O. B Vitamins in the Nervous System: Current Knowledge of the Biochemical Modes of Action and Synergies of Thiamine, Pyridoxine, and Cobalamin. CNS Neurosci. Ther. 2020, 26, 5–13. [Google Scholar] [CrossRef]
- Alberts, A.; Moldoveanu, E.-T.; Niculescu, A.-G.; Grumezescu, A.M. Vitamin C: A Comprehensive Review of Its Role in Health, Disease Prevention, and Therapeutic Potential. Molecules 2025, 30, 748. [Google Scholar] [CrossRef] [PubMed]
- Gouin, S. Microencapsulation. Trends Food Sci. Technol. 2004, 15, 330–347. [Google Scholar] [CrossRef]
- Sheraz, M.A.; Kazi, S.H.; Ahmed, S.; Anwar, Z.; Ahmad, I. Photo, Thermal and Chemical Degradation of Riboflavin. Beilstein J. Org. Chem. 2014, 10, 1999–2012. [Google Scholar] [CrossRef]
- O Ribeiro, D.; Pinto, D.C.; Lima, L.M.T.; Volpato, N.M.; Cabral, L.M.; de Sousa, V.P. Chemical Stability Study of Vitamins Thiamine, Riboflavin, Pyridoxine and Ascorbic Acid in Parenteral Nutrition for Neonatal Use. Nutr. J. 2011, 10, 47. [Google Scholar] [CrossRef]
- Besharati, M.; Lackner, M. Bioactive Peptides: A Review. EuroBiotech J. 2023, 7, 176–188. [Google Scholar] [CrossRef]
- Mohanty, D.; Mohapatra, S.; Misra, S.; Sahu, P. Milk Derived Bioactive Peptides and Their Impact on Human Health—A Review. Saudi J. Biol. Sci. 2016, 23, 577–583. [Google Scholar] [CrossRef]
- Campos, L.D.; Junior, V.D.A.S.; Pimentel, J.D.; Carregã, G.L.F.; Cazarin, C.B.B. Collagen Supplementation in Skin and Orthopedic Diseases: A Review of the Literature. Heliyon 2023, 9, e14961. [Google Scholar] [CrossRef]
- Kurnianto, M.A.; Defri, I.; Syahbanu, F.; Aulia, S.S. Fish-Derived Bioactive Peptide: Bioactivity Potency, Structural Characteristics, and Conventional and Bioinformatics Approaches for Identification. Future Foods 2024, 9, 100386. [Google Scholar] [CrossRef]
- Fan, H.; Liu, H.; Zhang, Y.; Zhang, S.; Liu, T.; Wang, D. Review on Plant-Derived Bioactive Peptides: Biological Activities, Mechanism of Action and Utilizations in Food Development. J. Future Foods 2022, 2, 143–159. [Google Scholar] [CrossRef]
- Tanzadehpanah, H.; Asoodeh, A.; Mahaki, H.; Mostajabodave, Z.; Chamani, J.; Mojallal-Tabatabaei, Z.; Emtenani, S.; Emtenani, S.; Moradi, M.-R. Bioactive and ACE Binding Properties of Three Synthetic Peptides Assessed by Various Spectroscopy Techniques. Process Biochem. 2016, 51, 2067–2075. [Google Scholar] [CrossRef]
- Pushpanathan, M.; Gunasekaran, P.; Rajendhran, J. Antimicrobial Peptides: Versatile Biological Properties. Int. J. Pept. 2013, 2013, 1–15. [Google Scholar] [CrossRef]
- Ma, W.; Li, N.; Lin, L.; Wen, J.; Zhao, C.; Wang, F. Research Progress in Lipid Metabolic Regulation of Bioactive Peptides. Food Prod. Process. Nutr. 2023, 5, 10. [Google Scholar] [CrossRef]
- Pei, J.; Gao, X.; Pan, D.; Hua, Y.; He, J.; Liu, Z.; Dang, Y. Advances in the Stability Challenges of Bioactive Peptides and Improvement Strategies. Curr. Res. Food Sci. 2022, 5, 2162–2170. [Google Scholar] [CrossRef] [PubMed]
- Fernando, I.P.S.; Wu, J. Food-Derived Bioactive Peptides: The Gateway to Reach the Full Potential of Food Proteins for Human Health. Trends Food Sci. Technol. 2025, 157, 104896. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Zheng, K.; Yuan, Z.; Yang, C. Effect of pH on the Formation Mechanisms, Emulsifying Properties and Curcumin Encapsulation of Oat Protein Isolate–High Methoxy Pectin Complexes. Food Hydrocoll. 2024, 149, 109454. [Google Scholar] [CrossRef]
- Yuan, D.; Zhou, F.; Shen, P.; Zhang, Y.; Lin, L.; Zhao, M. Self-Assembled Soy Protein Nanoparticles by Partial Enzymatic Hydrolysis for pH-Driven Encapsulation and Delivery of Hydrophobic Cargo Curcumin. Food Hydrocoll. 2021, 120, 106759. [Google Scholar] [CrossRef]
- Niño-Medina, G.; Carvajal-Millán, E.; Rascon-Chu, A.; Marquez-Escalante, J.A.; Guerrero, V.; Salas-Muñoz, E. Feruloylated Arabinoxylans and Arabinoxylan Gels: Structure, Sources and Applications. Phytochem. Rev. 2010, 9, 111–120. [Google Scholar] [CrossRef]
- Cheng, Y.; Wei, S.; Guo, R.; Tan, L.; Su, C.; Wu, X.; Wang, H.; Feng, C.; Xu, L.; Geng, X.; et al. Polysaccharide from Clitocybe Squamulosa: Gel-Forming Properties and Its Compound Effect with Food Thickener. Int. J. Biol. Macromol. 2024, 260, 129474. [Google Scholar] [CrossRef]
- Anand, A.; Manjula, S.N.; Fuloria, N.K.; Sharma, H. Inulin as a Prebiotic and Its Effect on Gut Microbiota. In Inulin for Pharmaceutical Applications; Akram, W., Mishra, N., Haider, T., Eds.; Springer Nature: Singapore, 2025; pp. 113–135. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, G.; Li, F.; Fang, S.; Zhou, S.; Ishiwata, A.; Tonevitsky, A.G.; Shkurnikov, M.; Cai, H.; Ding, F. Immunomodulatory Effect and Biological Significance of β-Glucans. Pharmaceutics 2023, 15, 1615. [Google Scholar] [CrossRef]
- Surampudi, P.; Enkhmaa, B.; Anuurad, E.; Berglund, L. Lipid Lowering with Soluble Dietary Fiber. Curr. Atheroscler. Rep. 2016, 18, 75. [Google Scholar] [CrossRef]
- Phull, A.R.; Kim, S.J. Fucoidan as Bio-Functional Molecule: Insights into the Anti-Inflammatory Potential and Associated Molecular Mechanisms. J. Funct. Foods 2017, 38, 415–426. [Google Scholar] [CrossRef]
- Kellogg, J.A.; Monsivais, P.; Murphy, K.M.; Perrigue, M.M. High β-Glucan Whole Grain Barley Reduces Postprandial Glycemic Response in Healthy Adults—Part One of a Randomized Controlled Trial. Nutrients 2025, 17, 430. [Google Scholar] [CrossRef] [PubMed]
- Fontes-Candia, C.; Díaz-Piñero, L.; Vega-Gómez, L.M.; Molina-Gilarranz, I.; Martínez-Sanz, M. Relevance of Protein–Polysaccharide Interactions on Nutritional Quality and Gastrointestinal Digestion of Protein-Based Foods. J. Agric. Food Chem. 2025, 73, 4998–5004. [Google Scholar] [CrossRef] [PubMed]
- Martos, G.; Lopez-Exposito, I.; Bencharitiwong, R.; Berin, M.C.; Nowak-Węgrzyn, A. Mechanisms Underlying Differential Food Allergy Response to Heated Egg. J. Allergy Clin. Immunol. 2011, 127, 990–997.e2. [Google Scholar] [CrossRef] [PubMed]
- Panith, N.; Wichaphon, J.; Lertsiri, S.; Niamsiri, N. Effect of Physical and Physicochemical Characteristics of Chitosan on Fat-Binding Capacities under in Vitro Gastrointestinal Conditions. LWT—Food Sci. Technol. 2016, 71, 25–32. [Google Scholar] [CrossRef]
- Xi, L.; Xu, W.; Fu, S.; Li, S.-H.; Fu, X.; Tan, C.-P.; Wang, P.P.; Dou, Z.-M.; Chen, C. The Effect of the Molecular Weight of Blackberry Polysaccharides on Gut Microbiota Modulation and Hypoglycemic Effect in Vivo. Food Funct. 2024, 15, 8586–8603. [Google Scholar] [CrossRef]
- Sharma, K.; Kaur, R.; Kumar, S.; Saini, R.K.; Sharma, S.; Pawde, S.V.; Kumar, V. Saponins: A Concise Review on Food Related Aspects, Applications and Health Implications. Food Chem. Adv. 2023, 2, 100191. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Phosanam, A.; Stockmann, R. Perspectives on Saponins: Food Functionality and Applications. Int. J. Mol. Sci. 2023, 24, 13538. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Singh, N.; Kaur, A. Saponins in Pulses and Their Health Promoting Activities: A Review. Food Chem. 2017, 233, 540–549. [Google Scholar] [CrossRef]
- Huang, X.; Kong, L. Steroidal Saponins from Roots of Asparagus Officinalis. Steroids 2006, 71, 171–176. [Google Scholar] [CrossRef]
- Faizal, A.; Geelen, D. Saponins and Their Role in Biological Processes in Plants. Phytochem. Rev. 2013, 12, 877–893. [Google Scholar] [CrossRef]
- Sidhu, G.S.; Oakenfull, D.G. A Mechanism for the Hypocholesterolaemic Activity of Saponins. Br. J. Nutr. 1986, 55, 643–649. [Google Scholar] [CrossRef]
- Khan, M.I.; Karima, G.; Khan, M.Z.; Shin, J.H.; Kim, J.D. Therapeutic Effects of Saponins for the Prevention and Treatment of Cancer by Ameliorating Inflammation and Angiogenesis and Inducing Antioxidant and Apoptotic Effects in Human Cells. Int. J. Mol. Sci. 2022, 23, 10665. [Google Scholar] [CrossRef]
- Cho, S.-H.; Chung, K.-S.; Choi, J.-H.; Kim, D.-H.; Lee, K.-T. Compound K, a Metabolite of Ginseng Saponin, Induces Apoptosis via Caspase-8-Dependent Pathway in HL-60 Human Leukemia Cells. BMC Cancer 2009, 9, 449. [Google Scholar] [CrossRef]
- Shang, H.; Sun, J.; Zheng, Z.; Sun, S.; Yan, X. Study on the Effect of Quinoa Saponins on Human Colon Cancer HT-29 Cells. Food Sci. Nutr. 2025, 13, e4669. [Google Scholar] [CrossRef] [PubMed]
- Southon, S.; Wright, A.J.A.; Johnson, I.T.; Gee, J.M.; Price, K.; Fairweather-Tait, S.J. The Effect of Saponins on Mineral Availability. In Trace Elements in Man and Animals 6; Hurley, L.S., Keen, C.L., Lönnerdal, B., Rucker, R.B., Eds.; Springer: Boston, MA, USA, 1988; pp. 413–415. [Google Scholar] [CrossRef]
- Cao, S.; Liu, M.; Han, Y.; Li, S.; Zhu, X.; Li, D.; Shi, Y.; Liu, B. Effects of Saponins on Lipid Metabolism: The Gut–Liver Axis Plays a Key Role. Nutrients 2024, 16, 1514. [Google Scholar] [CrossRef] [PubMed]
- Tarade, K.M.; Singhal, R.S.; Jayram, R.V.; Pandit, A.B. Kinetics of Degradation of Saponins in Soybean Flour (Glycine Max.) during Food Processing. J. Food Eng. 2006, 76, 440–445. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, H.; Zheng, T.; Jiang, J.; Xu, Y.; Jia, F.; He, K.; Yang, Y. Quantitative Changes and Transformation Mechanisms of Saponin Components in Chinese Herbal Medicines during Storage and Processing: A Review. Molecules 2024, 29, 4486. [Google Scholar] [CrossRef]
- Ashour, A.S.; El Aziz, M.M.A.; Melad, A.S.G. A review on saponins from medicinal plants: Chemistry, isolation, and determination. J. Nanomed. Res. 2019, 7, 282–288. [Google Scholar] [CrossRef]
- Cruz, M.D.F.S.J.; Pereira, G.M. Structure-activity relationship of triterpenoid saponins: Biological properties and commercial applicabilities. Rev. Fitos 2022, 17, 295–316. [Google Scholar] [CrossRef]
- Vanin, F.M.; de Carvalho, R.A.; Garcia, V.A.D.S.; Yoshida, C.M.P. Bioactive Ingredients for Safe and Health-Promoting Functional Foods. Foods 2023, 12, 4134. [Google Scholar] [CrossRef]
- Krinsky, N.I.; Johnson, E.J. Carotenoid Actions and Their Relation to Health and Disease. Mol. Asp. Med. 2005, 26, 459–516. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Lokesh, V.; Shang, X.; Shin, J.; Keum, Y.-S.; Lee, J.-H. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits—A Review of Recent Advancements. Antioxidants 2022, 11, 795. [Google Scholar] [CrossRef]
- Terao, J. Revisiting Carotenoids as Dietary Antioxidants for Human Health and Disease Prevention. Food Funct. 2023, 14, 7799–7824. [Google Scholar] [CrossRef]
- Walter, M.H.; Strack, D. Carotenoids and Their Cleavage Products: Biosynthesis and Functions. Nat. Prod. Rep. 2011, 28, 663–692. [Google Scholar] [CrossRef] [PubMed]
- Telegina, T.A.; Vechtomova, Y.L.; Aybush, A.V.; Buglak, A.A.; Kritsky, M.S. Isomerization of Carotenoids in Photosynthesis and Metabolic Adaptation. Biophys. Rev. 2023, 15, 887–906. [Google Scholar] [CrossRef]
- Updike, A.A.; Schwartz, S.J. Thermal Processing of Vegetables Increases Cis Isomers of Lutein and Zeaxanthin. J. Agric. Food Chem. 2003, 51, 6184–6190. [Google Scholar] [CrossRef]
- Lavelli, V.; Sereikaitė, J. Kinetic Study of Encapsulated β-Carotene Degradation in Dried Systems: A Review. Foods 2022, 11, 437. [Google Scholar] [CrossRef]
- Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N. Natural Colorants: Pigment Stability and Extraction Yield Enhancement via Utilization of Appropriate Pretreatment and Extraction Methods. Crit. Rev. Food Sci. Nutr. 2017, 57, 3243–3259. [Google Scholar] [CrossRef]
- Temiz, A.; Ayhan, D.K. Enzymes in Minimally Processed Fruits and Vegetables. In Minimally Processed Refrigerated Fruits and Vegetables; Yildiz, F., Wiley, R., Eds.; Springer: Boston, MA, USA, 2017; pp. 93–151. [Google Scholar] [CrossRef]
- Ruiz-Rodriguez, A.; Reglero, G.; Ibañez, E. Recent Trends in the Advanced Analysis of Bioactive Fatty Acids. J. Pharm. Biomed. Anal. 2010, 51, 305–326. [Google Scholar] [CrossRef] [PubMed]
- Akoh, C.C. (Ed.) Food Lipids, 4th ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Zhuang, Y.; Dong, J.; He, X.; Wang, J.; Li, C.; Dong, L.; Zhang, Y.; Zhou, X.; Wang, H.; Yi, Y.; et al. Impact of Heating Temperature and Fatty Acid Type on the Formation of Lipid Oxidation Products During Thermal Processing. Front. Nutr. 2022, 9, 913297. [Google Scholar] [CrossRef] [PubMed]
- Andrès, E.; Lorenzo-Villalba, N.; Terrade, J.-E.; Méndez-Bailon, M. Fat-Soluble Vitamins A, D, E, and K: Review of the Literature and Points of Interest for the Clinician. J. Clin. Med. 2024, 13, 3641. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S. Fat-Soluble Vitamins. In Nutrition and Functional Foods in Boosting Digestion, Metabolism and Immune Health; Elsevier: Cambridge, MA, USA, 2022; pp. 329–364. [Google Scholar] [CrossRef]
- Irfan, M.; Aalia, M.; Saeed, A. Current Trends in the Biosynthesis of Vitamins. In Recent Advances in Industrial Biochemistry; Hashmi, M.Z., Saeed, A., Musharraf, S.G., Shuhong, W., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 251–278. [Google Scholar] [CrossRef]
- Holick, M.F.; Chen, T.C.; Lu, Z.; Sauter, E. Vitamin D and Skin Physiology: A D-Lightful Story. J. Bone Miner. Res. 2007, 22, V28–V33. [Google Scholar] [CrossRef]
- Kim, H.J.; Shin, J.; Kang, Y.; Kim, D.; Park, J.J.; Kim, H.J. Effect of Different Cooking Method on Vitamin E and K Content and True Retention of Legumes and Vegetables Commonly Consumed in Korea. Food Sci. Biotechnol. 2023, 32, 647–658. [Google Scholar] [CrossRef]
- Jia, L.; Wu, W.; Zhang, J.; Wu, H. Insight into Heavy Metals (Cr and Pb) Complexation by Dissolved Organic Matters from Biochar: Impact of Zero-Valent Iron. Sci. Total Environ. 2021, 793, 148469. [Google Scholar] [CrossRef]
- Godoy, H.T.; Amaya-Farfan, J.; Rodriguez-Amaya, D.B.R. Degradation of Vitamins. In Chemical Changes During Processing and Storage of Foods; Elsevier: Amsterdam, The Netherlands, 2021; pp. 329–383. [Google Scholar] [CrossRef]
- Mordi, R.C.; Ademosun, O.T.; Ajanaku, C.O.; Olanrewaju, I.O.; Walton, J.C. Free Radical Mediated Oxidative Degradation of Carotenes and Xanthophylls. Molecules 2020, 25, 1038. [Google Scholar] [CrossRef]
- Bergström, T.; Ersson, C.; Bergman, J.; Möller, L. Vitamins at Physiological Levels Cause Oxidation to the DNA Nucleoside Deoxyguanosine and to DNA—Alone or in Synergism with Metals. Mutagenesis 2012, 27, 511–517. [Google Scholar] [CrossRef]
- Berry Ottaway, P. Stability of Vitamins during Food Processing and Storage. In Chemical Deterioration and Physical Instability of Food and Beverages; Elsevier: Amsterdam, The Netherlands, 2010; pp. 539–560. [Google Scholar] [CrossRef]
- Sengupta, R.; Altermann, E.; Anderson, R.C.; McNabb, W.C.; Moughan, P.J.; Roy, N.C. The Role of Cell Surface Architecture of Lactobacilli in Host-Microbe Interactions in the Gastrointestinal Tract. Mediat. Inflamm. 2013, 2013, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.; Robinson, S.J.; Lee, J.W.; Lim, H.; Wallace, C.L.; Jin, Y.-S. Dissection and Enhancement of Prebiotic Properties of Yeast Cell Wall Oligosaccharides through Metabolic Engineering. Biomaterials 2022, 282, 121379. [Google Scholar] [CrossRef]
- Martín, M.J.; Lara-Villoslada, F.; Ruiz, M.A.; Morales, M.E. Microencapsulation of Bacteria: A Review of Different Technologies and Their Impact on the Probiotic Effects. Innov. Food Sci. Emerg. Technol. 2015, 27, 15–25. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Giri, S.K. Probiotic Functional Foods: Survival of Probiotics during Processing and Storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Senaka Ranadheera, C.; Evans, C.A.; Adams, M.C.; Baines, S.K. Probiotic Viability and Physico-Chemical and Sensory Properties of Plain and Stirred Fruit Yogurts Made from Goat’s Milk. Food Chem. 2012, 135, 1411–1418. [Google Scholar] [CrossRef]
- Mazumder, A.R.; Ranganathan, T.V. Encapsulation of Isoflavone with Milk, Maltodextrin and Gum Acacia Improves Its Stability. Curr. Res. Food Sci. 2020, 2, 77–83. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Z.; An, D.; Zhang, H.; Wang, J.; Xia, N.; Ma, Y.; Han, S.; Wei, A. Effect of Ultrasound and Alkali-Heat Treatment on the Thermal Gel Properties and Catechin Encapsulation Capacity of Ovalbumin. Food Hydrocoll. 2023, 145, 109069. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y. Heat-Induced Self-Assembly of Zein Nanoparticles: Fabrication, Stabilization and Potential Application as Oral Drug Delivery. Food Hydrocoll. 2019, 90, 403–412. [Google Scholar] [CrossRef]
- Shahidi, F.; Dissanayaka, C.S. Phenolic-Protein Interactions: Insight from in-Silico Analyses—A Review. Food Prod. Process. Nutr. 2023, 5, 2. [Google Scholar] [CrossRef]
- Añazco, C.; Riedelsberger, J.; Vega-Montoto, L.; Rojas, A. Exploring the Interplay between Polyphenols and Lysyl Oxidase Enzymes for Maintaining Extracellular Matrix Homeostasis. Int. J. Mol. Sci. 2023, 24, 10985. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhan, F.; Zhao, Y.; Han, Y.; Chen, X.; Li, B. Improved Foaming Properties and Interfacial Observation of Sodium Caseinate-Based Complexes: Effect of Carboxymethyl Cellulose. Food Hydrocoll. 2020, 105, 105758. [Google Scholar] [CrossRef]
- Wilson, W.; Wade, M.M.; Holman, S.C.; Champlin, F.R. Status of Methods for Assessing Bacterial Cell Surface Charge Properties Based on Zeta Potential Measurements. J. Microbiol. Methods 2001, 43, 153–164. [Google Scholar] [CrossRef]
- Kahraman, O.; Koch, P.D.; Klug, W.S.; Haselwandter, C.A. Bilayer-thickness-mediated interactions between integral membrane proteins. Phys. Rev. 2016, 93, 042410. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Ma, X.; Zheng, Y.; Hu, H.; Jiao, B.; McClements, D.J.; Wang, Q.; Shi, A. Interfacial and Foaming Properties of Plant and Microbial Proteins: Comparison of Structure-Function Behavior of Different Proteins. Food Chem. 2025, 463, 141431. [Google Scholar] [CrossRef]
- Busscher, H.J.; Norde, W.; van der Mei, H.C. Specific Molecular Recognition and Nonspecific Contributions to Bacterial Interaction Forces. Appl. Environ. Microbiol. 2008, 74, 2559–2564. [Google Scholar] [CrossRef]
- Oteng-Pabi, S.K.; Pardin, C.; Stoica, M.; Keillor, J.W. Site-Specific Protein Labelling and Immobilization Mediated by Microbial Transglutaminase. Chem. Commun. 2014, 50, 6604–6606. [Google Scholar] [CrossRef]
- Abdul-Al, M.; Saeinasab, M.; Sefat, F. Encapsulation Techniques Overview. In Principles of Biomaterials Encapsulation; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, pp. 13–36. [Google Scholar] [CrossRef]
- Ray, S.; Raychaudhuri, U.; Chakraborty, R. An Overview of Encapsulation of Active Compounds Used in Food Products by Drying Technology. Food Biosci. 2016, 13, 76–83. [Google Scholar] [CrossRef]
- McClements, D.J. Encapsulation, Protection, and Release of Hydrophilic Active Components: Potential and Limitations of Colloidal Delivery Systems. Adv. Colloid Interface Sci. 2015, 219, 27–53. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.W.; Boland, M.J. Post-Translational Modifications of Caseins. In Milk Proteins; Elsevier: Amsterdam, The Netherlands, 2014; pp. 141–168. [Google Scholar] [CrossRef]
- Sadiq, U.; Gill, H.; Chandrapala, J. Casein Micelles as an Emerging Delivery System for Bioactive Food Components. Foods 2021, 10, 1965. [Google Scholar] [CrossRef] [PubMed]
- Casanova, F.; Nascimento, L.G.L.; Silva, N.F.; de Carvalho, A.F.; Gaucheron, F. Interactions between Caseins and Food-Derived Bioactive Molecules: A Review. Food Chem. 2021, 359, 129820. [Google Scholar] [CrossRef]
- Charlton, A.J.; Baxter, N.J.; Khan, M.L.; Moir, A.J.G.; Haslam, E.; Davies, A.P.; Williamson, M.P. Polyphenol/Peptide Binding and Precipitation. J. Agric. Food Chem. 2002, 50, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Van De Langerijt, T.M.; O’Mahony, J.A.; Crowley, S.V. Structural, Binding and Functional Properties of Milk Protein-Polyphenol Systems: A Review. Molecules 2023, 28, 2288. [Google Scholar] [CrossRef]
- Pan, K.; Zhong, Q.; Baek, S.J. Enhanced Dispersibility and Bioactivity of Curcumin by Encapsulation in Casein Nanocapsules. J. Agric. Food Chem. 2013, 61, 6036–6043. [Google Scholar] [CrossRef]
- Peñalva, R.; Morales, J.; González-Navarro, C.J.; Larrañeta, E.; Quincoces, G.; Peñuelas, I.; Irache, J.M. Increased Oral Bioavailability of Resveratrol by Its Encapsulation in Casein Nanoparticles. Int. J. Mol. Sci. 2018, 19, 2816. [Google Scholar] [CrossRef]
- Haraguchi, F.K.; de Abreu, W.C.; de Paula, H. Proteínas do soro do leite: Composição, propriedades nutricionais, aplicações no esporte e benefícios para a saúde humana. Rev. Nutr. 2006, 19, 479–488. [Google Scholar] [CrossRef]
- Somchue, W.; Sermsri, W.; Shiowatana, J.; Siripinyanond, A. Encapsulation of α-Tocopherol in Protein-Based Delivery Particles. Food Res. Int. 2009, 42, 909–914. [Google Scholar] [CrossRef]
- Ge, X.; Zhang, J.; Regenstein, J.M.; Liu, D.; Huang, Y.; Qiao, Y.; Zhou, P. α-Lactalbumin: Functional Properties and Potential Health Benefits. Food Biosci. 2024, 60, 104371. [Google Scholar] [CrossRef]
- Edwards, P.J.B.; Jameson, G.B. Structure and Stability of Whey Proteins. In Milk Proteins; Elsevier: Amsterdam, The Netherlands, 2020; pp. 251–291. [Google Scholar] [CrossRef]
- Permyakov, E.A.; Berliner, L.J. α-Lactalbumin: Structure and Function. FEBS Lett. 2000, 473, 269–274. [Google Scholar] [CrossRef]
- Kimpel, F.; Schmitt, J.J. Review: Milk Proteins as Nanocarrier Systems for Hydrophobic Nutraceuticals. J. Food Sci. 2015, 80, R2361–R2366. [Google Scholar] [CrossRef]
- Barbiroli, A.; Iametti, S.; Bonomi, F. Beta-Lactoglobulin as a Model Food Protein: How to Promote, Prevent, and Exploit Its Unfolding Processes. Molecules 2022, 27, 1131. [Google Scholar] [CrossRef] [PubMed]
- Vulić, J.; Šeregelj, V.; Kalušević, A.; Lević, S.; Nedović, V.; Šaponjac, V.T.; Čanadanović-Brunet, J.; Ćetković, G. Bioavailability and Bioactivity of Encapsulated Phenolics and Carotenoids Isolated from Red Pepper Waste. Molecules 2019, 24, 2837. [Google Scholar] [CrossRef]
- Xie, S.; Qu, P.; Luo, S.; Wang, C. Graduate Student Literature Review: Potential Uses of Milk Proteins as Encapsulation Walls for Bioactive Compounds. J. Dairy Sci. 2022, 105, 7959–7971. [Google Scholar] [CrossRef] [PubMed]
- Legros, J.; Jan, S.; Bonnassie, S.; Gautier, M.; Croguennec, T.; Pezennec, S.; Cochet, M.-F.; Nau, F.; Andrews, S.C.; Baron, F. The Role of Ovotransferrin in Egg-White Antimicrobial Activity: A Review. Foods 2021, 10, 823. [Google Scholar] [CrossRef]
- Liu, S.-H.; Chang, T.-Y.; Liu, S.-H.; Chiang, M.-T. Synergistic Effects of Chitosan and Fish Oil on Lipid Metabolism in Rats Fed a High-Fat and Low-Carbohydrate Diet. Nutrients 2024, 16, 4080. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Z.; Sun, X.; Zhang, S.; Wang, S.; Feng, F.; Wang, D.; Xu, Y. Fabrication and Characterization of β-Lactoglobulin-Based Nanocomplexes Composed of Chitosan Oligosaccharides as Vehicles for Delivery of Astaxanthin. J. Agric. Food Chem. 2018, 66, 6717–6726. [Google Scholar] [CrossRef]
- Burgain, J.; Scher, J.; Lebeer, S.; Vanderleyden, J.; Corgneau, M.; Guerin, J.; Caillet, C.; Duval, J.F.; Francius, G.; Gaiani, C. Impacts of pH-Mediated EPS Structure on Probiotic Bacterial Pili–Whey Proteins Interactions. Colloids Surf. B Biointerfaces 2015, 134, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Burgain, J.; Gaiani, C.; Linder, M.; Scher, J. Encapsulation of Probiotic Living Cells: From Laboratory Scale to Industrial Applications. J. Food Eng. 2011, 104, 467–483. [Google Scholar] [CrossRef]
- Vanden, B.N.L.; Vergara, N.L.D.; Rossi, Y.E.; Aminahuel, C.A.; Mauri, A.N.; Cavaglieri, L.R.; Montenegro, M.A. Effect of Microencapsulation in Whey Protein and Water-Soluble Chitosan Derivative on the Viability of the Probiotic Kluyveromyces Marxianus VM004 during Storage and in Simulated Gastrointestinal Conditions. LWT 2020, 118, 108844. [Google Scholar] [CrossRef]
- Saghaee, R.; Ariaii, P.; Motamedzadegan, A. Development of Electrospun Whey Protein Isolate Nanofiber Mat for Omega-3 Nanoencapsulation: Microstructural and Physical Property Analysis. Int. J. Biol. Macromol. 2025, 301, 140273. [Google Scholar] [CrossRef]
- Damodaran, S.; Paraf, E.A. Food Proteins and Their Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Razi, S.M.; Fahim, H.; Amirabadi, S.; Rashidinejad, A. An Overview of the Functional Properties of Egg White Proteins and Their Application in the Food Industry. Food Hydrocoll. 2023, 135, 108183. [Google Scholar] [CrossRef]
- Da Silva, M.; Beauclercq, S.; Harichaux, G.; Labas, V.; Guyot, N.; Gautron, J.; Nys, Y.; Rehault-Godbert, S. The Family Secrets of Avian Egg-Specific Ovalbumin and Its Related Proteins Y and X. Biol. Reprod. 2015, 93, 71. [Google Scholar] [CrossRef]
- Dhanapala, P.; De Silva, C.; Doran, T.; Suphioglu, C. Cracking the Egg: An Insight into Egg Hypersensitivity. Mol. Immunol. 2015, 66, 375–383. [Google Scholar] [CrossRef]
- Savadkoohi, S.; Bannikova, A.; Mantri, N.; Kasapis, S. Structural Properties of Condensed Ovalbumin Systems Following Application of High Pressure. Food Hydrocoll. 2016, 53, 104–114. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, H.; Zheng, Y.; Wang, D.; Liu, Z.; Deng, Y.; Zhao, Y. Structure, Physicochemical and Bioactive Properties of Dietary Fibers from Akebia Trifoliata (Thunb.) Koidz. Seeds Using Ultrasonication/Shear Emulsifying/Microwave-Assisted Enzymatic Extraction. Food Res. Int. 2020, 136, 109348. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, L.; Zhang, Y.; Du, Z.; Qiu, X.; Kong, L.; Zhang, H. Binding Behaviors and Structural Characteristics of Ternary Complexes of β-Lactoglobulin, Curcumin, and Fatty Acids. RSC Adv. 2017, 7, 45960–45967. [Google Scholar] [CrossRef]
- Nurliyani; Erwanto, Y.; Rumiyati; Sukarno, A.S. Characteristics of protein and amino acid in various poultry egg white ovomucoid. Food Sci. Technol. 2023, 43, e101722. [Google Scholar] [CrossRef]
- Li, M.; Ritzoulis, C.; Du, Q.; Liu, Y.; Ding, Y.; Liu, W.; Liu, J. Recent Progress on Protein-Polyphenol Complexes: Effect on Stability and Nutrients Delivery of Oil-in-Water Emulsion System. Front. Nutr. 2021, 8, 765589. [Google Scholar] [CrossRef] [PubMed]
- Akman, P.K.; Bozkurt, F.; Tornuk, F. Fabrication and characterization of curcumin loaded ovalbumin nanocarriers and bioactive properties. Food Sci. Technol. 2022, 42, e38421. [Google Scholar] [CrossRef]
- Lee, S.; Jo, K.; Choi, Y.-S.; Jung, S. Tracking Bioactive Peptides and Their Origin Proteins during the in Vitro Digestion of Meat and Meat Products. Food Chem. 2024, 454, 139845. [Google Scholar] [CrossRef]
- Xiong, Y.L. Myofibrillar Protein from Different Muscle Fiber Types: Implications of Biochemical and Functional Properties in Meat Processing. Crit. Rev. Food Sci. Nutr. 1994, 34, 293–320. [Google Scholar] [CrossRef]
- Kim, Y.S.; Yongsawatdigul, J.; Park, J.W.; Thawornchinsombut, S. Characteristics of Sarcoplasmic Proteins and their Interaction with Myofibrillar Proteins. J. Food Biochem. 2005, 29, 517–532. [Google Scholar] [CrossRef]
- Shoulders, M.D.; Raines, R.T. Collagen Structure and Stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef] [PubMed]
- Pogorzelska-Nowicka, E.; Atanasov, A.G.; Horbańczuk, J.; Wierzbicka, A. Bioactive Compounds in Functional Meat Products. Molecules 2018, 23, 307. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, T.; Bandara, N. Protein-Based Encapsulation Systems for Codelivery of Bioactive Compounds: Recent Studies and Potential Applications. Curr. Opin. Food Sci. 2024, 57, 101181. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Zhang, W.; Boateng, I.D.; Xu, J.; Zhang, Y. Proteins from Legumes, Cereals, and Pseudo-Cereals: Composition, Modification, Bioactivities, and Applications. Foods 2024, 13, 1974. [Google Scholar] [CrossRef]
- Kolpakova, V.V.; Byzov, V.A. Functional characteristics and molecular structural modification of plant proteins. Review. Food Syst. 2024, 7, 324–335. [Google Scholar] [CrossRef]
- Yang, Z.; Li, D.; Chen, L.; Zhang, W.; Jiang, L.; Huang, Z.; Tian, T. Structural Characteristics, Techno-Functionalities, Innovation Applications and Future Prospects of Soybean β-Conglycinin/Glycinin: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2024, 1, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Sharif, H.R.; Williams, P.A.; Sharif, M.K.; Abbas, S.; Majeed, H.; Masamba, K.G.; Safdar, W.; Zhong, F. Current Progress in the Utilization of Native and Modified Legume Proteins as Emulsifiers and Encapsulants—A Review. Food Hydrocoll. 2018, 76, 2–16. [Google Scholar] [CrossRef]
- Lam, A.C.Y.; Can Karaca, A.; Tyler, R.T.; Nickerson, M.T. Pea Protein Isolates: Structure, Extraction, and Functionality. Food Rev. Int. 2018, 34, 126–147. [Google Scholar] [CrossRef]
- Perrechil, F.; Louzi, V.C.; da Silva Paiva, L.A.; Natal, G.S.V.; Braga, M.B. Evaluation of Modified Starch and Rice Protein Concentrate as Wall Materials on the Microencapsulation of Flaxseed Oil by Freeze-Drying. LWT 2021, 140, 110760. [Google Scholar] [CrossRef]
- Cserháti, T.; Szögyi, M. Hydrophilic Interactions between Charged Amino Acids and the Effect of Ions on the Strength of Interaction. Z. Naturforsch. C 1990, 45, 79–83. [Google Scholar] [CrossRef]
- Šaponjac, V.T.; Ćetković, G.; Čanadanović-Brunet, J.; Djilas, S.; Pajin, B.; Petrović, J.; Stajčić, S.; Vulić, J. Encapsulation of sour cherry pomace extract by freeze drying: Characterization and storage stability. Acta Chim. Slov. 2017, 64, 283–289. [Google Scholar] [CrossRef]
- Souza, A.C.P.; Gurak, P.D.; Marczak, L.D.F. Maltodextrin, Pectin and Soy Protein Isolate as Carrier Agents in the Encapsulation of Anthocyanins-Rich Extract from Jaboticaba Pomace. Food Bioprod. Process. 2017, 102, 186–194. [Google Scholar] [CrossRef]
- Gomes, A.; Sobral, P.J.D.A. Plant Protein-Based Delivery Systems: An Emerging Approach for Increasing the Efficacy of Lipophilic Bioactive Compounds. Molecules 2021, 27, 60. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, Y.; Lai, Z.; Hu, X.; Wang, L.; Wang, X.; Li, Z.; Gao, M.; Yang, Y.; Wang, Q.; et al. Effect of Monosaccharide Composition and Proportion on the Bioactivity of Polysaccharides: A Review. Int. J. Biol. Macromol. 2024, 254, 127955. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, R.; Xu, X.; Du, M.; Zhu, B.; Wu, C. Structural Interplay between Curcumin and Soy Protein to Improve the Water-Solubility and Stability of Curcumin. Int. J. Biol. Macromol. 2021, 193, 1471–1480. [Google Scholar] [CrossRef]
- Amiri, S.; Nezamdoost-Sani, N.; Mostashari, P.; McClements, D.J.; Marszałek, K.; Khaneghah, A.M. Effect of the Molecular Structure and Mechanical Properties of Plant-Based Hydrogels in Food Systems to Deliver Probiotics: An Updated Review. Crit. Rev. Food Sci. Nutr. 2022, 64, 2130–2156. [Google Scholar] [CrossRef]
- Koh, W.Y.; Lim, X.X.; Tan, T.-C.; Kobun, R.; Rasti, B. Encapsulated Probiotics: Potential Techniques and Coating Materials for Non-Dairy Food Applications. Appl. Sci. 2022, 12, 10005. [Google Scholar] [CrossRef]
- Liang, L.; Cao, W.; Li, L.; Liu, W.; Wei, X.; Chen, J.; Ren, G.; Zhao, Y.; Duan, X. Fabrication and Characterisation of Pea Protein Isolate-chlorogenic Acid Nanoparticles. Int. J. Food Sci. Technol. 2024, 59, 1615–1623. [Google Scholar] [CrossRef]
- Amagliani, L.; O’REgan, J.; Kelly, A.L.; O’MAhony, J.A. The Composition, Extraction, Functionality and Applications of Rice Proteins: A Review. Trends Food Sci. Technol. 2017, 64, 1–12. [Google Scholar] [CrossRef]
- Rosenberg, M.; Rosenberg, Y.; Zhang, J. Microencapsulation of a Model Oil in Wall System Consisting of Wheat Proteins Isolate (WHPI) and Lactose. Appl. Sci. 2018, 8, 1944. [Google Scholar] [CrossRef]
- Liao, L.; Luo, Y.; Zhao, M.; Wang, Q. Preparation and Characterization of Succinic Acid Deamidated Wheat Gluten Microspheres for Encapsulation of Fish Oil. Colloids Surf. B Biointerfaces 2012, 92, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Sehrawat, R.; Kong, Y. Oat Proteins: A Perspective on Functional Properties. LWT 2021, 152, 112307. [Google Scholar] [CrossRef]
- McLauchlan, J.; Tyler, A.I.; Chakrabarti, B.; Orfila, C.; Sarkar, A. Oat Protein: Review of Structure-Function Synergies with Other Plant Proteins. Food Hydrocoll. 2024, 154, 110139. [Google Scholar] [CrossRef]
- Afzaal, M.; Saeed, F.; Aamir, M.; Usman, I.; Ashfaq, I.; Ikram, A.; Hussain, M.; Anjum, F.M.; Waleed, M.; Suleria, H. Encapsulating Properties of Legume Proteins: Recent Updates & Perspectives. Int. J. Food Prop. 2021, 24, 1603–1614. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Smith, B. Legume Proteins Are Smart Carriers to Encapsulate Hydrophilic and Hydrophobic Bioactive Compounds and Probiotic Bacteria: A Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1250–1279. [Google Scholar] [CrossRef]
- Quiroz, J.Q.; Velazquez, V.; Corrales-Garcia, L.L.; Torres, J.D.; Delgado, E.; Ciro, G.; Rojas, J. Use of Plant Proteins as Microencapsulating Agents of Bioactive Compounds Extracted from Annatto Seeds (Bixa orellana L.). Antioxidants 2020, 9, 310. [Google Scholar] [CrossRef]
- Srivastava, S.; Pandey, V.K.; Dar, A.H.; Shams, R.; Dash, K.K.; Rafiq, S.M.; Zahoor, I.; Kumar, S. Effect of Microencapsulation Techniques on the Different Properties of Bioactives, Vitamins and Minerals. Food Sci. Biotechnol. 2024, 33, 3181–3198. [Google Scholar] [CrossRef]
- Shah, B.R. Stability and Release Behavior of Bioactive Compounds (with Antioxidant Activity) Encapsulated by Pickering Emulsion. In Emulsion-Based Encapsulation of Antioxidants; Aboudzadeh, M.A., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 287–309. [Google Scholar] [CrossRef]
- Muhoza, B.; Yuyang, H.; Uriho, A.; Harindintwali, J.D.; Liu, Q.; Li, Y. Spray-and Freeze-Drying of Microcapsules Prepared by Complex Coacervation Method: A Review. Food Hydrocoll. 2023, 140, 108650. [Google Scholar] [CrossRef]
- Aloys, H.; Korma, S.A.; Alice, T.M.; Chantal, N.; Ali, A.H.; Abed, S.M.; Ildephonse, H. Microencapsulation by complex coacervation: Methods, techniques, benefits, and applications-A review. Am. J. Food Sci. Nutr. Res. 2016, 3, 188–192. [Google Scholar]
- Sing, C.E.; Perry, S.L. Recent Progress in the Science of Complex Coacervation. Soft Matter 2020, 16, 2885–2914. [Google Scholar] [CrossRef]
- Uppal, S.; Sharma, A.; Kaur, K.; Mehta, S.K. Inclusion Complexation and Coacervation to Fabricate Nanoencapsulated Foods. In Nano-Food Engineering; Hebbar, U., Ranjan, S., Dasgupta, N., Kumar Mishra, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 97–123. [Google Scholar] [CrossRef]
- Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New Developments in Liposomal Drug Delivery. Chem. Rev. 2015, 115, 10938–10966. [Google Scholar] [CrossRef]
- Abaszadeh, F.; Ashoub, M.H.; Amiri, M. Nanoemulsions Challenges and Future Prospects as a Drug Delivery System. In current Trends in Green Nano-Emulsions; Husen, A., Bachheti, R.K., Bachheti, A., Eds.; Springer Nature: Singapore, 2023; pp. 217–243. [Google Scholar] [CrossRef]
- Punnya, E.P.; Ranitha, R. Nanoemulsion: An Emerging Approach for the Enhancement of Solubility in Lipophilic Drugs. Int. J. Pharm. Sci. 2024, 2, 84–92. [Google Scholar] [CrossRef]
- Lima, B.D.S.; Shanmugam, S.; Quintans, J.D.S.S.; Quintans-Júnior, L.J.; Araújo, A.A.D.S. Inclusion Complex with Cyclodextrins Enhances the Bioavailability of Flavonoid Compounds: A Systematic Review. Phytochem. Rev. 2019, 18, 1337–1359. [Google Scholar] [CrossRef]
- Sarabia-Vallejo, Á.; Caja, M.D.M.; Olives, A.I.; Martín, M.A.; Menéndez, J.C. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics 2023, 15, 2345. [Google Scholar] [CrossRef]
- Řepka, D.; Kurillová, A.; Murtaja, Y.; Lapčík, L. Application of Physical-Chemical Approaches for Encapsulation of Active Substances in Pharmaceutical and Food Industries. Foods 2023, 12, 2189. [Google Scholar] [CrossRef]
- Ricardo, F.; Pradilla, D.; Luiz, R.; Solano, O.A.A. A Multi-Scale Approach to Microencapsulation by Interfacial Polymerization. Polymers 2021, 13, 644. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Fan, J.-B.; Wang, S. Recent Progress in Interfacial Polymerization. Mater. Chem. Front. 2017, 1, 1028–1040. [Google Scholar] [CrossRef]
- Bayat, F.; Hashtrodylar, Y.; Karimi, H.; Mehryab, F.; Haeri, A. A Precise Look at Electrospinning Parameters in Fabricating the Polymeric Nanofibers: A Review on Synthetic and Natural Polymers. J. Pharm. Investig. 2024, 54, 699–750. [Google Scholar] [CrossRef]
- El Hadrami, A.; Adam, L.R.; El Hadrami, I.; Daayf, F. Chitosan in Plant Protection. Mar. Drugs 2010, 8, 968–987. [Google Scholar] [CrossRef] [PubMed]
Chemical Class | Bioactive Compounds | Metabolic and Physiological Effects | Health Benefit Claims | Commercial Product Containing the Bioactive Compound | Authors |
---|---|---|---|---|---|
Flavonoids | Anthocyanins | Antidiabetic; Anti-obesity; Antihypertensive; Antiproliferative; Antimicrobial; Anti-inflammatory. | Reduction in the risk of chronic diseases such as diabetes | Grape juice, açaí, wine | [3] |
Carotenoids | Carotenoids | Anticarcinogenic; Immunomodulatory; Anti-inflammatory; Antibacterial; Antidiabetic; Neuroprotective. | Protection of the nervous system | Annatto seasoning, meat products | [4] |
Alkaloids | Caffeine | Neuromuscular action. | Improves performance in physical activities | Dietary supplements, coffee, energy drinks | [5] |
Polyphenols | Curcuminoids | Antioxidant; Antibacterial. | Management of irritable bowel syndrome and peptic ulcers | Turmeric | [6,7,8] |
Hydroxytyrosol | Antioxidant; Anti-inflammatory; LDL oxidation reduction; Anticarcinogenic activity | Reduced risk of cardiovascular, inflammatory, and degenerative diseases | Olive, olive oil | [9] | |
Sterols | Phytosterols | Regulate cholesterol and lipid metabolism; Anticarcinogenic. | Cholesterol control | Fruits, vegetables, vegetable oils, nuts, and seeds | [10,11] |
Polysaccharides | Inulin | Anti-inflammatory. | Improves gut health | Roots and tubers such as chicory and Jerusalem artichoke | [12,13] |
Fatty Acids | Omega-3 and Omega-6 | Anti-inflammatory and antifungal; Reduces the risk of cardiovascular death and myocardial infarction. | Reduction in the risk of cardiovascular death and myocardial infarction. Supports brain function; lowers triglycerides | Fish oil, flaxseed, soybean, and canola oils | [14,15] |
Vitamins | Vitamin D | Promotes calcium absorption and supports the immune system. | Reduces the risk of osteoporosis and autoimmune diseases | Fortified foods | [16] |
Vitamin C | Potent antioxidant and stimulates white blood cell production. | Reduces the risk of chronic diseases, especially cancer | Citrus fruits | [16,17] | |
Vitamin E | Protects cells from oxidative damage. | Reduces the risk of chronic diseases, especially heart disease and cancer | Nuts and seeds | [18] | |
Gram-positive Bacteria | Probiotics (Lactobacillus and Bifidobacterium) | Anti-inflammatory; Antimicrobial; Antioxidant; Antihypertensive; Immunomodulatory; Improve intestinal function. | Gut regulation, digestion improvement, skin health, immune function, and potential impact on mental health through gut–brain axis modulation | Yogurt, kefir, sauerkraut, kimchi, kombucha, dietary supplements | [19] |
Source | Advantages | Disadvantages | Authors |
---|---|---|---|
Dairy proteins | Good stability and compatibility with a variety of food ingredients. | Potential allergenicity, moderate gelation properties that may be affected by pH. | [129] |
Egg proteins | High nutritional quality, gelation and water retention capacity, and cost-effectiveness. | Potential allergenicity, incompatibility with some ingredients, sensitivity to processing, and possible contribution to undesirable taste or odor in certain applications. | [130] |
Meat proteins | Ability to form stable gels and emulsions. | Potential allergenicity for some individuals, as well as sustainability and environmental impact concerns related to meat production. | [130] |
Plant proteins | Promising for release in the gastrointestinal tract due to reduced digestibility and high surface hydrophobicity, allowing transport of hydrophobic bioactive substances. | The preparation of these delivery systems generally requires high-energy equipment or the use of organic solvents, which limits their application in the food industry. | [131] |
Bioactive Compound | Encapsulating Material (Protein) | Encapsulation Technique | Encapsulation Efficiency (%) | Reference |
---|---|---|---|---|
Vitamina A | Whey protein | Spray drying | 85 | [141] |
Omega-3 fatty acids | Soy protein | Coacervation | 92 | [142] |
Polyphenols | Casein | Emulsification | 80 | [59] |
Technique | Principle | Advantages | Disadvantages | Reference |
---|---|---|---|---|
Spray Drying | Involves atomizing an emulsion containing the bioactive compound and the wall material into a hot air stream, forming dry microparticles. | Cost-effective, fast, scalable, continuous process, improves stability of bioactive, enhances solubility and dispersibility, customizable particle properties. | High thermal exposure can degrade sensitive compounds, low encapsulation efficiency for some hydrophobic compounds, high energy consumption, powder agglomeration and high hygroscopicity. | [25,208] |
Complex Coacervation | Based on electrostatic interactions between positively and negatively charged polymers, forming a capsule around the bioactive compound. | High encapsulation efficiency, protection against degradation, targeted and controlled release of bioactives, biodegradability and biocompatibility, suitable for hydrophilic and hydrophobic compounds. | Highly dependent on pH and salt concentration, not always suitable for organic solvents, requires fine-tuning of polymer ratios, pH, temperature, and mixing conditions; instability during storage, potential allergenicity of some biopolymers (gelatin). | [209,210,211] |
Liposomes | Vesicles composed of lipid bilayers that can encapsulate both hydrophobic and hydrophilic compounds, protecting them from degradation and enhancing their absorption. | Protection from enzymatic degradation, light, and pH variations, extending shelf life; ability to encapsulate both hydrophilic and hydrophobic compounds; generally non-toxic, biodegradable, and well-tolerated in biological systems; targeted and controlled release. | High production costs, limited stability, short circulation time in the body, risk of drug leakage when stored for long periods or exposed to temperature fluctuations, potential for oxidation and hydrolysis. | [212] |
Nanoemulsions | Colloidal systems composed of nanometric oil-in-water or water-in-oil droplets stabilized by surfactants. They enhance the solubility of lipophilic compounds. | Improved bioavailability of hydrophobic bioactives, protection of bioactives from degradation by oxidation, light, and heat, increasing the shelf-life; controlled release, ormulated with plant-based oils and surfactants, considered biocompatible and non-toxic. | Stability issues, such as phase separation or coalescence; expensive production; some surfactants and oils used in the formulations could have toxicity potential; challenges in scaling up in terms of cost and stability; a lack of clear regulatory guidelines in some countries. | [142,213,214] |
Cyclodextrin Complexation | Cyclodextrins form inclusion complexes with bioactive compounds, improving their solubility, stability, and bioavailability. | Improved solubility and bioavailability, protects bioactive from degradation due to environmental factors such as light, oxygen, and temperature; controlled release, low toxicity and biocompatibility. | Limited fncapsulation efficiency for compounds that do not fit well into the hydrophobic cavity of cyclodextrins; possible formation of unstable complexes; can be expensive to produce, limiting the large-scale commercialization; limited efficacy for rapid release; often require modification to improve the solubility or stability. | [215,216] |
Extrusion | The bioactive compound is dispersed in a molten polymer matrix, followed by cooling to form microparticles or filaments. | Highly scalable, controlled release, protection from degradation due to light, oxygen, and moisture; wide variety of encapsulating materials (starch, lipids, proteins, and polysaccharides); homogeneity and uniformity. | High energy consumption, thermal degradation of sensitive compounds, limited control over release kinetics depending on the nature of the matrix, extrusion conditions, and the bioactive’s characteristics;possible structural changes, complicated process for highly hydrophilic compounds. | [59,217] |
Interfacial Polymerization | Production of polymeric nanoparticles, where monomers react at the interface of an emulsion, forming capsules around the bioactive compound. | Controlled release, high encapsulation efficiency, protection of sensitive bioactives, versatile (can encapsulate hydrophilic, lipophilic, and amphiphilic bioactives), ability to form nanoparticles and microcapsules. | Uniformity of polymer can be challenging, potential for toxicity of residual solvents, limited scalability (effective at a laboratory scale), raw materials and equipment can be expensive, uneven polymerization. | [218,219] |
Electrospinning | Uses an electric field to produce nanometric fibers containing bioactives, enabling controlled release and protection against degradation. | High surface area-to-volume ratio, manipulation of fiber diameter, morphology, and porosity, encapsulation of hydrophilic and hydrophobic bioactives; controlled release, minimal use of toxic solvents. | Requires precise control of multiple variables (polymer concentration, voltage, collector distance, and solvent evaporation), solvent residues in the final product, low yield for large-Scale production, instability of nanofibers over time; limited control over drug loading and release profile. | [46,220] |
Hydrogels | Three-dimensional networks of hydrophilic polymers that can absorb large amounts of water, making them useful for controlled release of bioactive compounds. | Biocompatibility and biodegradability; high water retention capacity, controlled release and targeted delivery, non-invasive delivery of bioactive (formulated into injectable or topical forms), encapsulate wide range of bioactives (hydrophilic, hydrophobic, proteins, enzymes, or peptides). | Poor mechanical strength and be prone to deformation under stress; sensitive to environmental factors such as temperature and humidity; difficulty of scaling up production; release profile unpredictable; crosslinking agents used may be toxic or require further purification. | [221] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, T.S.d.C.; Gusmão, J.V.F.; Rigolon, T.C.B.; Wischral, D.; Campelo, P.H.; Martins, E.; Stringheta, P.C. Bioactive Compounds and the Performance of Proteins as Wall Materials for Their Encapsulation. Micro 2025, 5, 36. https://doi.org/10.3390/micro5030036
Oliveira TSdC, Gusmão JVF, Rigolon TCB, Wischral D, Campelo PH, Martins E, Stringheta PC. Bioactive Compounds and the Performance of Proteins as Wall Materials for Their Encapsulation. Micro. 2025; 5(3):36. https://doi.org/10.3390/micro5030036
Chicago/Turabian StyleOliveira, Therys Senna de Castro, Jhonathan Valente Ferreira Gusmão, Thaís Caroline Buttow Rigolon, Daiana Wischral, Pedro Henrique Campelo, Evandro Martins, and Paulo Cesar Stringheta. 2025. "Bioactive Compounds and the Performance of Proteins as Wall Materials for Their Encapsulation" Micro 5, no. 3: 36. https://doi.org/10.3390/micro5030036
APA StyleOliveira, T. S. d. C., Gusmão, J. V. F., Rigolon, T. C. B., Wischral, D., Campelo, P. H., Martins, E., & Stringheta, P. C. (2025). Bioactive Compounds and the Performance of Proteins as Wall Materials for Their Encapsulation. Micro, 5(3), 36. https://doi.org/10.3390/micro5030036