Functional Droplet-Based Microfluidic Systems

A special issue of Micro (ISSN 2673-8023). This special issue belongs to the section "Microscale Biology and Medicines".

Deadline for manuscript submissions: closed (28 February 2025) | Viewed by 666

Special Issue Editor


E-Mail Website
Guest Editor
Division of Chemical Industry, Yeungnam University College, Daegu 42415, Republic of Korea
Interests: lab on a chip; biosensor; microfluidic device; microwell array
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Droplet-based microfluidic devices have been widely used in a variety of physical, chemical, and biological applications due to their unique advantages. The main advantages of droplet-based microfluidic devices are that they are easy to size and can produce uniform-sized droplets in large quantities. In addition, because each generated droplet allows for individual control, it can provide a novel compact reactor system for chemical mixing, synthesis, and analysis. Recent studies on the droplet-based microfluidic devices have been beneficial in biological applications such as cell research and droplet-based digital PCR because droplets are formed in the range of femtoliters to nanoliters, and the reaction time is shortened. Accordingly, this Special Issue seeks to showcase research papers and review articles that focusing on convergence disciplines related to droplet-microfluidic device applications such as precision manufacturing, droplet control, functional materials, and cell biology. We look forward to receiving your submissions.

You may choose our Joint Special Issue in Micromachines.

Dr. Jong Min Lee
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micro is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • droplet microfluidics
  • droplet generation
  • micro/nano droplets

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 3077 KiB  
Article
Cost-Effective and Simple Prototyping PMMA Microfluidic Chip and Open-Source Peristaltic Pump for Small Volume Applications
by Oguzhan Panatli, Cansu Gurcan, Fikret Ari, Mehmet Altay Unal, Mehmet Yuksekkaya and Açelya Yilmazer
Micro 2025, 5(2), 25; https://doi.org/10.3390/micro5020025 - 27 May 2025
Viewed by 294
Abstract
Microfluidic devices are tiny tools used to manipulate small volumes of liquids in various fields. However, these devices frequently require additional equipment to control fluid flow, increasing the cost and complexity of the systems and limiting their potential for widespread use in low-resource [...] Read more.
Microfluidic devices are tiny tools used to manipulate small volumes of liquids in various fields. However, these devices frequently require additional equipment to control fluid flow, increasing the cost and complexity of the systems and limiting their potential for widespread use in low-resource biomedical applications. Here, we present a cost-effective and simple fabrication method for PMMA microfluidic chips using laser cutting technology, along with a low-cost and open-source peristaltic pump constructed with common hardware. The pump, programmed with an Arduino microcontroller, offers precise flow control in microfluidic devices for small volume applications. The developed application for controlling the peristaltic pump is user-friendly and open source. The microfluidic chip and pump system was tested using Jurkat cells. The cells were cultured for 24 h in conventional cell culture and a microfluidic chip. The LDH assay indicated higher cell viability in the microfluidic chip (111.99 ± 7.79%) compared to conventional culture (100 ± 15.80%). Apoptosis assay indicated 76.1% live cells, 18.7% early apoptosis in microfluidic culture and 99.2% live cells, with 0.5% early apoptosis in conventional culture. The findings from the LDH and apoptosis analyses demonstrated an increase in both cell proliferation and cellular stress in the microfluidic system. Despite the increased stress, the majority of cells maintained membrane integrity and continued to proliferate. In conclusion, the chip fabrication method and the pump offer advantages, including design flexibility and precise flow rate control. This study promises solutions that can be tailored to specific needs for biomedical applications. Full article
(This article belongs to the Special Issue Functional Droplet-Based Microfluidic Systems)
Show Figures

Figure 1

Back to TopTop