marinedrugs-logo

Journal Browser

Journal Browser

Bioactive Compounds from Extreme Marine Ecosystems

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Structural Studies on Marine Natural Products".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 1225

Special Issue Editor


E-Mail Website
Guest Editor
Faculty of Life Sciences, Kyung Hee University, Seoul, Republic of Korea
Interests: natural products; Antarctic living organisms; structural elucidation; molecular networking; molecular docking

Special Issue Information

Dear Colleagues,

Extreme marine ecosystems, such as deep-sea vents, polar regions, and hypersaline waters, host a remarkable diversity of life forms that have adapted to survive under harsh conditions. These organisms have evolved to produce novel bioactive compounds with potential applications in pharmaceuticals, biotechnology, and environmental science. The exploration and study of these compounds not only enhance our understanding of marine biodiversity, but also open new avenues for innovation and sustainable development.

This Special Issue aims to highlight the latest discoveries and advancements in the identification, characterization, and application of bioactive compounds from these extreme environments. We invite articles that provide significant insights into the chemical diversity and biological activities of marine-derived compounds. Your expertise in this field would be a valuable addition to our Special Issue and we would be honored to include your work.

Dr. Seulah Lee
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • extreme marine ecosystems
  • novel bioactive compounds
  • marine chemical diversity
  • structural elucidation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 726 KiB  
Article
Discovery of New Everninomicin Analogs from a Marine-Derived Micromonospora sp. by Metabolomics and Genomics Approaches
by Tae Hyun Lee, Nathan J. Brittin, Imraan Alas, Christopher D. Roberts, Shaurya Chanana, Doug R. Braun, Spencer S. Ericksen, Song Guo, Scott R. Rajski and Tim S. Bugni
Mar. Drugs 2025, 23(8), 316; https://doi.org/10.3390/md23080316 - 31 Jul 2025
Viewed by 382
Abstract
During the course of genome mining initiatives, we identified a marine-derived Micromonospora, assigned here as strain WMMD956; the genome of WMMD956 appeared to contain a number of features associated with everninomicins, well-known antimicrobial orthosomycins. In addition, LCMS-based hierarchical clustering analysis and principal [...] Read more.
During the course of genome mining initiatives, we identified a marine-derived Micromonospora, assigned here as strain WMMD956; the genome of WMMD956 appeared to contain a number of features associated with everninomicins, well-known antimicrobial orthosomycins. In addition, LCMS-based hierarchical clustering analysis and principal component analysis (hcapca) revealed that WMMD956 displayed an extreme degree of metabolomic and genomic novelty. Dereplication of high-resolution tandem mass spectrometry (HRMS/MS) and Global Natural Product Social molecular networking platform (GNPS) analysis of WMMD956 resulted in the identification of several analogs of the previously known everninomicin. Chemical structures were unambiguously confirmed by HR-ESI-MS, 1D and 2D NMR experiments, and the use of MS/MS data. The isolated metabolites, 13, were evaluated for their antibacterial activity against methicillin-resistant Staphalococcus aureus (MRSA). Full article
(This article belongs to the Special Issue Bioactive Compounds from Extreme Marine Ecosystems)
Show Figures

Graphical abstract

16 pages, 1113 KiB  
Article
Isolation and Characterization of Secondary Metabolites from Hydractinia-Associated Fungus, Penicillium brevicompactum MSW10-1, and Their Inhibitory Effects on Hepatic Lipogenesis
by Hyeon-Jeong Hwang, Hyeokjin Lim, Jae Sik Yu, Eun Seo Jang, Youngsang Nam, Yeo Jin Lee, Eun La Kim, Seonghwan Hwang and Seoung Rak Lee
Mar. Drugs 2025, 23(7), 275; https://doi.org/10.3390/md23070275 - 30 Jun 2025
Viewed by 658
Abstract
Marine organism-associated microbes are an important source of structurally diverse and biologically active secondary metabolites exhibiting antimicrobial, anticancer, and anti-inflammatory activities. In this study, we investigated Penicillium brevicompactum MSW10-1, isolated from Hydractinia echinata, a marine invertebrate adapted to extreme intertidal and subtidal [...] Read more.
Marine organism-associated microbes are an important source of structurally diverse and biologically active secondary metabolites exhibiting antimicrobial, anticancer, and anti-inflammatory activities. In this study, we investigated Penicillium brevicompactum MSW10-1, isolated from Hydractinia echinata, a marine invertebrate adapted to extreme intertidal and subtidal environments with variable temperature, salinity, and oxygen conditions. Through a combination of LC/MS-guided chemical analysis and chromatographic purification, eight secondary metabolites were isolated, including brevicolactones A (1) and B (2). The absolute chemical structures of 1 and 2 were determined based on NMR spectroscopic experiments, HR-ESIMS data, and quantum chemical ECD calculations. The isolated compounds (18) were evaluated for their ability to inhibit hepatic lipogenesis, a key process in lipid metabolism that is dysregulated in metabolic-dysfunction-associated steatotic liver disease. Furthermore, the inhibitory effects of the isolated compounds on lipid accumulation were further evaluated in primary mouse hepatocytes, using Oil Red O staining. These findings suggested that the isolated compounds may serve as promising candidates for the treatment of metabolic liver diseases associated with lipid dysregulation. Full article
(This article belongs to the Special Issue Bioactive Compounds from Extreme Marine Ecosystems)
Show Figures

Figure 1

Back to TopTop