Wide Bandgap Semiconductor Electronics and Devices
Topic Information
Dear Colleagues,
Wide bandgap (WBG) semiconductors, such as silicon carbide (SiC), gallium nitride (GaN), and emerging materials like gallium oxide (Ga2O3) and diamond, have revolutionized the fields of electronics and optoelectronics due to their superior electrical, thermal, and optical properties. Their high breakdown voltage, low on-resistance, and excellent thermal conductivity make them ideal for power electronics, enabling energy-efficient devices with enhanced performance and miniaturization. In optoelectronics, WBG materials support high-power light-emitting diodes (LEDs), laser diodes, and ultraviolet photodetectors, expanding applications in lighting, communication, and sensing. Additionally, the ability of WBG semiconductors to operate at higher temperatures and frequencies than conventional silicon-based materials makes them critical for advanced RF and microwave systems. Recent advancements in material synthesis, defect engineering, and device fabrication techniques have significantly improved the performance and reliability of WBG-based devices. However, challenges remain in cost-effective large-scale production, material quality, long-term reliability, and interface engineering, which hinder widespread adoption. This issue explores the latest developments in WBG semiconductor materials, device architectures, and emerging applications, highlighting the potential breakthroughs in high-power electronics, high-frequency communication, and next-generation optoelectronic systems. Addressing current limitations will pave the way for the next generation of energy-efficient and high-performance electronic and optoelectronic devices.
Prof. Dr. Joseph Bernstein
Dr. Asaf Albo
Topic Editors
Keywords
- SiC
- GaN
- Ga2O3
- diamond
- wide bandgap (WBG)
- thermal properties
- reliability
- high power
- microwave
- interface engineering
- microwave
- optoelectronics