ijms-logo

Journal Browser

Journal Browser

Natural Anti-inflammatory Agents 2019

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: closed (31 May 2020) | Viewed by 95392

Special Issue Editors

REQUIMTE/LAQV, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
Interests: metabolite profiling of natural matrices; natural agents for inflammation; neurodegenerative disorders
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Inflammation is the organism’s natural response to stimuli that are perceived as harmful, from germs, toxins, and environmental pollutants, to injury and stress, among others. This complex process involves immune, vascular and cellular biochemical reactions. At a damaged site, the process starts with the migration of immune cells from blood vessels and the release of mediators, followed by the recruitment of inflammatory cells and the release of various oxidative agents and pro-inflammatory cytokines, with arachidonic acid playing a pivotal role. Normal inflammation is self-limiting, but aberrant resolution and prolonged inflammation lead to chronic disorders, as excessive oxidants and inflammatory mediators have deleterious effects, including toxicity, loss of barrier function, abnormal cell proliferation, inhibiting normal function of tissues and organs, finally leading to systemic disorders. The search for new anti-inflammatory drugs has been a current preoccupation, due to the need for effective drugs, with less adverse reactions than those used nowadays. Concerning this issue, there has been increasing awareness of the potential interest in natural products. This Special Issue is devoted to the exploitation of natural matrices as sources of new anti-inflammatory molecules and their mechanism of action.

Prof. Dr. Patrícia Valentão
Prof. Dr. Paula Andrade
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • anti-inflammatory
  • arachidonic acid
  • cytokines
  • eicosanoids
  • gene expression
  • inflammatory cells
  • inflammatory enzymes
  • natural products
  • transcription factors

Published Papers (17 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

17 pages, 9500 KiB  
Article
β-Funaltrexamine Displayed Anti-Inflammatory and Neuroprotective Effects in Cells and Rat Model of Stroke
by Chih-Cheng Wu, Cheng-Yi Chang, Kuei-Chung Shih, Chih-Jen Hung, Ya-Yu Wang, Shih-Yi Lin, Wen-Ying Chen, Yu-Hsiang Kuan, Su-Lan Liao, Wen-Yi Wang and Chun-Jung Chen
Int. J. Mol. Sci. 2020, 21(11), 3866; https://doi.org/10.3390/ijms21113866 - 29 May 2020
Cited by 12 | Viewed by 2267
Abstract
Chronic treatment involving opioids exacerbates both the risk and severity of ischemic stroke. We have provided experimental evidence showing the anti-inflammatory and neuroprotective effects of the μ opioid receptor antagonist β-funaltrexamine for neurodegenerative diseases in rat neuron/glia cultures and a rat model of [...] Read more.
Chronic treatment involving opioids exacerbates both the risk and severity of ischemic stroke. We have provided experimental evidence showing the anti-inflammatory and neuroprotective effects of the μ opioid receptor antagonist β-funaltrexamine for neurodegenerative diseases in rat neuron/glia cultures and a rat model of cerebral Ischemia/Reperfusion (I/R) injury. Independent of in vitro Lipopolysaccharide (LPS)/interferon (IFN-γ)-stimulated neuron/glia cultures and in vivo cerebral I/R injury in Sprague–Dawley rats, β-funaltrexamine downregulated neuroinflammation and ameliorated neuronal degeneration. Alterations in microglia polarization favoring the classical activation state occurred in LPS/IFN-γ-stimulated neuron/glia cultures and cerebral I/R-injured cortical brains. β-funaltrexamine shifted the polarization of microglia towards the anti-inflammatory phenotype, as evidenced by decreased nitric oxide, tumor necrosis factor-α, interleukin-1β, and prostaglandin E2, along with increased CD163 and arginase 1. Mechanistic studies showed that the suppression of microglia pro-inflammatory polarization by β-funaltrexamine was accompanied by the reduction of NF-κB, AP-1, cyclic AMP response element-binding protein, along with signal transducers and activators of transcription transcriptional activities and associated upstream activators. The effects of β-funaltrexamine are closely linked with its action on neuroinflammation by switching microglia polarization from pro-inflammatory towards anti-inflammatory phenotypes. These findings provide new insights into the anti-inflammatory and neuroprotective mechanisms of β-funaltrexamine in combating neurodegenerative diseases, such as stroke. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Figure 1

14 pages, 3540 KiB  
Article
Safety and Effectiveness of Copaiba Oleoresin (C. reticulata Ducke) on Inflammation and Tissue Repair of Oral Wounds in Rats
by María Olimpia Paz Alvarenga, Leonardo Oliveira Bittencourt, Paulo Fernando Santos Mendes, Julia Turra Ribeiro, Osmar Alves Lameira, Marta Chagas Monteiro, Carlos Augusto Galvão Barboza, Manoela Domingues Martins and Rafael Rodrigues Lima
Int. J. Mol. Sci. 2020, 21(10), 3568; https://doi.org/10.3390/ijms21103568 - 18 May 2020
Cited by 12 | Viewed by 3069
Abstract
In traditional communities of the Brazilian Amazon, the copaiba oleoresin (C. reticulata Ducke) is widely known for its therapeutic activity, especially its wound healing and anti-inflammatory actions. Our study aimed to evaluate these effects in oral lesions and the safety of the [...] Read more.
In traditional communities of the Brazilian Amazon, the copaiba oleoresin (C. reticulata Ducke) is widely known for its therapeutic activity, especially its wound healing and anti-inflammatory actions. Our study aimed to evaluate these effects in oral lesions and the safety of the dosage proposed. A punch biopsy wound was induced on the ventral surface of the tongue of forty-five male Wistar rats under anesthesia. Animals were randomly allocated to one of three groups based on the treatment: control, corticoid and copaiba. A daily dose of each treatment and vehicle was administrated by oral gavage for three consecutive days. Sample collections took place on the third, seventh and 15th days post-wounding for clinical and histopathological analyses. Blood was collected on the third and seventh days for kidneys and liver function tests. Semi-quantitative analyses were performed based on scores of inflammation and reepithelization. Tissue collagen deposition was detected by PicroSirius red staining. Copaiba-treated wounds revealed a smaller wound area, decreased of acute inflammatory reaction and enhanced reepithelization. The levels of kidney and liver function tests did not reveal presence of damage post-treatments. Our findings suggest that copaiba oleoresin is a safe and effective alternative therapy for inflammation and tissue repair of oral wounds in this animal model. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Figure 1

13 pages, 1227 KiB  
Article
Inhibition of Proinflammatory Enzymes and Attenuation of IL-6 in LPS-Challenged RAW 264.7 Macrophages Substantiates the Ethnomedicinal Use of the Herbal Drug Homalium bhamoense Cubitt & W.W.Sm
by Rungcharn Suksungworn, Paula B. Andrade, Andreia P. Oliveira, Patrícia Valentão, Sutsawat Duangsrisai and Nelson G. M. Gomes
Int. J. Mol. Sci. 2020, 21(7), 2421; https://doi.org/10.3390/ijms21072421 - 31 Mar 2020
Cited by 9 | Viewed by 3040
Abstract
Commonly used to treat skin injuries in Asia, several Homalium spp. have been found to promote skin regeneration and wound healing. While ethnobotanical surveys report the use of H. bhamoense trunk bark as a wound salve, there are no studies covering bioactive properties. [...] Read more.
Commonly used to treat skin injuries in Asia, several Homalium spp. have been found to promote skin regeneration and wound healing. While ethnobotanical surveys report the use of H. bhamoense trunk bark as a wound salve, there are no studies covering bioactive properties. As impaired cutaneous healing is characterized by excessive inflammation, a series of inflammatory mediators involved in wound healing were targeted with a methanol extract obtained from H. bhamoense trunk bark. Results showed concentration-dependent inhibition of hyaluronidase and 5-lipoxygenase upon exposure to the extract, with IC50 values of 396.9 ± 25.7 and 29.0 ± 2.3 µg mL−1, respectively. H. bhamoense trunk bark extract also exerted anti-inflammatory activity by significantly suppressing the overproduction of interleukin 6 (IL-6) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages at concentrations ranging from 125 to 1000 µg mL−1, while leading to a biphasic effect on nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) levels. The phenolic profile was elucidated by HPLC-DAD, being characterized by the occurrence of ellagic acid as the main constituent, in addition to a series of methylated derivatives, which might underlie the observed anti-inflammatory effects. Our findings provide in vitro data on anti-inflammatory ability of H. bhamoense trunk bark, disclosing also potential cutaneous toxicity as assessed in HaCaT keratinocytes. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Figure 1

16 pages, 6536 KiB  
Article
Ginsenoside Rh2 Ameliorates Atopic Dermatitis in NC/Nga Mice by Suppressing NF-kappaB-Mediated Thymic Stromal Lymphopoietin Expression and T Helper Type 2 Differentiation
by Eunsu Ko, Sungjoo Park, Jun Hyoung Lee, Chang-Hao Cui, Jingang Hou, Myung-ho Kim and Sun Chang Kim
Int. J. Mol. Sci. 2019, 20(24), 6111; https://doi.org/10.3390/ijms20246111 - 04 Dec 2019
Cited by 23 | Viewed by 4170
Abstract
Ginsenosides are known to have various highly pharmacological activities, such as anti-cancer and anti-inflammatory effects. However, the search for the most effective ginsenosides against the pathogenesis of atopic dermatitis (AD) and the study of the effects of ginsenosides on specific cytokines involved in [...] Read more.
Ginsenosides are known to have various highly pharmacological activities, such as anti-cancer and anti-inflammatory effects. However, the search for the most effective ginsenosides against the pathogenesis of atopic dermatitis (AD) and the study of the effects of ginsenosides on specific cytokines involved in AD remain unclear. In this study, ginsenoside Rh2 was shown to exert the most effective anti-inflammatory action on thymic stromal lymphopoietin (TSLP) and interleukin 8 in tumor necrosis factor-alpha and polyinosinic: polycytidylic acid induced normal human keratinocytes by inhibiting proinflammatory cytokines at both protein and transcriptional levels. Concomitantly, Rh2 also efficiently alleviated 2,4-dinitrochlorobenzene-induced AD-like skin symptoms when applied topically, including suppression of immune cell infiltration, cytokine expression, and serum immunoglobulin E levels in NC/Nga mice. In line with the in vitro results, Rh2 inhibited TSLP levels in AD mice via regulation of an underlying mechanism involving the nuclear factor κB pathways. In addition, in regard to immune cells, we showed that Rh2 suppressed not only the expression of TSLP but the differentiation of naïve CD4+ T-cells into T helper type 2 cells and their effector function in vitro. Collectively, our results indicated that Rh2 might be considered as a good therapeutic candidate for the alternative treatment of AD. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Figure 1

23 pages, 2480 KiB  
Article
Lysozyme-Induced Transcriptional Regulation of TNF-α Pathway Genes in Cells of the Monocyte Lineage
by Alberta Bergamo, Marco Gerdol, Alberto Pallavicini, Samuele Greco, Isabelle Schepens, Romain Hamelin, Florence Armand, Paul J. Dyson and Gianni Sava
Int. J. Mol. Sci. 2019, 20(21), 5502; https://doi.org/10.3390/ijms20215502 - 05 Nov 2019
Cited by 17 | Viewed by 3432
Abstract
Lysozyme is one of the most important anti-bacterial effectors in the innate immune system of animals. Besides its direct antibacterial enzymatic activity, lysozyme displays other biological properties, pointing toward a significant anti-inflammatory effect, many aspects of which are still elusive. Here we investigate [...] Read more.
Lysozyme is one of the most important anti-bacterial effectors in the innate immune system of animals. Besides its direct antibacterial enzymatic activity, lysozyme displays other biological properties, pointing toward a significant anti-inflammatory effect, many aspects of which are still elusive. Here we investigate the perturbation of gene expression profiles induced by lysozyme in a monocyte cell line in vitro considering a perspective as broad as the whole transcriptome profiling. The results of the RNA-seq experiment show that lysozyme induces transcriptional modulation of the TNF-α/IL-1β pathway genes in U937 monocytes. The analysis of transcriptomic profiles with IPA® identified a simple but robust molecular network of genes, in which the regulation trends are fully consistent with the anti-inflammatory activity of lysozyme. This study provides the first evidence in support of the anti-inflammatory action of lysozyme on the basis of transcriptomic regulation data resulting from the broad perspective of a whole-transcriptome profiling. Such important effects can be achieved with the supplementation of relatively low concentrations of lysozyme, for a short time of exposure. These new insights allow the potential of lysozyme in pharmacological applications to be better exploited. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Graphical abstract

22 pages, 6223 KiB  
Article
Effects of Extract of Arrabidaea chica Verlot on an Experimental Model of Osteoarthritis
by Cleydlenne Costa Vasconcelos, Alberto Jorge Oliveira Lopes, Emerson Lucas Frazão Sousa, Darleno Sousa Camelo, Fernando César Vilhena Moreira Lima, Cláudia Quintino da Rocha, Gyl Eanes Barros Silva, João Batista Santos Garcia and Maria do Socorro de Sousa Cartágenes
Int. J. Mol. Sci. 2019, 20(19), 4717; https://doi.org/10.3390/ijms20194717 - 23 Sep 2019
Cited by 20 | Viewed by 3592
Abstract
The aim of this study was to analyze the analgesic potential of Arrabidaea chica extract (EHA) as an alternative to osteoarthritis (OA) treatment. Thus, the extract was initially evaluated by the cyclooxygenase inhibition test. The analgesic effect of the extract, in vivo, was [...] Read more.
The aim of this study was to analyze the analgesic potential of Arrabidaea chica extract (EHA) as an alternative to osteoarthritis (OA) treatment. Thus, the extract was initially evaluated by the cyclooxygenase inhibition test. The analgesic effect of the extract, in vivo, was also verified in a model of OA induced by sodium monoiodoacetate (2 mg). EHA was administered to rats at doses of 50, 150, and 450 mg/kg between 3 and 25 days after OA induction. The animals were clinically evaluated every 7 days, euthanized at 29 days, and the liver, spleen, kidney and knee collected for histopathological analysis. The chemical composition of EHA was identified by HPLC-MS and the identified compounds submitted to molecular docking study. The results showed that the extract promoted cyclooxygenase inhibition and produced significant improvements in disability, motor activity, hyperalgesia, and OA-induced allodynia parameters, in addition to improvements in the radiological condition of the knees (but not observed in the histopathological study). Chemically the extract is rich in flavonoids. Among them, we evidence that amentoflavone showed very favorable interactions with the enzyme COX-2 in the in silico analysis. Thus, it is concluded that A. chica has important analgesic properties for the treatment of OA. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Figure 1

20 pages, 4234 KiB  
Article
Anti-Inflammatory and Antinociceptive Activity of Pollen Extract Collected by Stingless Bee Melipona fasciculata
by Alberto Jorge Oliveira Lopes, Cleydlenne Costa Vasconcelos, Francisco Assis Nascimento Pereira, Rosa Helena Moraes Silva, Pedro Felipe dos Santos Queiroz, Caio Viana Fernandes, João Batista Santos Garcia, Ricardo Martins Ramos, Cláudia Quintino da Rocha, Silvia Tereza de Jesus Rodrigues Moreira Lima, Maria do Socorro de Sousa Cartágenes and Maria Nilce de Sousa Ribeiro
Int. J. Mol. Sci. 2019, 20(18), 4512; https://doi.org/10.3390/ijms20184512 - 12 Sep 2019
Cited by 28 | Viewed by 5057
Abstract
The stingless bee, Melipona fasciculata Smith (Apidae, Meliponini), is a native species from Brazil. Their products have high biotechnological potential, however there are no studies about the biological activities of pollen collected by M. fasciculata. In this context, the present study investigated [...] Read more.
The stingless bee, Melipona fasciculata Smith (Apidae, Meliponini), is a native species from Brazil. Their products have high biotechnological potential, however there are no studies about the biological activities of pollen collected by M. fasciculata. In this context, the present study investigated the chemical composition, anti-oxidant, anti-inflammatory, and analgesic activities of hydroethanolic pollen extracts collected by M. fasciculata in three cities in Maranhão State, Brazil. We verified the antioxidant activity of the extracts and inhibitory activity against the cyclooxygenase enzyme using in vitro assays and in allowed to select the extract with higher efficiency to be used on in vivo assays. In these trials, the selected extract showed high anti-inflammatory activity as well as nociceptive effects at central and peripheral level, suggesting that this extract acts on inhibition of histamine release and decreased synthesis of prostaglandins and the in-silico study suggested that polyphenols and acids fatty acids in the extract may be associated with these activities. The results of the present study report the high biological potential of pollen extract and we conclude that the pollen collected by M. fasciculata can be considered as the object of research for new pharmacological alternatives. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Figure 1

18 pages, 3141 KiB  
Article
Spilanthol Inhibits Inflammatory Transcription Factors and iNOS Expression in Macrophages and Exerts Anti-inflammatory Effects in Dermatitis and Pancreatitis
by Edina Bakondi, Salam Bhopen Singh, Zoltán Hajnády, Máté Nagy-Pénzes, Zsolt Regdon, Katalin Kovács, Csaba Hegedűs, Tamara Madácsy, József Maléth, Péter Hegyi, Máté Á. Demény, Tibor Nagy, Sándor Kéki, Éva Szabó and László Virág
Int. J. Mol. Sci. 2019, 20(17), 4308; https://doi.org/10.3390/ijms20174308 - 03 Sep 2019
Cited by 22 | Viewed by 4614
Abstract
Activated macrophages upregulate inducible nitric oxide synthase (iNOS) leading to the profuse production of nitric oxide (NO) and, eventually, tissue damage. Using macrophage NO production as a biochemical marker of inflammation, we tested different parts (flower, leaf, and stem) of the medicinal plant, [...] Read more.
Activated macrophages upregulate inducible nitric oxide synthase (iNOS) leading to the profuse production of nitric oxide (NO) and, eventually, tissue damage. Using macrophage NO production as a biochemical marker of inflammation, we tested different parts (flower, leaf, and stem) of the medicinal plant, Spilanthes acmella. We found that extracts prepared from all three parts, especially the flowers, suppressed NO production in RAW macrophages in response to interferon-γ and lipopolysaccharide. Follow up experiments with selected bioactive molecules from the plant (α-amyrin, β-caryophylline, scopoletin, vanillic acid, trans-ferulic acid, and spilanthol) indicated that the N-alkamide, spilanthol, is responsible for the NO-suppressive effects and provides protection from NO-dependent cell death. Spilanthol reduced the expression of iNOS mRNA and protein and, as a possible underlying mechanism, inhibited the activation of several transcription factors (NFκB, ATF4, FOXO1, IRF1, ETS, and AP1) and sensitized cells to downregulation of Smad (TF array experiments). The iNOS inhibitory effect translated into an anti-inflammatory effect, as demonstrated in a phorbol 12-myristate 13-acetate-induced dermatitis and, to a smaller extent, in cerulein-induced pancreatitis. In summary, we demonstrate that spilanthol inhibits iNOS expression, NO production and suppresses inflammatory TFs. These events likely contribute to the observed anti-inflammatory actions of spilanthol in dermatitis and pancreatitis. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Figure 1

12 pages, 2315 KiB  
Article
The Effects of Poncirus fructus on Insulin Resistance and the Macrophage-Mediated Inflammatory Response in High Fat Diet-Induced Obese Mice
by Mia Kim, Mi Hyeon Seol and Byung-Cheol Lee
Int. J. Mol. Sci. 2019, 20(12), 2858; https://doi.org/10.3390/ijms20122858 - 12 Jun 2019
Cited by 7 | Viewed by 2806
Abstract
Obesity is a chronic low-grade inflammatory condition in which hypertrophied adipocytes and adipose tissue immune cells, mainly macrophages, contribute to increased circulating levels of proinflammatory cytokines. Obesity-associated chronic low-grade systemic inflammation is considered a focal point and a therapeutic target in insulin resistance [...] Read more.
Obesity is a chronic low-grade inflammatory condition in which hypertrophied adipocytes and adipose tissue immune cells, mainly macrophages, contribute to increased circulating levels of proinflammatory cytokines. Obesity-associated chronic low-grade systemic inflammation is considered a focal point and a therapeutic target in insulin resistance and metabolic diseases. We evaluate the effect of Poncirus fructus (PF) on insulin resistance and its mechanism based on inflammatory responses in high-fat diet (HFD)-induced obese mice. Mice were fed an HFD to induce obesity and then administered PF. Body weight, epididymal fat and liver weight, glucose, lipid, insulin, and histologic characteristics were evaluated to determine the effect of PF on insulin resistance by analyzing the proportion of macrophages in epididymal fat and liver and measured inflammatory gene expression. PF administration significantly decreased the fasting and postprandial glucose, fasting insulin, HOMA-IR, total-cholesterol, triglycerides, and low-density lipoprotein cholesterol levels. The epididymal fat tissue and liver showed a significant decrease of fat accumulation in histological analysis. PF significantly reduced the number of adipose tissue macrophages (ATMs), F4/80+ Kupffer cells, and CD68+ Kupffer cells, increased the proportion of M2 phenotype macrophages, and decreased the gene expression of inflammatory cytokines. These results suggest that PF could be used to improve insulin resistance through modulation of macrophage-mediated inflammation and enhance glucose and lipid metabolism. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Graphical abstract

17 pages, 2147 KiB  
Article
Inhibitory Effects of a Novel Chrysin-Derivative, CPD 6, on Acute and Chronic Skin Inflammation
by Chan-Hee Yu, Beomseon Suh, Iljin Shin, Eun-Hye Kim, Donghyun Kim, Young-Jun Shin, Sun-Young Chang, Seung-Hoon Baek, Hyoungsu Kim and Ok-Nam Bae
Int. J. Mol. Sci. 2019, 20(11), 2607; https://doi.org/10.3390/ijms20112607 - 28 May 2019
Cited by 19 | Viewed by 3832
Abstract
The skin is an important physiological barrier against external stimuli, such as ultraviolet radiation (UV), xenobiotics, and bacteria. Dermal inflammatory reactions are associated with various skin disorders, including chemical-induced irritation and atopic dermatitis. Modulation of skin inflammatory response is a therapeutic strategy for [...] Read more.
The skin is an important physiological barrier against external stimuli, such as ultraviolet radiation (UV), xenobiotics, and bacteria. Dermal inflammatory reactions are associated with various skin disorders, including chemical-induced irritation and atopic dermatitis. Modulation of skin inflammatory response is a therapeutic strategy for skin diseases. Here, we synthesized chrysin-derivatives and identified the most potent derivative of Compound 6 (CPD 6). We evaluated its anti-inflammatory effects in vitro cells of macrophages and keratinocytes, and in vivo dermatitis mouse models. In murine macrophages stimulated by lipopolysaccharide (LPS), CPD 6 significantly attenuated the release of inflammatory mediators such as nitric oxide (NO) (IC50 for NO inhibition: 3.613 μM) and other cytokines. In cultured human keratinocytes, CPD 6 significantly attenuated the release of inflammatory cytokines induced by the combination of IFN-γ and TNF-α, UV irradiation, or chemical irritant stimulation. CPD 6 inhibited NFκB and JAK2/STAT1 signaling pathways, and activated Nrf2/HO-1 signaling. In vivo relevancy of anti-inflammatory effects of CPD 6 was observed in acute and chronic skin inflammation models in mice. CPD 6 showed significant anti-inflammatory properties both in vitro cells and in vivo dermatitis animal models, mediated by the inhibition of the NFκB and JAK2-STAT1 pathways and activation of Nrf2/HO-1 signaling. We propose that the novel chrysin-derivative CPD 6 may be a potential therapeutic agent for skin inflammation. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Graphical abstract

13 pages, 5480 KiB  
Article
Therapeutic Effect of Dipsacus asperoides C. Y. Cheng et T. M. Ai in Ovalbumin-Induced Murine Model of Asthma
by Na-Rae Shin, A Yeong Lee, Gunhyuk Park, Je-Won Ko, Jong-Choon Kim, In-Sik Shin and Joong-Sun Kim
Int. J. Mol. Sci. 2019, 20(8), 1855; https://doi.org/10.3390/ijms20081855 - 15 Apr 2019
Cited by 12 | Viewed by 2976
Abstract
Dipsacus asperoides C. Y. Cheng et T. M. Ai (DA) has been used in China as a traditional medicine to treat lumbar and knee pain, liver dysfunction, and fractures. We explored the suppressive effect of DA on allergic asthma using an ovalbumin (OVA)-induced [...] Read more.
Dipsacus asperoides C. Y. Cheng et T. M. Ai (DA) has been used in China as a traditional medicine to treat lumbar and knee pain, liver dysfunction, and fractures. We explored the suppressive effect of DA on allergic asthma using an ovalbumin (OVA)-induced asthma model. In the asthma model, female Balb/c mice were sensitized to OVA on day 0 and 14 to boost immune responses and then exposed to OVA solution by using an ultrasonic nebulizer on days 21 to 23. DA (20 and 40 mg/kg) was administered to mice by oral gavage on days 18 to 23. Methacholine responsiveness was determined on day 24 using a plethysmography. On day 25, we collected bronchoalveolar lavage fluid, serum, and lung tissue from animals under anesthesia. DA treatment effectively inhibited methacholine responsiveness, inflammatory cell infiltration, proinflammatory cytokines such as interleukin (IL)-5 and IL-13, and immunoglobulin (Ig) E in OVA-induced asthma model. Reductions in airway inflammation and mucus hypersecretion, accompanied by decreases in the expression of inducible nitric oxide synthase (iNOS) and the phosphorylation of nuclear factor kappa B (NF-κB), were also observed. Our results indicated that DA attenuated the asthmatic response, and that this attenuation was closely linked to NF-κB suppression. Thus, this study suggests that DA is a potential therapeutic for allergic asthma. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Figure 1

17 pages, 1213 KiB  
Article
Salicylate and Procyanidin-Rich Stem Extracts of Gaultheria procumbens L. Inhibit Pro-Inflammatory Enzymes and Suppress Pro-Inflammatory and Pro-Oxidant Functions of Human Neutrophils Ex Vivo
by Piotr Michel, Sebastian Granica, Anna Magiera, Karolina Rosińska, Małgorzata Jurek, Łukasz Poraj and Monika Anna Olszewska
Int. J. Mol. Sci. 2019, 20(7), 1753; https://doi.org/10.3390/ijms20071753 - 09 Apr 2019
Cited by 21 | Viewed by 3817
Abstract
Salicylate-rich plants are an attractive alternative to synthetic anti-inflammatory drugs due to a better safety profile and the advantage of complementary anti-inflammatory and antioxidant effects of the co-occurring non-salicylate phytochemicals. Here, the phytochemical value and biological effects in vitro and ex vivo of [...] Read more.
Salicylate-rich plants are an attractive alternative to synthetic anti-inflammatory drugs due to a better safety profile and the advantage of complementary anti-inflammatory and antioxidant effects of the co-occurring non-salicylate phytochemicals. Here, the phytochemical value and biological effects in vitro and ex vivo of the stems of one of such plants, Gaultheria procumbens L., were evaluated. The best extrahent for effective recovery of the active stem molecules was established in comparative studies of five extracts. The UHPLC-PDA-ESI-MS3, HPLC-PDA, and UV-photometric assays revealed that the selected acetone extract (AE) accumulates a rich polyphenolic fraction (35 identified constituents; total content 427.2 mg/g dw), mainly flavanols (catechins and proanthocyanidins; 201.3 mg/g dw) and methyl salicylate glycosides (199.9 mg/g dw). The extract and its model components were effective cyclooxygenase-2, lipoxygenase, and hyaluronidase inhibitors; exhibited strong antioxidant capacity in six non-cellular in vitro models (AE and procyanidins); and also significantly and dose-dependently reduced the levels of reactive oxygen species (ROS), and the release of cytokines (IL-1β, IL-8, TNF-α) and proteinases (elastase-2, metalloproteinase-9) in human neutrophils stimulated ex vivo by lipopolysaccharide (LPS) and N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP). The cellular safety of AE was demonstrated by flow cytometry. The results support the application of the plant in traditional medicine and encourage the use of AE for development of new therapeutic agents. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Graphical abstract

11 pages, 2061 KiB  
Article
Autophagy Activation by Crepidiastrum Denticulatum Extract Attenuates Environmental Pollutant-Induced Damage in Dermal Fibroblasts
by Seok Jeong Yoon, Chae Jin Lim, Hwa-Jee Chung, Joo-Hwan Kim, Yang Hoon Huh, Keedon Park and Sekyoo Jeong
Int. J. Mol. Sci. 2019, 20(3), 517; https://doi.org/10.3390/ijms20030517 - 26 Jan 2019
Cited by 11 | Viewed by 4062
Abstract
Pollution-induced skin damage results in oxidative stress; cellular toxicity; inflammation; and, ultimately, premature skin aging. Previous studies suggest that the activation of autophagy can protect oxidation-induced cellular damage and aging-like changes in skin. In order to develop new anti-pollution ingredients, this study screened [...] Read more.
Pollution-induced skin damage results in oxidative stress; cellular toxicity; inflammation; and, ultimately, premature skin aging. Previous studies suggest that the activation of autophagy can protect oxidation-induced cellular damage and aging-like changes in skin. In order to develop new anti-pollution ingredients, this study screened various kinds of natural extracts to measure their autophagy activation efficacy in cultured dermal fibroblast. The stimulation of autophagy flux by the selected extracts was further confirmed both by the expression of proteins associated with the autophagy signals and by electron microscope. Crepidiastrum denticulatum (CD) extract treated cells showed the highest autophagic vacuole formation in the non-cytotoxic range. The phosphorylation of adenosine monophosphate kinase (AMPK), but not the inhibition of mammalian target of rapamycin (mTOR), was observed by CD-extract treatment. Its anti-pollution effects were further evaluated with model compounds, benzo[a]pyrene (BaP) and cadmium chloride (CdCl2), and a CD extract treatment resulted in both the protection of cytotoxicity and a reduction of proinflammatory cytokines. These results suggest that the autophagy activators can be a new protection regimen for anti-pollution. Therefore, CD extract can be used for anti-inflammatory and anti-pollution cosmetic ingredients. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Graphical abstract

Review

Jump to: Research, Other

21 pages, 1000 KiB  
Review
Phytochemicals against TNFα-Mediated Neuroinflammatory Diseases
by Lalita Subedi, Si Eun Lee, Syeda Madiha, Bhakta Prasad Gaire, Mirim Jin, Silvia Yumnam and Sun Yeou Kim
Int. J. Mol. Sci. 2020, 21(3), 764; https://doi.org/10.3390/ijms21030764 - 24 Jan 2020
Cited by 51 | Viewed by 5162
Abstract
Tumor necrosis factor-alpha (TNF-α) is a well-known pro-inflammatory cytokine responsible for the modulation of the immune system. TNF-α plays a critical role in almost every type of inflammatory disorder, including central nervous system (CNS) diseases. Although TNF-α is a well-studied [...] Read more.
Tumor necrosis factor-alpha (TNF-α) is a well-known pro-inflammatory cytokine responsible for the modulation of the immune system. TNF-α plays a critical role in almost every type of inflammatory disorder, including central nervous system (CNS) diseases. Although TNF-α is a well-studied component of inflammatory responses, its functioning in diverse cell types is still unclear. TNF-α functions through its two main receptors: tumor necrosis factor receptor 1 and 2 (TNFR1, TNFR2), also known as p55 and p75, respectively. Normally, the functions of soluble TNF-α-induced TNFR1 activation are reported to be pro-inflammatory and apoptotic. While TNF-α mediated TNFR2 activation has a dual role. Several synthetic drugs used as inhibitors of TNF-α for diverse inflammatory diseases possess serious adverse effects, which make patients and researchers turn their focus toward natural medicines, phytochemicals in particular. Phytochemicals targeting TNF-α can significantly improve disease conditions involving TNF-α with fewer side effects. Here, we reviewed known TNF-α inhibitors, as well as lately studied phytochemicals, with a role in inhibiting TNF-α itself, and TNF-α-mediated signaling in inflammatory diseases focusing mainly on CNS disorders. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Figure 1

39 pages, 1332 KiB  
Review
Targeting Inflammation by Flavonoids: Novel Therapeutic Strategy for Metabolic Disorders
by Mohammad Hosein Farzaei, Amit Kumar Singh, Ramesh Kumar, Courtney R. Croley, Abhay K. Pandey, Ericsson Coy-Barrera, Jayanta Kumar Patra, Gitishree Das, Rout George Kerry, Giuseppe Annunziata, Gian Carlo Tenore, Haroon Khan, Matteo Micucci, Roberta Budriesi, Saeideh Momtaz, Seyed Mohammad Nabavi and Anupam Bishayee
Int. J. Mol. Sci. 2019, 20(19), 4957; https://doi.org/10.3390/ijms20194957 - 08 Oct 2019
Cited by 59 | Viewed by 12501
Abstract
A balanced metabolic profile is essential for normal human physiological activities. Disproportions in nutrition give rise to imbalances in metabolism that are associated with aberrant immune function and an elevated risk for inflammatory-associated disorders. Inflammation is a complex process, and numerous mediators affect [...] Read more.
A balanced metabolic profile is essential for normal human physiological activities. Disproportions in nutrition give rise to imbalances in metabolism that are associated with aberrant immune function and an elevated risk for inflammatory-associated disorders. Inflammation is a complex process, and numerous mediators affect inflammation-mediated disorders. The available clinical modalities do not effectively address the underlying diseases but rather relieve the symptoms. Therefore, novel targeted agents have the potential to normalize the metabolic system and, thus, provide meaningful therapy to the underlying disorder. In this connection, polyphenols, the well-known and extensively studied phytochemical moieties, were evaluated for their effective role in the restoration of metabolism via various mechanistic signaling pathways. The various flavonoids that we observed in this comprehensive review interfere with the metabolic events that induce inflammation. The mechanisms via which the polyphenols, in particular flavonoids, act provide a promising treatment option for inflammatory disorders. However, detailed clinical studies of such molecules are required to decide their clinical fate. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Figure 1

38 pages, 2979 KiB  
Review
Animal Models of Inflammation for Screening of Anti-inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals
by Kalpesh R. Patil, Umesh B. Mahajan, Banappa S. Unger, Sameer N. Goyal, Sateesh Belemkar, Sanjay J. Surana, Shreesh Ojha and Chandragouda R. Patil
Int. J. Mol. Sci. 2019, 20(18), 4367; https://doi.org/10.3390/ijms20184367 - 05 Sep 2019
Cited by 174 | Viewed by 23794
Abstract
Inflammation is one of the common events in the majority of acute as well as chronic debilitating diseases and represent a chief cause of morbidity in today’s era of modern lifestyle. If unchecked, inflammation leads to development of rheumatoid arthritis, diabetes, cancer, Alzheimer’s [...] Read more.
Inflammation is one of the common events in the majority of acute as well as chronic debilitating diseases and represent a chief cause of morbidity in today’s era of modern lifestyle. If unchecked, inflammation leads to development of rheumatoid arthritis, diabetes, cancer, Alzheimer’s disease, and atherosclerosis along with pulmonary, autoimmune and cardiovascular diseases. Inflammation involves a complex network of many mediators, a variety of cells, and execution of multiple pathways. Current therapy for inflammatory diseases is limited to the steroidal and non-steroidal anti-inflammatory agents. The chronic use of these drugs is reported to cause severe adverse effects like gastrointestinal, cardiovascular, and renal abnormalities. There is a massive need to explore new anti-inflammatory agents with selective action and lesser toxicity. Plants and isolated phytoconstituents are promising and interesting sources of new anti-inflammatories. However, drug development from natural sources has been linked with hurdles like the complex nature of extracts, difficulties in isolation of pure phytoconstituents, and the yield of isolated compounds in minute quantities that is insufficient for subsequent lead development. Although various in-vivo and in-vitro models for anti-inflammatory drug development are available, judicious selection of appropriate animal models is a vital step in the early phase of drug development. Systematic evaluation of phytoconstituents can facilitate the identification and development of potential anti-inflammatory leads from natural sources. The present review describes various techniques of anti-inflammatory drug screening with its advantages and limitations, elaboration on biological targets of phytoconstituents in inflammation and biomarkers for the prediction of adverse effects of anti-inflammatory drugs. The systematic approach proposed through present article for anti-inflammatory drug screening can rationalize the identification of novel phytoconstituents at the initial stage of drug screening programs. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Figure 1

Other

Jump to: Research, Review

14 pages, 1648 KiB  
Brief Report
Aerosolized Bovine Lactoferrin Counteracts Infection, Inflammation and Iron Dysbalance in A Cystic Fibrosis Mouse Model of Pseudomonas aeruginosa Chronic Lung Infection
by Antimo Cutone, Maria Stefania Lepanto, Luigi Rosa, Mellani Jinnett Scotti, Alice Rossi, Serena Ranucci, Ida De Fino, Alessandra Bragonzi, Piera Valenti, Giovanni Musci and Francesca Berlutti
Int. J. Mol. Sci. 2019, 20(9), 2128; https://doi.org/10.3390/ijms20092128 - 30 Apr 2019
Cited by 49 | Viewed by 5836
Abstract
Cystic fibrosis (CF) is a genetic disorder affecting several organs including airways. Bacterial infection, inflammation and iron dysbalance play a major role in the chronicity and severity of the lung pathology. The aim of this study was to investigate the effect of lactoferrin [...] Read more.
Cystic fibrosis (CF) is a genetic disorder affecting several organs including airways. Bacterial infection, inflammation and iron dysbalance play a major role in the chronicity and severity of the lung pathology. The aim of this study was to investigate the effect of lactoferrin (Lf), a multifunctional iron-chelating glycoprotein of innate immunity, in a CF murine model of Pseudomonas aeruginosa chronic lung infection. To induce chronic lung infection, C57BL/6 mice, either cystic fibrosis transmembrane conductance regulator (CFTR)-deficient (Cftrtm1UNCTgN(FABPCFTR)#Jaw) or wild-type (WT), were intra-tracheally inoculated with multidrug-resistant MDR-RP73 P. aeruginosa embedded in agar beads. Treatments with aerosolized bovine Lf (bLf) or saline were started five minutes after infection and repeated daily for six days. Our results demonstrated that aerosolized bLf was effective in significantly reducing both pulmonary bacterial load and infiltrated leukocytes in infected CF mice. Furthermore, for the first time, we showed that bLf reduced pulmonary iron overload, in both WT and CF mice. In particular, at molecular level, a significant decrease of both the iron exporter ferroportin and iron storage ferritin, as well as luminal iron content was observed. Overall, bLf acts as a potent multi-targeting agent able to break the vicious cycle induced by P. aeruginosa, inflammation and iron dysbalance, thus mitigating the severity of CF-related pathology and sequelae. Full article
(This article belongs to the Special Issue Natural Anti-inflammatory Agents 2019)
Show Figures

Graphical abstract

Back to TopTop