Advances in Microbial and Plant-Based Biopolymers: Synthesis and Applications in Next-Generation Materials
Abstract
:1. Introduction
2. Bacterial Biopolymers
2.1. Polyhydroxyalkanoates
2.2. Bacterial Nanocellulose
3. Plant-Based Biopolymers
3.1. Cellulose
3.2. Lignin
4. Physicochemical Properties
4.1. PHB
4.2. Lignin
4.3. Cellulose
5. Methods of Synthesis/Extraction/Fabrication
5.1. PHB Extraction
5.2. Cellulose Extraction
5.3. Lignin Extraction
6. Next-Generation Materials and Their Integration with Industry
7. Applications in Next-Generation Materials
8. Challenges, Limitations, and Solutions
9. Conclusions
10. Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ma, Z.; Zhang, Z.; Wang, C.; Cao, J.; Liu, Y.; Yan, H.; Zhou, X.; Feng, X.; Chen, D. Boosting Engineering Strategies for Plastic Hydrocracking Applications: A Machine Learning-Based Multi-Objective Optimization Framework. Green Chem. 2025, 27, 1169–1182. [Google Scholar] [CrossRef]
- Patria, R.D.; Rehman, S.; Yuen, C.-B.; Lee, D.-J.; Vuppaladadiyam, A.K.; Leu, S.-Y. Energy-Environment-Economic (3E) Hub for Sustainable Plastic Management–Upgraded Recycling, Chemical Valorization, and Bioplastics. Appl. Energy 2024, 357, 122543. [Google Scholar] [CrossRef]
- Anitha, K. Emerging Trends in Sustainability: A Conceptual Exploration. In Global Sustainability; World Sustainability Series; Springer: Cham, Switzerland, 2024; pp. 19–35. [Google Scholar]
- Chang, Y.-C.; Reddy, M.V.; Mawatari, Y.; Sarkar, O. Enhanced Polyhydroxyalkanoate Biosynthesis by Cupriavidus sp. CY-1 Utilizing CO2 under Controlled Non-Explosive Conditions. Chemosphere 2025, 373, 144181. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Mondal, P.; Jadhav, S.M.; Moholkar, V.S. Application of Enzymatic Technique for the Synthesis of Biodegradable Polymers from Different Agrobiomasses. In Agricultural Biomass for the Synthesis of Value-Added Materials; CRC Press: Boca Raton, FL, USA, 2024; pp. 273–299. [Google Scholar]
- Chang, Y.-C.; Reddy, M.V.; Suzuki, H.; Terayama, T.; Mawatari, Y.; Seki, C.; Sarkar, O. Characterization of Ralstonia Insidiosa C1 Isolated from Alpine Regions: Capability in Polyhydroxyalkanoates Degradation and Production. J. Hazard. Mater. 2024, 471, 134348. [Google Scholar] [CrossRef]
- Kothawade, S.N.; Pande, V.V.; Suryawanshi, J.; Kumar, A.; Kumar, P.; Kumar, A. Biodegradable and Non-Biodegradable Sustainable Biomaterials. In Advances in Sustainable Biomaterials; CRC Press: Boca Raton, FL, USA, 2024; pp. 92–116. [Google Scholar]
- Bugarčić, M.; Jovanović, A.; Petrović, J.; Mišić, M.; Sokić, M.; Milivojević, M. Advances in Biopolymer Production and Applications: A Comprehensive Review of Key Biomaterials. Metall. Mater. Data 2024, 2, 81–98. [Google Scholar] [CrossRef]
- Tagliaferri, S.; Gaspard, L.; Au, H.; Mattevi, C.; Titirici, M.-M.; Ribadeneyra, M. Nature-Inspired Batteries: From Biomaterials to Biomimetic Design Strategies. Green Chem. 2024, 26, 6944–6958. [Google Scholar] [CrossRef]
- Kalpana, M.R.; Sharma, N.; Kumar, V.; Jayaraj, I.; Vimal, S.; Umesh, M. A Comprehensive Review on Natural Macromolecular Biopolymers for Biomedical Applications: Recent Advancements, Current Challenges, and Future Outlooks. Carbohydr. Polym. Technol. Appl. 2024, 8, 100536. [Google Scholar] [CrossRef]
- Heidari, M.; Al Hasani, S.; Thangavel, S.; Kumar, A. Challenges and Perspectives of Polymeric Nanocomposites for Biomedical Applications. In Nanomanufacturing Techniques in Sustainable Healthcare Applications; CRC Press: Boca Raton, FL, USA, 2024; pp. 317–340. [Google Scholar]
- Cháirez-Ramírez, M.H.; Díaz-Rivas, J.O.; Contreras-Ramírez, J.I.; González-Laredo, R.F.; Gallegos-Infante, J.A. Green Polymer-based Materials as Promising Therapeutical Agents for Non-communicable Diseases. Polym. Int. 2024. [Google Scholar] [CrossRef]
- Ali, G.; Sharma, M.; Salama, E.-S.; Ling, Z.; Li, X. Applications of Chitin and Chitosan as Natural Biopolymer: Potential Sources, Pretreatments, and Degradation Pathways. Biomass Convers. Biorefin. 2024, 14, 4567–4581. [Google Scholar] [CrossRef]
- Lalarukh; Hussain, S.M.; Ali, S.; Zahoor, A.F.; Azmat, H.; Nazish, N.; Alshehri, M.A.; Riaz, D.; Naeem, E.; Mahrukh. Innovation of Advanced Polymers from Seafood Waste: Applications of Chitin and Chitosan. Polym. Adv. Technol. 2024, 35, e6471. [Google Scholar] [CrossRef]
- Chudasama, N.A.; Sequeira, R.A.; Moradiya, K.; Prasad, K. Seaweed Polysaccharide Based Products and Materials: An Assessment on Their Production from a Sustainability Point of View. Molecules 2021, 26, 2608. [Google Scholar] [CrossRef] [PubMed]
- Anjana, K.; Arunkumar, K. Brown Algae Biomass for Fucoxanthin, Fucoidan and Alginate; Update Review on Structure, Biosynthesis, Biological Activities and Extraction Valorisation. Int. J. Biol. Macromol. 2024, 280, 135632. [Google Scholar] [CrossRef] [PubMed]
- Benalaya, I.; Alves, G.; Lopes, J.; Silva, L.R. A Review of Natural Polysaccharides: Sources, Characteristics, Properties, Food, and Pharmaceutical Applications. Int. J. Mol. Sci. 2024, 25, 1322. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, B.; Li, C.; Xu, Y.; Luo, Y.; Liang, D.; Huang, C. Comprehensive Review of Polysaccharide-Based Materials in Edible Packaging: A Sustainable Approach. Foods 2021, 10, 1845. [Google Scholar] [CrossRef]
- Arif, Z.U. The Role of Polysaccharide-Based Biodegradable Soft Polymers in the Healthcare Sector. Adv. Ind. Eng. Polym. Res. 2025, 8, 132–156. [Google Scholar] [CrossRef]
- Kramar, A.; González-Benito, F.J. Cellulose-Based Nanofibers Processing Techniques and Methods Based on Bottom-up Approach—A Review. Polymers 2022, 14, 286. [Google Scholar] [CrossRef]
- Obruca, S.; Sedlacek, P.; Slaninova, E.; Fritz, I.; Daffert, C.; Meixner, K.; Sedrlova, Z.; Koller, M. Novel unexpected functions of PHA granules. Appl. Microbiol. Biotechnol. 2020, 104, 4795–4810. [Google Scholar] [CrossRef]
- Obruca, S.; Sedlacek, P.; Koller, M. The underexplored role of diverse stress factors in microbial biopolymer synthesis. Bioresour. Technol. 2021, 326, 124767. [Google Scholar] [CrossRef]
- Alcantara, J.M.; Distante, F.; Storti, G.; Moscatelli, D.; Morbidelli, M.; Sponchioni, M. Current trends in the production of biodegradable bioplastics: The case of polyhydroxyalkanoates. Biotechnol. Adv. 2020, 42, 107582. [Google Scholar]
- Yao, F.; Yuan, K.; Zhou, W.; Tang, W.; Tang, T.; Yang, X.; Liu, H.; Li, F.; Xu, Q.; Peng, C. Unlocking growth potential in Halomonas bluephagenesis for enhanced PHA production with sulfate ions. J. Ind. Microbiol. Biotechnol. 2024, 51, kuad006. [Google Scholar] [CrossRef]
- Saito, S.; Imai, R.; Miyahara, Y.; Nakagawa, M.; Orita, I.; Tsuge, T.; Fukui, T. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from glucose by Escherichia coli through butyryl-CoA formation driven by CCR-EMD combination. Front. Bioeng. Biotechnol. 2022, 10, 860177. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cui, J.; Bilal, M.; Hu, H.; Wang, W.; Zhang, X. Pseudomonas spp. as microbial cell factories for value-added products: From rational design to industrial applications. Crit. Rev. Biotechnol. 2020, 40, 1232–1249. [Google Scholar] [CrossRef] [PubMed]
- Favaro, L.; Basaglia, M.; Casella, S. Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: A review. Biofuels Bioprod. Biorefin. 2019, 13, 208–227. [Google Scholar] [CrossRef]
- Sindhu, R.; Madhavan, A.; Arun, K.B.; Pugazhendhi, A.; Reshmy, R.; Awasthi, M.K.; Sirohi, R.; Tarafdar, A.; Pandey, A.; Binod, P. Metabolic circuits and gene regulators in polyhydroxyalkanoate producing organisms: Intervention strategies for enhanced production. Bioresour. Technol. 2021, 327, 124791. [Google Scholar] [CrossRef]
- Adeleye, A.T.; Odoh, C.K.; Enudi, O.C.; Banjoko, O.O.; Osiboye, O.O.; Odediran, E.T.; Louis, H. Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process Biochem. 2020, 96, 174–193. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Y.; Xu, P.; Yang, W.; Chen, M.; Dong, W.; Ma, P. Crystallization of microbial polyhydroxyalkanoates: A review. Int. J. Biol. Macromol. 2022, 209, 330–343. [Google Scholar] [CrossRef]
- Song, H.M.; Joo, J.C.; Lim, S.H.; Lim, H.J.; Lee, S.; Park, S.J. Production of polyhydroxyalkanoates containing monomers conferring amorphous and elastomeric properties from renewable resources: Current status and future perspectives. Bioresour. Technol. 2022, 366, 128114. [Google Scholar]
- Mai, J.; Kockler, K.; Parisi, E.; Chan, C.M.; Pratt, S.; Laycock, B. Synthesis and Physical Properties of Polyhydroxyalkanoate (PHA)-Based Block Copolymers: A Review. Int. J. Biol. Macromol. 2024, 263, 130204. [Google Scholar] [CrossRef]
- Kadier, A.; Ilyas, R.A.; Huzaifah, M.R.M.; Harihastuti, N.; Sapuan, S.M.; Harussani, M.M.; Azlin, M.N.M.; Yuliasni, R.; Ibrahim, R.; Atikah, M.S.N. Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives. Polymers 2021, 13, 3365. [Google Scholar] [CrossRef]
- Augimeri, R.V.; Varley, A.J.; Strap, J.L. Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria. Front. Microbiol. 2015, 6, 1282. [Google Scholar] [CrossRef]
- Stanisławska, A.; Staroszczyk, H.; Szkodo, M. The Effect of Dehydration/Rehydration of Bacterial Nanocellulose on Its Tensile Strength and Physicochemical Properties. Carbohydr. Polym. 2020, 236, 116023. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ling, C.; Chen, Y.; Jiang, X.; Chen, G.-Q. Microbial Engineering for Easy Downstream Processing. Biotechnol. Adv. 2019, 37, 107365. [Google Scholar] [CrossRef] [PubMed]
- Kale, İ.; Kırdök, O.; Bilgi, E.; Akyol-Altun, T.D.; Tokuç, A.; Köktürk, G.; Özkaban, F.; Şendemir, A.; Andiç-Çakir, Ö.; Hameş, E.E. Potential of Bacterial Cellulose for Sustainable Cities: A Review and Bibliometric Analysis on Bacterial Cellulose. In A Sustainable Green Future: Perspectives on Energy, Economy, Industry, Cities and Environment; Springer: Berlin/Heidelberg, Germany, 2023; pp. 329–357. [Google Scholar]
- Choi, S.M.; Rao, K.M.; Zo, S.M.; Shin, E.J.; Han, S.S. Bacterial Cellulose and Its Applications. Polymers 2022, 14, 1080. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.J. XIX.—The Chemical Action of Pure Cultivations of Bacterium Aceti. J. Chem. Soc. Trans. 1886, 49, 172–187. [Google Scholar] [CrossRef]
- Rovera, C.; Carullo, D.; Bellesia, T.; Büyüktaş, D.; Ghaani, M.; Caneva, E.; Farris, S. Extraction of High-Quality Grade Cellulose and Cellulose Nanocrystals from Different Lignocellulosic Agri-Food Wastes. Front. Sustain. Food Syst. 2023, 6, 1087867. [Google Scholar] [CrossRef]
- Sarkar, M.; Upadhyay, A.; Pandey, D.; Sarkar, C.; Saha, S. Cellulose-Based Biodegradable Polymers: Synthesis, Properties, and Their Applications. In Biodegradable Polymers and Their Emerging Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 89–114. [Google Scholar]
- Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and Its Derivatives: Towards Biomedical Applications. Cellulose 2021, 28, 1893–1931. [Google Scholar] [CrossRef]
- Potočnik, V.; Gorgieva, S.; Trček, J. From Nature to Lab: Sustainable Bacterial Cellulose Production and Modification with Synthetic Biology. Polymers 2023, 15, 3466. [Google Scholar] [CrossRef]
- De Amorim, J.D.P.; de Souza, K.C.; Duarte, C.R.; da Silva Duarte, I.; de Assis Sales Ribeiro, F.; Silva, G.S.; de Farias, P.M.A.; Stingl, A.; Costa, A.F.S.; Vinhas, G.M. Plant and Bacterial Nanocellulose: Production, Properties and Applications in Medicine, Food, Cosmetics, Electronics and Engineering. A Review. Environ. Chem. Lett. 2020, 18, 851–869. [Google Scholar] [CrossRef]
- Jozala, A.F.; de Lencastre-Novaes, L.C.; Lopes, A.M.; de Carvalho Santos-Ebinuma, V.; Mazzola, P.G.; Pessoa-Jr, A.; Grotto, D.; Gerenutti, M.; Chaud, M.V. Bacterial Nanocellulose Production and Application: A 10-Year Overview. Appl. Microbiol. Biotechnol. 2016, 100, 2063–2072. [Google Scholar] [CrossRef]
- Chandana, A.; Mallick, S.P.; Dikshit, P.K.; Singh, B.N.; Sahi, A.K. Recent Developments in Bacterial Nanocellulose Production and Its Biomedical Applications. J. Polym. Environ. 2022, 30, 4040–4067. [Google Scholar] [CrossRef]
- Ansari, M.M.; Heo, Y.; Do, K.; Ghosh, M.; Son, Y.-O. Nanocellulose Derived from Agricultural Biowaste By-Products–Sustainable Synthesis, Biocompatibility, Biomedical Applications, and Future Perspectives: A Review. Carbohydr. Polym. Technol. Appl. 2024, 8, 100529. [Google Scholar] [CrossRef]
- Ullah, M.W.; Alabbosh, K.F.; Fatima, A.; Islam, S.U.; Manan, S.; Ul-Islam, M.; Yang, G. Advanced Biotechnological Applications of Bacterial Nanocellulose-Based Biopolymer Nanohybrids: A Review. Adv. Ind. Eng. Polym. Res. 2024, 7, 100–121. [Google Scholar] [CrossRef]
- Heise, K.; Kontturi, E.; Allahverdiyeva, Y.; Tammelin, T.; Linder, M.B.; Nonappa; Ikkala, O. Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications. Adv. Mater. 2021, 33, 2004349. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Chen, S.; Chen, Y.; Wang, B.; Pei, Q.; Wang, H. Macrofibers with High Mechanical Performance Based on Aligned Bacterial Cellulose Nanofibers. ACS Appl. Mater. Interfaces 2017, 9, 20330–20339. [Google Scholar] [CrossRef]
- Ullah, M.W.; Manan, S.; Ul-Islam, M.; Revin, V.V.; Thomas, S.; Yang, G. Introduction to Nanocellulose. In Nanocellulose: Synthesis, Structure, Properties and Applications; World Scientific: Singapore, 2021; pp. 1–50. [Google Scholar]
- Pogorelova, N.; Rogachev, E.; Digel, I.; Chernigova, S.; Nardin, D. Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties. Materials 2020, 13, 2849. [Google Scholar] [CrossRef]
- Suryanto, H.; Yanuhar, U.; Mansingh, B.B.; Binoj, J.S. Bacterial Nanocellulose from Agro-Industrial Wastes. In Handbook of Biopolymers; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–39. [Google Scholar]
- Sapuan, S.M.; Norrrahim, M.N.F.; Ilyas, R.A. Industrial Applications of Nanocellulose and Its Nanocomposites; Woodhead Publishing: Cambridge, UK, 2022; ISBN 032389917X. [Google Scholar]
- Girard, V.; Chaussé, J.; Vermette, P. Bacterial Cellulose: A Comprehensive Review. J. Appl. Polym. Sci. 2024, 141, e55163. [Google Scholar] [CrossRef]
- Lunardi, V.B.; Soetaredjo, F.E.; Putro, J.N.; Santoso, S.P.; Yuliana, M.; Sunarso, J.; Ju, Y.-H.; Ismadji, S. Nanocelluloses: Sources, Pretreatment, Isolations, Modification, and Its Application as the Drug Carriers. Polymers 2021, 13, 2052. [Google Scholar] [CrossRef]
- Martínez, E.; Posada, L.; Botero, J.C.; Rios-Arango, J.A.; Zapata-Benabithe, Z.; López, S.; Molina-Ramírez, C.; Osorio, M.A.; Castro, C.I. Nata de Fique: A Cost-Effective Alternative for the Large-Scale Production of Bacterial Nanocellulose. Ind. Crops Prod. 2023, 192, 116015. [Google Scholar] [CrossRef]
- Zhong, C. Industrial-Scale Production and Applications of Bacterial Cellulose. Front. Bioeng. Biotechnol. 2020, 8, 605374. [Google Scholar] [CrossRef]
- Keijsers, E.R.P.; Yılmaz, G.; van Dam, J.E.G. The Cellulose Resource Matrix. Carbohydr. Polym. 2013, 93, 9–21. [Google Scholar] [CrossRef]
- Lavanya, D.; Kulkarni, P.K.; Dixit, M.; Raavi, P.K.; Krishna, L.N.V. Sources of Cellulose and Their Applications—A Review. Int. J. Drug Formul. Res. 2011, 2, 19–38. [Google Scholar]
- Sundarraj, A.A.; Ranganathan, T.V. A Review on Cellulose and Its Utilization from Agro-Industrial Waste. Drug Invent. Today 2018, 10, 89–94. [Google Scholar]
- Felgueiras, C.; Azoia, N.G.; Gonçalves, C.; Gama, M.; Dourado, F. Trends on the Cellulose-Based Textiles: Raw Materials and Technologies. Front. Bioeng. Biotechnol. 2021, 9, 608826. [Google Scholar] [CrossRef] [PubMed]
- French, A.D.; Pérez, S.; Bulone, V.; Rosenau, T.; Gray, D. Cellulose. In Encyclopedia of Polymer Science and Technology, 4th ed.; John Wiley: Hoboken, NJ, USA, 2002; Volume 1838, pp. 1–69. [Google Scholar]
- Delmer, D.; Dixon, R.A.; Keegstra, K.; Mohnen, D. The Plant Cell Wall—Dynamic, Strong, and Adaptable—Is a Natural Shapeshifter. Plant Cell 2024, 36, 1257–1311. [Google Scholar] [CrossRef]
- Doblin, M.S.; Ma, Y.; Novaković, L.; Bacic, A.; Johnson, K.L. Plant Cell Walls–Past, Present, and Future. In Plant Cell Walls; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–28. [Google Scholar]
- Beck, C.B. An Introduction to Plant Structure and Development: Plant Anatomy for the Twenty-First Century; Cambridge University Press: Cambridge, UK, 2010; ISBN 1139486365. [Google Scholar]
- Singh, G.; Gauba, P.; Mathur, G. Bacterial Cellulose-Based Composites: Recent Trends in Production Methods and Applications. Cellul. Chem. Technol. 2024, 58, 799–818. [Google Scholar] [CrossRef]
- Naomi, R.; Bt Hj Idrus, R.; Fauzi, M.B. Plant-vs. Bacterial-Derived Cellulose for Wound Healing: A Review. Int. J. Environ. Res. Public Health 2020, 17, 6803. [Google Scholar] [CrossRef]
- Etale, A.; Onyianta, A.J.; Turner, S.R.; Eichhorn, S.J. Cellulose: A Review of Water Interactions, Applications in Composites, and Water Treatment. Chem. Rev. 2023, 123, 2016–2048. [Google Scholar] [CrossRef]
- Nishiyama, Y. Molecular Interactions in Nanocellulose Assembly. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170047. [Google Scholar] [CrossRef]
- Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S.-F.; Beckham, G.T.; Sels, B.F. Chemicals from Lignin: An Interplay of Lignocellulose Fractionation, Depolymerisation, and Upgrading. Chem. Soc. Rev. 2018, 47, 852–908. [Google Scholar] [CrossRef]
- Galletti, A.M.R.; Antonetti, C. Biomass Pretreatment: Separation of Cellulose, Hemicellulose, and Lignin-Existing Technologies and Perspectives. In Biorefinery: From Biomass to Chemicals and Fuels; De Gruyter: Berlin, Germany, 2012; pp. 101–121. [Google Scholar]
- Smit, A.T.; van Zomeren, A.; Dussan, K.; Riddell, L.A.; Huijgen, W.J.J.; Dijkstra, J.W.; Bruijnincx, P.C.A. Biomass Pre-Extraction as a Versatile Strategy to Improve Biorefinery Feedstock Flexibility, Sugar Yields, and Lignin Purity. ACS Sustain. Chem. Eng. 2022, 10, 6012–6022. [Google Scholar] [CrossRef]
- Haile, A.; Gelebo, G.G.; Tesfaye, T.; Mengie, W.; Mebrate, M.A.; Abuhay, A.; Limeneh, D.Y. Pulp and Paper Mill Wastes: Utilizations and Prospects for High Value-Added Biomaterials. Bioresour. Bioprocess 2021, 8, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.; Adhikari, S.; Cross, P.; Jahromi, H. Progress in the Solvent Depolymerization of Lignin. Renew. Sustain. Energy Rev. 2020, 133, 110359. [Google Scholar] [CrossRef]
- Sun, J.X.; Sun, X.F.; Sun, R.C.; Su, Y.Q. Fractional Extraction and Structural Characterization of Sugarcane Bagasse Hemicelluloses. Carbohydr. Polym. 2004, 56, 195–204. [Google Scholar] [CrossRef]
- Moohan, J.; Stewart, S.A.; Espinosa, E.; Rosal, A.; Rodríguez, A.; Larrañeta, E.; Donnelly, R.F.; Domínguez-Robles, J. Cellulose Nanofibers and Other Biopolymers for Biomedical Applications. A Review. Appl. Sci. 2019, 10, 65. [Google Scholar] [CrossRef]
- Thomas, B.; Raj, M.C.; Joy, J.; Moores, A.; Drisko, G.L.; Sanchez, C. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem. Rev. 2018, 118, 11575–11625. [Google Scholar] [CrossRef]
- Kamarudin, S.H.; Mohd Basri, M.S.; Rayung, M.; Abu, F.; Ahmad, S.; Norizan, M.N.; Osman, S.; Sarifuddin, N.; Desa, M.S.Z.M.; Abdullah, U.H. A Review on Natural Fiber Reinforced Polymer Composites (NFRPC) for Sustainable Industrial Applications. Polymers 2022, 14, 3698. [Google Scholar] [CrossRef]
- Sundarraj, A.A.; Ranganathan, T.V. Comprehensive Review on Cellulose and Microcrystalline Cellulose from Agro-Industrial Wastes. Drug Invent. Today 2018, 10, 2783–2788. [Google Scholar]
- Gardner, K.H.; Blackwell, J. The Structure of Native Cellulose. Biopolym. Orig. Res. Biomol. 1974, 13, 1975–2001. [Google Scholar] [CrossRef]
- Hallac, B.B.; Ragauskas, A.J. Analyzing Cellulose Degree of Polymerization and Its Relevancy to Cellulosic Ethanol. Biofuels Bioprod. Biorefining 2011, 5, 215–225. [Google Scholar] [CrossRef]
- Doblin, M.S.; Kurek, I.; Jacob-Wilk, D.; Delmer, D.P. Cellulose Biosynthesis in Plants: From Genes to Rosettes. Plant Cell Physiol. 2002, 43, 1407–1420. [Google Scholar] [CrossRef]
- Brown, R.M.; Saxena, I.M.; Kudlicka, K. Cellulose Biosynthesis in Higher Plants. Trends Plant Sci. 1996, 1, 149–156. [Google Scholar]
- Zhou, J.; Wang, H.; Du, C.; Zhang, D.; Lin, H.; Chen, Y.; Xiong, J. Cellulose for Sustainable Triboelectric Nanogenerators. Adv. Energy Sustain. Res. 2022, 3, 2100161. [Google Scholar] [CrossRef]
- Bergenstråhle, M.; Wohlert, J.; Himmel, M.E.; Brady, J.W. Simulation Studies of the Insolubility of Cellulose. Carbohydr. Res. 2010, 345, 2060–2066. [Google Scholar] [CrossRef] [PubMed]
- Berglund, J.; Mikkelsen, D.; Flanagan, B.M.; Dhital, S.; Gaunitz, S.; Henriksson, G.; Lindström, M.E.; Yakubov, G.E.; Gidley, M.J.; Vilaplana, F. Wood Hemicelluloses Exert Distinct Biomechanical Contributions to Cellulose Fibrillar Networks. Nat. Commun. 2020, 11, 4692. [Google Scholar] [CrossRef]
- Sarkar, P.; Bosneaga, E.; Auer, M. Plant Cell Walls throughout Evolution: Towards a Molecular Understanding of Their Design Principles. J. Exp. Bot. 2009, 60, 3615–3635. [Google Scholar] [CrossRef]
- Chen, H.; Chen, H. Chemical Composition and Structure of Natural Lignocellulose. Theory and practice. In Biotechnology of Lignocellulos; Springer: Dordrecht, The Netherlands, 2014; pp. 25–71. [Google Scholar]
- Kim, H.; Dutta, S.D.; Randhawa, A.; Patil, T.V.; Ganguly, K.; Acharya, R.; Lee, J.; Park, H.; Lim, K.-T. Recent Advances and Biomedical Application of 3D Printed Nanocellulose-Based Adhesive Hydrogels: A Review. Int. J. Biol. Macromol. 2024, 264, 130732. [Google Scholar] [CrossRef]
- Quirós, J.; Boltes, K.; Rosal, R. Bioactive Applications for Electrospun Fibers. Polym. Rev. 2016, 56, 631–667. [Google Scholar] [CrossRef]
- Fraser, S.A.; van Zyl, W.E. In Situ Polymerization and Electrical Conductivity of Polypyrrole/Cellulose Nanocomposites Using Schweizer’s Reagent. RSC Adv. 2022, 12, 22031–22043. [Google Scholar] [CrossRef]
- Ee, L.Y.; Li, S.F.Y. Recent Advances in 3D Printing of Nanocellulose: Structure, Preparation, and Application Prospects. Nanoscale Adv. 2021, 3, 1167–1208. [Google Scholar] [CrossRef]
- Dufresne, A. Nanocellulose Processing Properties and Potential Applications. Curr. For. Rep. 2019, 5, 76–89. [Google Scholar] [CrossRef]
- Dhali, K.; Ghasemlou, M.; Daver, F.; Cass, P.; Adhikari, B. A Review of Nanocellulose as a New Material towards Environmental Sustainability. Sci. Total Environ. 2021, 775, 145871. [Google Scholar] [CrossRef]
- Rajinipriya, M.; Nagalakshmaiah, M.; Robert, M.; Elkoun, S. Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review. ACS Sustain. Chem. Eng. 2018, 6, 2807–2828. [Google Scholar] [CrossRef]
- Selianitis, D.; Efthymiou, M.-N.; Tsouko, E.; Papagiannopoulos, A.; Koutinas, A.; Pispas, S. Nanocellulose Production from Different Sources and Their Self-Assembly in Composite Materials. In Handbook of Nanocelluloses: Classification, Properties, Fabrication, and Emerging Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–32. [Google Scholar]
- Zanchetta, E.; Damergi, E.; Patel, B.; Borgmeyer, T.; Pick, H.; Pulgarin, A.; Ludwig, C. Algal Cellulose, Production and Potential Use in Plastics: Challenges and Opportunities. Algal Res. 2021, 56, 102288. [Google Scholar] [CrossRef]
- Ratna, A.S.; Ghosh, A.; Mukhopadhyay, S. Advances and Prospects of Corn Husk as a Sustainable Material in Composites and Other Technical Applications. J. Clean. Prod. 2022, 371, 133563. [Google Scholar] [CrossRef]
- Rajanna, M.; Shivashankar, L.M.; Shivamurthy, O.H.; Ramachandrappa, S.U.; Betageri, V.S.; Shivamallu, C.; Hallur Lakshmana Shetty, R.; Kumar, S.; Amachawadi, R.G.; Kollur, S.P. A Facile Synthesis of Cellulose Nanofibers from Corn Cob and Rice Straw by Acid Hydrolysis Method. Polymers 2022, 14, 4383. [Google Scholar] [CrossRef] [PubMed]
- Nargotra, P.; Sharma, V.; Tsai, M.-L.; Hsieh, S.-L.; Dong, C.-D.; Wang, H.-M.D.; Kuo, C.-H. Recent Advancements in the Valorization of Agro-Industrial Food Waste for the Production of Nanocellulose. Appl. Sci. 2023, 13, 6159. [Google Scholar] [CrossRef]
- Padzil, F.N.M.; Lee, S.H.; Ainun, Z.M.A.; Lee, C.H.; Abdullah, L.C. Potential of Oil Palm Empty Fruit Bunch Resources in Nanocellulose Hydrogel Production for Versatile Applications: A Review. Materials 2020, 13, 1245. [Google Scholar] [CrossRef]
- Trache, D.; Hussin, M.H.; Haafiz, M.K.M.; Thakur, V.K. Recent Progress in Cellulose Nanocrystals: Sources and Production. Nanoscale 2017, 9, 1763–1786. [Google Scholar] [CrossRef]
- Elanthikkal, S.; Francis, T.; Sangeetha, C.; Unnikrishnan, G. Cellulose Whisker-Based Green Polymer Composites. In Handbook of Composites from Renewable Materials; Thakur, V.K., Thakur, M.K., Kessler, M.R., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 461–494. [Google Scholar]
- Mounika, M.; Ravindra, K. Characterization of Nanocomposites Reinforced with Cellulose Whiskers: A Review. Mater. Today Proc. 2015, 2, 3610–3618. [Google Scholar] [CrossRef]
- Foster, E.J.; Moon, R.J.; Agarwal, U.P.; Bortner, M.J.; Bras, J.; Camarero-Espinosa, S.; Chan, K.J.; Clift, M.J.D.; Cranston, E.D.; Eichhorn, S.J. Current Characterization Methods for Cellulose Nanomaterials. Chem. Soc. Rev. 2018, 47, 2609–2679. [Google Scholar] [CrossRef]
- Nagarajan, K.J.; Ramanujam, N.R.; Sanjay, M.R.; Siengchin, S.; Surya Rajan, B.; Sathick Basha, K.; Madhu, P.; Raghav, G.R. A Comprehensive Review on Cellulose Nanocrystals and Cellulose Nanofibers: Pretreatment, Preparation, and Characterization. Polym. Compos. 2021, 42, 1588–1630. [Google Scholar] [CrossRef]
- Zinge, C.; Kandasubramanian, B. Nanocellulose Based Biodegradable Polymers. Eur. Polym. J. 2020, 133, 109758. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Z.-L.; Song, F.; Wang, X.-L.; Wang, Y.-Z. Rapid Synthesis of Polymer-Grafted Cellulose Nanofiber Nanocomposite via Surface-Initiated Cu (0)-Mediated Reversible Deactivation Radical Polymerization. Macromolecules 2021, 54, 7409–7420. [Google Scholar] [CrossRef]
- Cruz, M.A.; Flor-Unda, O.; Avila, A.; Garcia, M.D.; Cerda-Mejía, L. Advances in Bacterial Cellulose Production: A Scoping Review. Coatings 2024, 14, 1401. [Google Scholar] [CrossRef]
- Ye, Y.; Yu, L.; Lizundia, E.; Zhu, Y.; Chen, C.; Jiang, F. Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chem. Rev. 2023, 123, 9204–9264. [Google Scholar] [CrossRef]
- Wang, D.-C.; Lei, S.-N.; Zhong, S.; Xiao, X.; Guo, Q.-H. Cellulose-Based Conductive Materials for Energy and Sensing Applications. Polymers 2023, 15, 4159. [Google Scholar] [CrossRef]
- Zhao, D.; Zhu, Y.; Cheng, W.; Chen, W.; Wu, Y.; Yu, H. Cellulose-based Flexible Functional Materials for Emerging Intelligent Electronics. Adv. Mater. 2021, 33, 2000619. [Google Scholar] [CrossRef]
- Poonguzhali, R.; Basha, S.K.; Kumari, V.S. Synthesis and characterization of chitosan-PVP-nanocellulose composites for in-vitro wound dressing application. Int. J. Biol. Macromol. 2017, 105, 111–120. [Google Scholar] [CrossRef]
- Fu, Q.; Cui, C.; Meng, L.; Hao, S.; Dai, R.; Yang, J. Emerging Cellulose-Derived Materials: A Promising Platform for the Design of Flexible Wearable Sensors toward Health and Environment Monitoring. Mater. Chem. Front. 2021, 5, 2051–2091. [Google Scholar] [CrossRef]
- Du, X.; Zhang, K. Recent Progress in Fibrous High-Entropy Energy Harvesting Devices for Wearable Applications. Nano Energy 2022, 101, 107600. [Google Scholar] [CrossRef]
- Vasile, C.; Baican, M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers 2023, 15, 3177. [Google Scholar] [CrossRef]
- An, M.; Wang, X.; Chang, D.; Wang, S.; Hong, D.; Fan, H.; Wang, K. Application of Compound Material Alleviates Saline and Alkaline Stress in Cotton Leaves through Regulation of the Transcriptome. BMC Plant Biol. 2020, 20, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.; Sipponen, M.H. Lignin-Based Smart Materials: A Roadmap to Processing and Synthesis for Current and Future Applications. Mater. Horiz. 2020, 7, 2237–2257. [Google Scholar] [CrossRef]
- Mariana, M.; Alfatah, T.; H.P.S., A.K.; Yahya, E.B.; Olaiya, N.G.; Nuryawan, A.; Mistar, E.M.; Abdullah, C.K.; Abdulmadjid, S.N.; Ismail, H. A Current Advancement on the Role of Lignin as Sustainable Reinforcement Material in Biopolymeric Blends. J. Mater. Res. Technol. 2021, 15, 2287–2316. [Google Scholar] [CrossRef]
- Yu, X.; Yang, B.; Zhu, W.; Deng, T.; Pu, Y.; Ragauskas, A.; Wang, H. Towards Functionalized Lignin and Its Derivatives for High-Value Material Applications. Ind. Crops Prod. 2023, 200, 116824. [Google Scholar] [CrossRef]
- Bertella, S.; Luterbacher, J.S. Lignin Functionalization for the Production of Novel Materials. Trends Chem. 2020, 2, 440–453. [Google Scholar] [CrossRef]
- Chauhan, P.S. Lignin Nanoparticles: Eco-Friendly and Versatile Tool for New Era. Bioresour. Technol. Rep. 2020, 9, 100374. [Google Scholar] [CrossRef]
- Li, W.; Sun, N.; Stoner, B.; Jiang, X.; Lu, X.; Rogers, R.D. Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem. 2011, 13, 2038–2047. [Google Scholar] [CrossRef]
- Nimz, H. Beech lignin proposal of a constitutional scheme. Angew. Chem. Int. Ed. Engl. 1974, 13, 313–321. [Google Scholar] [CrossRef]
- Wyman, C.E. Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. Biotechnol. Prog. 2003, 19, 254–262. [Google Scholar] [CrossRef]
- Wang, T.; Li, H.; Diao, X.; Lu, X.; Ma, D.; Ji, N. Lignin to Dispersants, Adsorbents, Flocculants and Adhesives: A Critical Review on Industrial Applications of Lignin. Ind. Crops Prod. 2023, 199, 116715. [Google Scholar] [CrossRef]
- Briassoulis, D.; Tserotas, P.; Athanasoulia, I.-G. Alternative Optimization Routes for Improving the Performance of Poly (3-Hydroxybutyrate)(PHB) Based Plastics. J. Clean. Prod. 2021, 318, 128555. [Google Scholar] [CrossRef]
- Etxabide, A.; Kilmartin, P.A.; Guerrero, P.; de la Caba, K.; Hooks, D.O.; West, M.; Singh, T. Polyhydroxybutyrate (PHB) Produced from Red Grape Pomace: Effect of Purification Processes on Structural, Thermal and Antioxidant Properties. Int. J. Biol. Macromol. 2022, 217, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Keskin, G.; Kızıl, G.; Bechelany, M.; Pochat-Bohatier, C.; Öner, M. Potential of Polyhydroxyalkanoate (PHA) Polymers Family as Substitutes of Petroleum Based Polymers for Packaging Applications and Solutions Brought by Their Composites to Form Barrier Materials. Pure Appl. Chem. 2017, 89, 1841–1848. [Google Scholar] [CrossRef]
- Panda, P.K.; Dash, P. Preparation, Characterization, and Evaluation of Antibacterial Properties of Poly(3-Hydroxybutarate-Co-3-Hydroxyvalerate) (PHBV)-Based Films and Coatings. In Biopolymer-Based Films and Coatings; CRC Press: Boca Raton, FL, USA, 2023; pp. 291–308. [Google Scholar]
- Yeo, J.C.C.; Muiruri, J.K.; Thitsartarn, W.; Li, Z.; He, C. Recent Advances in the Development of Biodegradable PHB-Based Toughening Materials: Approaches, Advantages and Applications. Mater. Sci. Eng. C 2018, 92, 1092–1116. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab, M.A.; Flynn, A.; Chiou, B.-S.; Imam, S.; Orts, W.; Chiellini, E. Thermal, Mechanical and Morphological Characterization of Plasticized PLA–PHB Blends. Polym. Degrad. Stab. 2012, 97, 1822–1828. [Google Scholar] [CrossRef]
- Alves, M.I.; Macagnan, K.L.; Rodrigues, A.A.; de Assis, D.A.; Torres, M.M.; de Oliveira, P.D.; Furlan, L.; Vendruscolo, C.T.; Moreira, A.d.S. Poly (3-Hydroxybutyrate)-P (3HB): Review of Production Process Technology. Ind. Biotechnol. 2017, 13, 192–208. [Google Scholar] [CrossRef]
- Djouonkep, L.D.W.; Tchameni, A.P.; Selabi, N.B.S.; Tamo, A.K.; Doench, I.; Cheng, Z.; Gauthier, M.; Xie, B.; Osorio-Madrazo, A. Bio-Based Degradable Poly (Ether-Ester) s from Melt-Polymerization of Aromatic Ester and Ether Diols. Int. J. Mol. Sci. 2022, 23, 8967. [Google Scholar] [CrossRef]
- Cavalcante, M.P.; Toledo, A.L.M.M.; Rodrigues, E.J.R.; Neto, R.P.C.; Tavares, M.I.B. Correlation between Traditional Techniques and TD-NMR to Determine the Morphology of PHB/PCL Blends. Polym Test 2017, 58, 159–165. [Google Scholar] [CrossRef]
- Fernández-Ronco, M.P.; Gradzik, B.; Gooneie, A.; Hufenus, R.; El Fray, M. Tuning Poly (3-Hydroxybutyrate)(P3HB) Properties by Tailored Segmented Biocopolymers. ACS Sustain. Chem. Eng. 2017, 5, 11060–11068. [Google Scholar] [CrossRef]
- McAdam, B.; Brennan Fournet, M.; McDonald, P.; Mojicevic, M. Production of Polyhydroxybutyrate (PHB) and Factors Impacting Its Chemical and Mechanical Characteristics. Polymers 2020, 12, 2908. [Google Scholar] [CrossRef]
- Andrianova, A.A.; Yeudakimenka, N.A.; Lilak, S.L.; Kozliak, E.I.; Ugrinov, A.; Sibi, M.P.; Kubátová, A. Size Exclusion Chromatography of Lignin: The Mechanistic Aspects and Elimination of Undesired Secondary Interactions. J. Chromatogr. A 2018, 1534, 101–110. [Google Scholar] [CrossRef]
- Lizundia, E.; Sipponen, M.H.; Greca, L.G.; Balakshin, M.; Tardy, B.L.; Rojas, O.J.; Puglia, D. Multifunctional Lignin-Based Nanocomposites and Nanohybrids. Green Chem. 2021, 23, 6698–6760. [Google Scholar] [CrossRef] [PubMed]
- Hallac, B.B. Fundamental Understanding of the Biochemical Conversion of Buddleja Davidii to Fermentable Sugars; Georgia Institute of Technology: Atlanta, GA, USA, 2011; ISBN 1124759301. [Google Scholar]
- Vasile, C.; Cazacu, G. Biocomposites and Nanocomposites Containing Lignin. In Biopolymer Nanocomposites: Processing, Properties, and Applications; Wiley: Hoboken, NJ, USA, 2013; pp. 565–598. [Google Scholar]
- Raza, Z.A.; Abid, S.; Banat, I.M. Polyhydroxyalkanoates: Characteristics, Production, Recent Developments and Applications. Int. Biodeterior. Biodegrad. 2018, 126, 45–56. [Google Scholar] [CrossRef]
- Martínez, V.; García, P.; García, J.L.; Prieto, M.A. Controlled Autolysis Facilitates the Polyhydroxyalkanoate Recovery in Pseudomonas Putida KT2440. Microb. Biotechnol. 2011, 4, 533–547. [Google Scholar] [CrossRef] [PubMed]
- Hand, S.; Gill, J.; Chu, K.-H. Phage-Based Extraction of Polyhydroxybutyrate (PHB) Produced from Synthetic Crude Glycerol. Sci. Total Environ. 2016, 557, 317–321. [Google Scholar] [CrossRef]
- Martínez, V.; Jurkevitch, E.; García, J.L.; Prieto, M.A. Reward for BDellovibrio Bacteriovorus for Preying on a Polyhydroxyalkanoate Producer. Environ. Microbiol. 2013, 15, 1204–1215. [Google Scholar] [CrossRef]
- Kaplan, M.; Chang, Y.-W.; Oikonomou, C.M.; Nicolas, W.J.; Jewett, A.I.; Kreida, S.; Dutka, P.; Rettberg, L.A.; Maggi, S.; Jensen, G.J. Dynamic Structural Adaptations Enable the Endobiotic Predation of Bdellovibrio Bacteriovorus. bioRxiv 2022, 2022–2026. [Google Scholar]
- Cai, L.; Yuan, M.-Q.; Liu, F.; Jian, J.; Chen, G.-Q. Enhanced Production of Medium-Chain-Length Polyhydroxyalkanoates (PHA) by PHA Depolymerase Knockout Mutant of Pseudomonas Putida KT2442. Bioresour. Technol. 2009, 100, 2265–2270. [Google Scholar] [CrossRef]
- Kunasundari, B.; Murugaiyah, V.; Kaur, G.; Maurer, F.H.J.; Sudesh, K. Revisiting the Single Cell Protein Application of Cupriavidus Necator H16 and Recovering Bioplastic Granules Simultaneously. PLoS ONE 2013, 8, e78528. [Google Scholar] [CrossRef]
- Zhang, G.; Zheng, W.; Bai, X.; Xu, L.; Li, K.; Zhang, M.; Huang, Y. Polyhydroxyalkanoates (PHAs) Biological Recovery Approaches and Protein-Mediated Secretion Model Hypothesis. J. Clean. Prod. 2024, 440, 140851. [Google Scholar] [CrossRef]
- Bhakyaraj, R.; Arunkumar, D.; Anitha, A. Synthetic Microbial Research-Challenges and Prospects; Darshan Publishers: Tamil Nadu, India, 2022. [Google Scholar]
- Radotić, K.; Mićić, M. Methods for Extraction and Purification of Lignin and Cellulose from Plant Tissues. In Sample Preparation Techniques for Soil, Plant, and Animal Samples; Springer: Berlin/Heidelberg, Germany, 2016; pp. 365–376. [Google Scholar]
- Sun, Q.; Foston, M.; Meng, X.; Sawada, D.; Pingali, S.V.; O’Neill, H.M.; Kumar, R. Effect of Lignin Content on Changes Occurring in Poplar Cellulose Ultrastructure during Dilute Acid Pretreatment. Biotechnol. Biofuels 2014, 7, 150. [Google Scholar] [CrossRef]
- Bhutto, A.W.; Qureshi, K.; Harijan, K.; Abro, R.; Abbas, T.; Bazmi, A.A.; Karim, S.; Yu, G. Insight into Progress in Pre-Treatment of Lignocellulosic Biomass. Energy 2017, 122, 724–745. [Google Scholar] [CrossRef]
- Ma, C.; Kim, T.-H.; Liu, K.; Ma, M.-G.; Choi, S.-E.; Si, C. Multifunctional Lignin-Based Composite Materials for Emerging Applications. Front. Bioeng. Biotechnol. 2021, 9, 708976. [Google Scholar] [CrossRef] [PubMed]
- Balakshin, M.; Capanema, E.; Berlin, A. Isolation and Analysis of Lignin–Carbohydrate Complexes Preparations with Traditional and Advanced Methods: A Review. Stud. Nat. Prod. Chem. 2014, 42, 83–115. [Google Scholar]
- Aziz, T.; Farid, A.; Haq, F.; Kiran, M.; Ullah, A.; Zhang, K.; Li, C.; Ghazanfar, S.; Sun, H.; Ullah, R. A Review on the Modification of Cellulose and Its Applications. Polymers 2022, 14, 3206. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, X.; Liu, W.; Fu, F.; Yang, D. A Novel Lignin/ZnO Hybrid Nanocomposite with Excellent UV-Absorption Ability and Its Application in Transparent Polyurethane Coating. Ind. Eng. Chem. Res. 2017, 56, 11133–11141. [Google Scholar] [CrossRef]
- Kaur, P.; Sharma, N.; Munagala, M.; Rajkhowa, R.; Aallardyce, B.; Shastri, Y.; Agrawal, R. Nanocellulose: Resources, Physio-Chemical Properties, Current Uses and Future Applications. Front. Nanotechnol. 2021, 3, 747329. [Google Scholar] [CrossRef]
- Long, H.; Hu, L.; Yang, F.; Cai, Q.; Zhong, Z.; Zhang, S.; Guan, L.; Xiao, D.; Zheng, W.; Zhou, W. Enhancing the Performance of Polylactic Acid Composites through Self-Assembly Lignin Nanospheres for Fused Deposition Modeling. Compos. B Eng. 2022, 239, 109968. [Google Scholar] [CrossRef]
- Kim, G.-H.; Um, B.-H. Fractionation and Characterization of Lignins from Miscanthus via Organosolv and Soda Pulping for Biorefinery Applications. Int. J. Biol. Macromol. 2020, 158, 443–451. [Google Scholar] [CrossRef]
- Martín-Sampedro, R.; Santos, J.I.; Fillat, Ú.; Wicklein, B.; Eugenio, M.E.; Ibarra, D. Characterization of Lignins from Populus alba L. Generated as by-Products in Different Transformation Processes: Kraft Pulping, Organosolv and Acid Hydrolysis. Int. J. Biol. Macromol. 2019, 126, 18–29. [Google Scholar] [CrossRef]
- Hachimi Alaoui, C.; Réthoré, G.; Weiss, P.; Fatimi, A. Sustainable Biomass Lignin-Based Hydrogels: A Review on Properties, Formulation, and Biomedical Applications. Int. J. Mol. Sci. 2023, 24, 13493. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Zhuang, J.; Xiang, Z.; Jiang, W.; He, S.; Xiao, H. Conductive Hydrogels Based on Industrial Lignin: Opportunities and Challenges. Polymers 2022, 14, 3739. [Google Scholar] [CrossRef] [PubMed]
- Lamm, M.E.; Li, K.; Ker, D.; Zhao, X.; Hinton, H.E.; Copenhaver, K.; Tekinalp, H.; Ozcan, S. Exploiting Chitosan to Improve the Interface of Nanocellulose Reinforced Polymer Composites. Cellulose 2022, 29, 3859–3870. [Google Scholar] [CrossRef]
- Khalil, H.P.S.A.; Jummaat, F.; Yahya, E.B.; Olaiya, N.G.; Adnan, A.S.; Abdat, M.; NAM, N.; Halim, A.S.; Kumar, U.S.U.; Bairwan, R. A Review on Micro-to Nanocellulose Biopolymer Scaffold Forming for Tissue Engineering Applications. Polymers 2020, 12, 2043. [Google Scholar] [CrossRef] [PubMed]
- Bacakova, L.; Pajorova, J.; Bacakova, M.; Skogberg, A.; Kallio, P.; Kolarova, K.; Svorcik, V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. Nanomaterials 2019, 9, 164. [Google Scholar] [CrossRef]
- Tamo, A.K. Nanocellulose-Based Hydrogels as Versatile Materials with Interesting Functional Properties for Tissue Engineering Applications. J. Mater. Chem. B 2024, 12, 7692–7759. [Google Scholar] [CrossRef]
- Kandhola, G.; Park, S.; Lim, J.-W.; Chivers, C.; Song, Y.H.; Chung, J.H.; Kim, J.; Kim, J.-W. Nanomaterial-Based Scaffolds for Tissue Engineering Applications: A Review on Graphene, Carbon Nanotubes and Nanocellulose. Tissue Eng. Regen. Med. 2023, 20, 411–433. [Google Scholar] [CrossRef]
- Kuzmenko, V.; Kalogeropoulos, T.; Thunberg, J.; Johannesson, S.; Hägg, D.; Enoksson, P.; Gatenholm, P. Enhanced Growth of Neural Networks on Conductive Cellulose-Derived Nanofibrous Scaffolds. Mater. Sci. Eng. C 2016, 58, 14–23. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, S.; Yang, J.; Schneider, K.H.; Xie, M.; Chen, Y.; Zheng, Z.; Wang, X.; Zhao, Z.; Yu, J. Recent Advances in Harnessing Biological Macromolecules for Wound Management: A Review. Int. J. Biol. Macromol. 2024, 266, 130989. [Google Scholar] [CrossRef]
- Oprică, G.M.; Panaitescu, D.M.; Lixandru, B.E.; Uşurelu, C.D.; Gabor, A.R.; Nicolae, C.-A.; Fierascu, R.C.; Frone, A.N. Plant-Derived Nanocellulose with Antibacterial Activity for Wound Healing Dressing. Pharmaceutics 2023, 15, 2672. [Google Scholar] [CrossRef]
- Ong, X.-R.; Chen, A.X.; Li, N.; Yang, Y.Y.; Luo, H.-K. Nanocellulose: Recent Advances toward Biomedical Applications. Small Sci. 2023, 3, 2200076. [Google Scholar] [CrossRef]
- Turyanska, L.; Makarovsky, O.; Patane, A.; Kozlova, N.V.; Liu, Z.; Li, M.; Mann, S. High Magnetic Field Quantum Transport in Au Nanoparticle–Cellulose Films. Nanotechnology 2012, 23, 045702. [Google Scholar] [CrossRef] [PubMed]
- Min, S.H.; Kim, C.K.; Moon, D.-G. Flexible Top Emission Organic Light Emitting Diodes with Ni and Au Anodes Deposited on a Cellulose Paper Substrate. Mol. Cryst. Liq. Cryst. 2013, 584, 27–36. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, L.; Qin, W.; Loy, D.A.; Wu, Z.; Chen, H.; Zhang, Q. Preparation, Characterization and Antioxidant Properties of Curcumin Encapsulated Chitosan/Lignosulfonate Micelles. Carbohydr. Polym. 2022, 281, 119080. [Google Scholar] [CrossRef]
- Domínguez-Robles, J.; Stewart, S.A.; Rendl, A.; González, Z.; Donnelly, R.F.; Larrañeta, E. Lignin and Cellulose Blends as Pharmaceutical Excipient for Tablet Manufacturing via Direct Compression. Biomolecules 2019, 9, 423. [Google Scholar] [CrossRef] [PubMed]
- Seyed Shahabadi, S.I.; Kong, J.; Lu, X. Aqueous-Only, Green Route to Self-Healable, UV-Resistant, and Electrically Conductive Polyurethane/Graphene/Lignin Nanocomposite Coatings. ACS Sustain. Chem. Eng. 2017, 5, 3148–3157. [Google Scholar] [CrossRef]
- Rahim, T.N.A.T.; Abdullah, A.M.; Md Akil, H. Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites. Polym. Rev. 2019, 59, 589–624. [Google Scholar] [CrossRef]
- Rajan, K.; Samykano, M.; Kadirgama, K.; Harun, W.S.W.; Rahman, M.M. Fused Deposition Modeling: Process, Materials, Parameters, Properties, and Applications. Int. J. Adv. Manuf. Technol. 2022, 120, 1531–1570. [Google Scholar] [CrossRef]
- Plastic Market Size, Share & Trends Analysis Report. Grandview Research. 2024 Plastic Prices Database. Online Resource. Available online: https://www.grandviewresearch.com/industry-analysis/global-plastics-market (accessed on 12 March 2025).
- Koller, M.; Mukherjee, A. A New Wave of Industrialization of PHA Biopolyesters. Bioengineering 2022, 9, 205. [Google Scholar] [CrossRef]
- Winnacker, M. Selected Recent Advances in the Utilization of Biopolymers for Nano- and Microfiber Materials and Nonwovens Production. Macromol. Mater. Eng. 2022, 307, 2200270. [Google Scholar] [CrossRef]
- Hamedi, M.M.; Sandberg, M.; Olsson, R.T.; Pedersen, J.; Benselfelt, T.; Wohlert, J. Wood and Cellulose: The Most Sustainable Advanced Materials for Past, Present, and Future Civilizations. Adv. Mater. 2025, 35, 2207925. [Google Scholar] [CrossRef]
Chemical Name | Abbreviation | Side Groups | Structure |
---|---|---|---|
Poly(3-hydroxybutyrate) | P3HB | Methyl | Homopolymer |
Poly(4-hydroxybutyrate) | P4HB | Hydrogen | Homopolymer |
Poly(3-hydroxyvalerate) | P3HV | Ethyl | Homopolymer |
Poly(3-hydroxyheptanoate) | P3HHp | Butyl | Homopolymer |
Poly(3-hydroxyoctanoate) | P3HO | Pentyl | Homopolymer |
Poly(3-hydroxynonanoate) | P3HN | Hexyl | Homopolymer |
Poly(3-hydroxydecanoate) | P3HD | Heptyl | Homopolymer |
Poly(3-hydroxybutyrate-co-3- hydroxyvalerate) | PHBV | Methyl/ethyl | Copolymer |
Poly(3-hydroxybutyrate-co-4- hydroxybutyrate) | P3HB4HB | Methyl/hydrogen | Copolymer |
Poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) | PHBHHx | Methyl/propyl | Copolymer |
Poly(3-hydroxybutyrate-co-3- hydroxyoctanoate) | PHBO | Methyl/heptyl | Copolymer |
Poly(3-hydroxybutyrate-co-3- hydroxydecanoate) | PHBD | Methyl/pentyl | Copolymer |
Poly(3-hydroxybutyrate-co-3- hydroxypropionate) | PHBP | Methyl | Copolymer |
Property | P3HB | P4HB | P3HV | P3HHp | P3HO | P3HN | P3HD | PHBV | P3HB4HB | PHBHHx | PHBO | PHBD | PHBP | Refs. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tensile strength (MPa) | 30–40 | 5–20 | 10–30 | 5–15 | 2–10 | 1–8 | 1–6 | 20–35 | 15–30 | 10–25 | 10–20 | 10–22 | 8–18 | [23,28] |
Young’s modulus (GPa) | 3.5–4.0 | 0.05–0.1 | 0.5–2.5 | 0.1–0.5 | 0.02–0.1 | 0.01–0.05 | 0.01–0.03 | 1.5–3.5 | 0.5–2.5 | 0.5–2.0 | 0.2–1.5 | 0.3–1.5 | 0.2–1.2 | [23,28] |
Elongation at break (%) | 5–10 | 1000–2000 | 50–200 | 200–600 | 300–800 | 400–1000 | 500–1200 | 10–50 | 200–600 | 50–400 | 100–500 | 100–600 | 150–500 | [26,28] |
Impact strength (kJ/m2) | 2–5 | 50–100 | 10–25 | 30–80 | 40–100 | 50–120 | 60–150 | 5–15 | 40–80 | 20–40 | 30–60 | 30–70 | 35–90 | [25,28] |
Melting temperature (°C) | 170–180 | 50–60 | 140–160 | 120–140 | 90–110 | 80–100 | 70–90 | 145–175 | 100–140 | 120–160 | 110–140 | 100–150 | 110–145 | [23,31] |
Glass transition temp. (°C) | ~0 to 5 | −50 to −45 | −10 to 0 | −20 to −10 | −30 to −20 | −40 to −30 | −50 to −40 | −5 to 0 | −20 to −5 | −20 to −5 | −30 to −10 | −25 to −5 | −20 to −5 | [26,31] |
Crystallinity (%) | 60–80 | 0–10 | 30–50 | 10–30 | 5–20 | 3–15 | 2–10 | 40–60 | 20–40 | 20–50 | 15–35 | 15–45 | 20–50 | [31,32] |
Thermal decomposition (°C) | 270–290 | 240–260 | 250–280 | 220–250 | 200–230 | 190–220 | 180–210 | 250–280 | 230–260 | 230–260 | 220–250 | 230–260 | 220–250 | [23,28] |
Density (g/cm3) | 1.24–1.26 | 1.15–1.20 | 1.22–1.24 | 1.20–1.22 | 1.10–1.15 | 1.08–1.12 | 1.05–1.10 | 1.22–1.24 | 1.18–1.22 | 1.2–1.22 | 1.15–1.20 | 1.18–1.22 | 1.16–1.21 | [26,28] |
Biodegradability | Moderate | Very high | High | Very high | Very high | Very high | Very high | High | Very high | Very high | Very high | Very high | Very high | [23,28] |
Type of BNC | Description | Application |
---|---|---|
Native BNC | Pure form of bacterial cellulose with high crystallinity and water retention properties. | Wound dressings, tissue engineering, drug delivery, and food packaging. |
Modified BNC (functionalized BNC) | Chemically or physically modified BNC with enhanced properties like hydrophilicity or bioactivity. | Drug delivery systems, biosensors, and scaffolds for tissue engineering. |
Composite BNC | BNC combined with polymers, nanoparticles, or other biomaterials to improve mechanical, electrical, or antimicrobial properties. | Biomedical implants, electronic skins, artificial blood vessels, and flexible electronics. |
Electrospun BNC | Processed using electrospinning to create nanofibrous structures with controlled porosity. | Wound healing, filtration membranes, and bioactive coatings. |
BNC aerogels | Lightweight, porous nanocellulose structures with high surface area and tunable mechanical properties. | Supercapacitors, energy storage, water purification, and oil spill cleanup. |
BNC hydrogels | Highly hydrated 3D networks with excellent biocompatibility and flexibility. | Drug release systems, tissue scaffolds, and cosmetic formulations. |
BNC nanocrystals (BNC-NC) | Isolated nanocrystals from bacterial cellulose with high strength and thermal stability. | Reinforcement in bioplastics, nanocomposites, and coatings. |
BNC films | Thin, transparent films with high barrier properties and mechanical strength. | Edible coatings, biodegradable packaging, and flexible displays. |
Extraction Method | Source (Plant/Bacterial) | Resulting Cellulose Structure | Applications |
---|---|---|---|
Alkaline treatment | Plant | Microfibrillated cellulose (MFC) | Packaging, paper reinforcement, and composites |
Acid hydrolysis | Plant/bacterial | Cellulose nanocrystals (CNCs) | Drug delivery systems, coatings, and nanocomposites |
Enzymatic hydrolysis | Plant | Micro- to nanocellulose with lower crystallinity | Biodegradable films and biomedical scaffolds |
Steam explosion | Plant | Partially defibrillated cellulose fibers | Reinforcement in green composites and textiles |
Mechanical grinding and homogenization | Plant | Nano-fibrillated cellulose (NFC) | Coatings, rheology modifiers, and flexible electronics |
Bacterial fermentation | Bacterial (Gluconacetobacter, Komagataeibacter) | Highly crystalline bacterial nanocellulose (BNC) | Wound dressings, tissue engineering scaffolds, and bioelectronics |
Ionic liquid-assisted extraction | Plant | Regenerated cellulose with tailored morphology | Aerogels, membranes, and biomedical applications |
Supercritical CO2 extraction | Plant | Cellulose with minimal degradation | Food packaging and biodegradable foams |
TEMPO-mediated oxidation | Plant/bacterial | TEMPO-oxidized cellulose nanofibers (TOCNFs) | Hydrogels, flexible energy devices, and medical implants |
Biopolymer | Treatment | Material | Applications | Industry |
---|---|---|---|---|
Lignin | Before treatment | Raw lignin, kraft lignin, and lignosulfonates | Dispersants, low-cost adhesives, and surfactants | Pulp and paper, agriculture, and construction |
After physicochemical treatment | Functionalized lignin (sulfonation, oxidation, and grafting) | High-performance adhesives, antioxidant additives, and UV stabilizers | Packaging, wood products, and coatings | |
After mechanical treatment | Lignin micro- and nanoparticles | Reinforcing fillers in composites and drug delivery carriers | Polymer composites, biomedical, and cosmetics | |
Cellulose | Before treatment | Plant cellulose fibers and microcrystalline cellulose (MCC) | Textile fibers, food additives, and pharmaceutical excipients | Textile, food, and pharma |
After physicochemical treatment | Cellulose derivatives (cellulose acetate and carboxymethyl cellulose) | Biodegradable films, emulsifiers, and controlled drug release | Packaging, pharma, and personal care | |
After mechanical treatment | Cellulose nanofibers (CNFs) and bacterial nanocellulose (BNC) | High-strength composites, flexible electronics, and scaffolds | Biomedical, automotive, and electronics | |
PHAs | Before treatment | P3HB, PHBV, and PHBHHx granules or films | Biodegradable plastic products and disposable packaging | Consumer goods, and agriculture, packaging |
After physicochemical treatment | PHA copolymers and chemically modified PHAs | Elastomeric films, slow-release systems, and biocompatible coatings | Biomedical, smart packaging, and medical devices | |
After mechanical treatment | Electrospun PHA nanofibers and PHA composites | Tissue engineering scaffolds, wound dressings, and nanocomposites | Biomedical, 3D printing, and industrial bioplastics |
PHA Type | Strain | Substrate | Industry | PHA Market Name | Scale of Production (Tons/Year) |
---|---|---|---|---|---|
Poly(3-hydroxybutyrate) | Cupriavidus necator (soil bacterium) | Glucose | ICI, London, UK | BIOPOL | 800 in 1996. Presently stopped (technology transferred to Zeneca, Monsanto, and finally Metabolix) |
Poly(3-hydroxybutyrate-co- 3-hydroxyvalerate) | Cupriavidus necator (soil bacterium) | Glucose plus 3HV precursor | Tianan Biologic, China | ENMAT | 2000 |
Poly(3-hydroxybutyrate-co- 4-hydroxybutyrate) | Rec. E.Coli (Enterobacterium) | Glucose plus 1,4, butanediol (4 HB precursor) | Tianjin Greenbio | SoGreen | 10,000 |
Poly(3-hydroxybutyrate-co- 3-hydroxyhexanoate) | Aeromonas hydrophila or Aeromonas cavie | Inexpensive oils derived from the seeds of plants such as canola and soy | Danimer Scientific | Nodax | 10,000 |
Poly(4-hydroxybutyrate) | Rec. E.Coli (Enterobacterium) | 4HB-related precursor | Tepha Medical Devices | TephaFLEX | Not reported |
Aspect | Integration Strategy |
---|---|
Biorefinery coupling | Integrate lignin and cellulose extraction with existing pulp and paper or agricultural waste biorefineries to minimize raw material cost and waste. |
Scale-up R&D | Develop scalable biopolymer production processes that are energy-efficient and compatible with current polymer-processing equipment (injection molding and extrusion). |
Blending and compounding | Collaborate with polymer industries to create blends of biopolymers with conventional polymers, enhancing processability and market adoption. |
Industrial symbiosis | Use industrial side-streams (glycerol, CO2, and waste oils) for microbial production of PHAs, reducing production costs. |
Smart manufacturing (Industry 4.0) | Use AI, IoT, and real-time process monitoring to optimize fermentation yields and mechanical treatments in biopolymer production. |
Government incentives | Leverage grants, tax credits, and subsidies for renewable materials research and pilot plant construction (examples: European Green Deal and US DOE Bioproducts programs). |
Standards and certification | Align research with ISO standards for biodegradability, compostability, and environmental safety (ISO 17088, ASTM D6400). |
Circular economy mandates | Support EU and national directives (like the Single-Use Plastics Directive) by developing biopolymer packaging alternatives. |
Public procurement policies | Participate in frameworks that encourage government contracts for bio-based products (e.g., USDA BioPreferred Program). |
Life cycle assessment (LCA) policies | Ensure all research outputs have accompanying LCA studies, aiding policy formulation based on evidence. |
Biopolymer | Challenges and Limitations | Potential Solutions |
---|---|---|
Bacterial nanocellulose (BNC) | - High production costs, low yield, and slow microbial growth. | - Genetic engineering of bacteria to enhance yield. |
- Energy-intensive purification to remove bacterial residues. | - Optimized culture conditions to increase production efficiency. | |
- Brittleness limits applications in flexible materials. | - Development of composite materials to improve flexibility. | |
- Limited scalability for industrial applications. | - Continuous fermentation processes for scalability. | |
Plant cellulose | - Harsh chemical processing is required for extraction. | - Enzymatic pretreatment to reduce chemical usage. |
- Crystallinity issues affecting flexibility and processability. | - Mechanical treatments like ball milling to alter crystallinity. | |
- Limited solubility in common solvents. | - Ionic liquids and deep eutectic solvents to dissolve cellulose. | |
- Difficulty in functionalization due to strong hydrogen bonding. | - Chemical modification (e.g., esterification) to enhance functionalization. | |
Polyhydroxybutyrate (PHB) | - Brittleness and stiffness compared to conventional plastics. | - Copolymerization with other monomers to improve flexibility. |
- High production costs due to microbial fermentation. | - Metabolic engineering of microbes to reduce costs. | |
- Thermal instability, degrading near the melting point. | - Blending with plasticizers to enhance thermal properties. | |
- Slow degradation in certain environments. | - Biodegradation studies to optimize environmental breakdown. | |
Lignin | - Complex and heterogeneous structure complicates processing. | - Fractionation techniques to obtain more uniform lignin. |
- Poor solubility in water and many organic solvents. | - Chemical modification to improve solubility. | |
- High variability depending on biomass source. | - Standardization of extraction processes to reduce variability. | |
- Limited commercial applications beyond biofuels and adhesives. | - Development of lignin-based materials like carbon fibers and polymers. |
Parameter | Biopolymers (Lignin, Cellulose, PHAs) | Conventional Plastics (PE, PP, PET, PS) |
---|---|---|
Cost (USD/kg) | - Cellulose: USD 2–5/kg | - PE/PP: USD 1.2–1.5/kg |
- Lignin: USD 0.5–2/kg (industrial grade) | - PET: ~USD 1.5–2/kg | |
- PHAs: USD 4–6/kg (trending down with scale) [181] | - PS: ~USD 1.3–1.7/kg | |
Mechanical strength | Good to excellent; tunable via nanocomposites or copolymerization (PHAs can match PP strength; nanocellulose > steel tensile strength by weight) | Consistent, with high strength across applications; well optimized over decades |
Thermal stability | Moderate to good; improved by chemical modifications; and PHAs stable up to ~180 °C | High; conventional plastics can withstand >200 °C in processing |
Barrier properties | Excellent gas barriers with modification (nanocellulose and PHBV coatings) | PET and multilayer plastics have superior gas and moisture barrier properties |
Biodegradability | Completely biodegradable (PHAs, lignin composites, and modified cellulose) under industrial or soil conditions | Non-biodegradable; leads to long-term environmental pollution |
Carbon footprint | Significantly lower; derived from renewable feedstocks; and carbon neutral or negative (when combined with biorefinery waste streams) | High, derived from fossil fuels; high emissions during production and incineration |
End-of-Life | Compostable, biodegradable, recyclable (especially cellulose), and lignin usable as bioenergy feedstock | Recycling is limited by contamination; landfill and incineration are dominant end-of-life |
Sustainability | High; aligns with circular economy principles; and government incentives available | Low; dependent on petroleum, with growing regulation against the use of single-use plastics |
Industrial fields | Biomedical (implants and sutures), sustainable packaging, coatings, textiles, electronics, and 3D printing | Mass-market consumer goods, automotive parts, packaging, electronics, and textiles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drishya, P.K.; Reddy, M.V.; Mohanakrishna, G.; Sarkar, O.; Isha; Rohit, M.V.; Patel, A.; Chang, Y.-C. Advances in Microbial and Plant-Based Biopolymers: Synthesis and Applications in Next-Generation Materials. Macromol 2025, 5, 21. https://doi.org/10.3390/macromol5020021
Drishya PK, Reddy MV, Mohanakrishna G, Sarkar O, Isha, Rohit MV, Patel A, Chang Y-C. Advances in Microbial and Plant-Based Biopolymers: Synthesis and Applications in Next-Generation Materials. Macromol. 2025; 5(2):21. https://doi.org/10.3390/macromol5020021
Chicago/Turabian StyleDrishya, Poova Kattil, M. Venkateswar Reddy, Gunda Mohanakrishna, Omprakash Sarkar, Isha, M. V. Rohit, Aesha Patel, and Young-Cheol Chang. 2025. "Advances in Microbial and Plant-Based Biopolymers: Synthesis and Applications in Next-Generation Materials" Macromol 5, no. 2: 21. https://doi.org/10.3390/macromol5020021
APA StyleDrishya, P. K., Reddy, M. V., Mohanakrishna, G., Sarkar, O., Isha, Rohit, M. V., Patel, A., & Chang, Y.-C. (2025). Advances in Microbial and Plant-Based Biopolymers: Synthesis and Applications in Next-Generation Materials. Macromol, 5(2), 21. https://doi.org/10.3390/macromol5020021