Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

11 pages, 1093 KiB  
Article
Sensitivity to Immune Checkpoint Blockade in Advanced Non-Small Cell Lung Cancer Patients with EGFR Exon 20 Insertion Mutations
by Giulio Metro, Sara Baglivo, Guido Bellezza, Martina Mandarano, Alessio Gili, Giovanni Marchetti, Marco Toraldo, Carmen Molica, Maria Sole Reda, Francesca Romana Tofanetti, Annamaria Siggillino, Enrico Prosperi, Antonella Giglietti, Bruna Di Girolamo, Miriam Garaffa, Francesca Marasciulo, Vincenzo Minotti, Marco Gunnellini, Annalisa Guida, Monica Sassi, Angelo Sidoni, Fausto Roila and Vienna Ludoviniadd Show full author list remove Hide full author list
Genes 2021, 12(5), 679; https://doi.org/10.3390/genes12050679 - 30 Apr 2021
Cited by 30 | Viewed by 3601
Abstract
Besides platinum-based chemotherapy, no established treatment option exists for advanced non-small-cell lung cancer (NSCLC) patients with EGFR exon 20 (Ex20ins) insertion mutations. We sought to determine the clinical outcome of patients with this EGFR mutation subtype in the immunotherapy era. Thirty NSCLCs with [...] Read more.
Besides platinum-based chemotherapy, no established treatment option exists for advanced non-small-cell lung cancer (NSCLC) patients with EGFR exon 20 (Ex20ins) insertion mutations. We sought to determine the clinical outcome of patients with this EGFR mutation subtype in the immunotherapy era. Thirty NSCLCs with EGFR Ex20ins mutations were identified, of whom 15 had received immune checkpoint blockade (ICB) treatment as monotherapy (N = 12), in combination with chemotherapy (N = 2) or with another immunotherapeutic agent (N = 1). The response rate was observed in 1 out of 15 patients (6.7%), median progression-free survival (PFS) was 2.0 months and median overall survival (OS) was 5.3 months. A trend towards an inferior outcome in terms of PFS and OS was observed for patients receiving ICB treatment in the first versus second line setting (PFS: 1.6 months versus 2.7 months, respectively, p = 0.16—OS: 2.0 months versus 8.1 months, respectively, p = 0.09). Median OS from the time of diagnosis of advanced disease was shorter for patients treated with ICB versus those who did not receive immunotherapy (12.9 months versus 25.2 months, respectively, p = 0.08), which difference remained associated with a worse survival outcome at multivariate analysis (p = 0.04). Treatment with ICB is poorly effective in NSCLCs with EGFR Ex20ins mutations, especially when given in the first-line setting. This information is crucial in order to select the optimal treatment strategy for patients with this subtype of EGFR mutation. Full article
Show Figures

Figure 1

12 pages, 2888 KiB  
Article
Microbiological Evaluation and Sperm DNA Fragmentation in Semen Samples of Patients Undergoing Fertility Investigation
by Chiara Pagliuca, Federica Cariati, Francesca Bagnulo, Elena Scaglione, Consolata Carotenuto, Fabrizio Farina, Valeria D’Argenio, Francesca Carraturo, Paola D’Aprile, Mariateresa Vitiello, Ida Strina, Carlo Alviggi, Roberta Colicchio, Rossella Tomaiuolo and Paola Salvatore
Genes 2021, 12(5), 654; https://doi.org/10.3390/genes12050654 - 27 Apr 2021
Cited by 22 | Viewed by 2661
Abstract
Fifteen percent of male infertility is associated with urogenital infections; several pathogens are able to alter the testicular and accessory glands’ microenvironment, resulting in the impairment of biofunctional sperm parameters. The purpose of this study was to assess the influence of urogenital infections [...] Read more.
Fifteen percent of male infertility is associated with urogenital infections; several pathogens are able to alter the testicular and accessory glands’ microenvironment, resulting in the impairment of biofunctional sperm parameters. The purpose of this study was to assess the influence of urogenital infections on the quality of 53 human semen samples through standard analysis, microbiological evaluation, and molecular characterization of sperm DNA damage. The results showed a significant correlation between infected status and semen volume, sperm concentration, and motility. Moreover, a high risk of fragmented sperm DNA was demonstrated in the altered semen samples. Urogenital infections are often asymptomatic and thus an in-depth evaluation of the seminal sample can allow for both the diagnosis and therapy of infections while providing more indicators for male infertility management. Full article
(This article belongs to the Special Issue Genetics and Genomics of Reproductive Medicine)
Show Figures

Figure 1

19 pages, 2576 KiB  
Article
Species-Specific Quality Control, Assembly and Contamination Detection in Microbial Isolate Sequences with AQUAMIS
by Carlus Deneke, Holger Brendebach, Laura Uelze, Maria Borowiak, Burkhard Malorny and Simon H. Tausch
Genes 2021, 12(5), 644; https://doi.org/10.3390/genes12050644 - 26 Apr 2021
Cited by 41 | Viewed by 3923
Abstract
Sequencing of whole microbial genomes has become a standard procedure for cluster detection, source tracking, outbreak investigation and surveillance of many microorganisms. An increasing number of laboratories are currently in a transition phase from classical methods towards next generation sequencing, generating unprecedented amounts [...] Read more.
Sequencing of whole microbial genomes has become a standard procedure for cluster detection, source tracking, outbreak investigation and surveillance of many microorganisms. An increasing number of laboratories are currently in a transition phase from classical methods towards next generation sequencing, generating unprecedented amounts of data. Since the precision of downstream analyses depends significantly on the quality of raw data generated on the sequencing instrument, a comprehensive, meaningful primary quality control is indispensable. Here, we present AQUAMIS, a Snakemake workflow for an extensive quality control and assembly of raw Illumina sequencing data, allowing laboratories to automatize the initial analysis of their microbial whole-genome sequencing data. AQUAMIS performs all steps of primary sequence analysis, consisting of read trimming, read quality control (QC), taxonomic classification, de-novo assembly, reference identification, assembly QC and contamination detection, both on the read and assembly level. The results are visualized in an interactive HTML report including species-specific QC thresholds, allowing non-bioinformaticians to assess the quality of sequencing experiments at a glance. All results are also available as a standard-compliant JSON file, facilitating easy downstream analyses and data exchange. We have applied AQUAMIS to analyze ~13,000 microbial isolates as well as ~1000 in-silico contaminated datasets, proving the workflow’s ability to perform in high throughput routine sequencing environments and reliably predict contaminations. We found that intergenus and intragenus contaminations can be detected most accurately using a combination of different QC metrics available within AQUAMIS. Full article
Show Figures

Figure 1

21 pages, 3045 KiB  
Article
Down-Regulation of SlGRAS10 in Tomato Confers Abiotic Stress Tolerance
by Sidra Habib, Yee Yee Lwin and Ning Li
Genes 2021, 12(5), 623; https://doi.org/10.3390/genes12050623 - 22 Apr 2021
Cited by 24 | Viewed by 2422
Abstract
Adverse environmental factors like salt stress, drought, and extreme temperatures, cause damage to plant growth, development, and crop yield. GRAS transcription factors (TFs) have numerous functions in biological processes. Some studies have reported that the GRAS protein family plays significant functions in plant [...] Read more.
Adverse environmental factors like salt stress, drought, and extreme temperatures, cause damage to plant growth, development, and crop yield. GRAS transcription factors (TFs) have numerous functions in biological processes. Some studies have reported that the GRAS protein family plays significant functions in plant growth and development under abiotic stresses. In this study, we demonstrated the functional characterization of a tomato SlGRAS10 gene under abiotic stresses such as salt stress and drought. Down-regulation of SlGRAS10 by RNA interference (RNAi) produced dwarf plants with smaller leaves, internode lengths, and enhanced flavonoid accumulation. We studied the effects of abiotic stresses on RNAi and wild-type (WT) plants. Moreover, SlGRAS10-RNAi plants were more tolerant to abiotic stresses (salt, drought, and Abscisic acid) than the WT plants. Down-regulation of SlGRAS10 significantly enhanced the expressions of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) to reduce the effects of reactive oxygen species (ROS) such as O2− and H2O2. Malondialdehyde (MDA) and proline contents were remarkably high in SlGRAS10-RNAi plants. Furthermore, the expression levels of chlorophyll biosynthesis, flavonoid biosynthesis, and stress-related genes were also enhanced under abiotic stress conditions. Collectively, our conclusions emphasized the significant function of SlGRAS10 as a stress tolerate transcription factor in a certain variety of abiotic stress tolerance by enhancing osmotic potential, flavonoid biosynthesis, and ROS scavenging system in the tomato plant. Full article
(This article belongs to the Special Issue Genetics and Physiology of Multiple-Stress Tolerance in Crops)
Show Figures

Figure 1

15 pages, 1149 KiB  
Communication
Protective Role of a TMPRSS2 Variant on Severe COVID-19 Outcome in Young Males and Elderly Women
by Maria Monticelli, Bruno Hay Mele, Elisa Benetti, Chiara Fallerini, Margherita Baldassarri, Simone Furini, Elisa Frullanti, Francesca Mari, GEN-COVID Multicenter Study, Giuseppina Andreotti, Maria Vittoria Cubellis and Alessandra Renieri
Genes 2021, 12(4), 596; https://doi.org/10.3390/genes12040596 - 19 Apr 2021
Cited by 40 | Viewed by 5558
Abstract
The protease encoded by the TMPRSS2 gene facilitates viral infections and has been implicated in the pathogenesis of SARS-CoV-2. We analyzed the TMPRSS2 sequence and correlated the protein variants with the clinical features of a cohort of 1177 patients affected by COVID-19 in [...] Read more.
The protease encoded by the TMPRSS2 gene facilitates viral infections and has been implicated in the pathogenesis of SARS-CoV-2. We analyzed the TMPRSS2 sequence and correlated the protein variants with the clinical features of a cohort of 1177 patients affected by COVID-19 in Italy. Nine relatively common variants (allele frequency > 0.01) and six missense variants which may affect the protease activity according to PolyPhen-2 in HumVar-trained mode were identified. Among them, p.V197M (p.Val197Met) (rs12329760) emerges as a common variant that has a deleterious effect on the protease and a protective effect on the patients. Its role appears particularly relevant in two subgroups of patients—young males and elderly women—and among those affected by co-morbidities, where the variant frequency is higher among individuals who were mildly affected by the disease and did not need hospitalization or oxygen therapy than among those more severely affected, who required oxygen therapy, ventilation or intubation. This study provides useful information for the identification of patients at risk of developing a severe form of COVID-19, and encourages the usage of drugs affecting the expression of TMPRSS2 or inhibiting protein activity. Full article
(This article belongs to the Special Issue COVID-19 and Molecular Genetics)
Show Figures

Graphical abstract

15 pages, 3226 KiB  
Article
Deciphering the Monilinia fructicola Genome to Discover Effector Genes Possibly Involved in Virulence
by Laura Vilanova, Claudio A. Valero-Jiménez and Jan A.L. van Kan
Genes 2021, 12(4), 568; https://doi.org/10.3390/genes12040568 - 14 Apr 2021
Cited by 22 | Viewed by 2610
Abstract
Brown rot is the most economically important fungal disease of stone fruits and is primarily caused by Monilinia laxa and Monlinia fructicola. Both species co-occur in European orchards although M. fructicola is considered to cause the most severe yield losses in stone [...] Read more.
Brown rot is the most economically important fungal disease of stone fruits and is primarily caused by Monilinia laxa and Monlinia fructicola. Both species co-occur in European orchards although M. fructicola is considered to cause the most severe yield losses in stone fruit. This study aimed to generate a high-quality genome of M. fructicola and to exploit it to identify genes that may contribute to pathogen virulence. PacBio sequencing technology was used to assemble the genome of M. fructicola. Manual structural curation of gene models, supported by RNA-Seq, and functional annotation of the proteome yielded 10,086 trustworthy gene models. The genome was examined for the presence of genes that encode secreted proteins and more specifically effector proteins. A set of 134 putative effectors was defined. Several effector genes were cloned into Agrobacterium tumefaciens for transient expression in Nicotiana benthamiana plants, and some of them triggered necrotic lesions. Studying effectors and their biological properties will help to better understand the interaction between M. fructicola and its stone fruit host plants. Full article
(This article belongs to the Special Issue Omics Research of Pathogenic Microorganisms)
Show Figures

Figure 1

14 pages, 312 KiB  
Article
Deepening of In Silico Evaluation of SARS-CoV-2 Detection RT-qPCR Assays in the Context of New Variants
by Mathieu Gand, Kevin Vanneste, Isabelle Thomas, Steven Van Gucht, Arnaud Capron, Philippe Herman, Nancy H. C. Roosens and Sigrid C. J. De Keersmaecker
Genes 2021, 12(4), 565; https://doi.org/10.3390/genes12040565 - 13 Apr 2021
Cited by 23 | Viewed by 3519
Abstract
For 1 year now, the world is undergoing a coronavirus disease-2019 (COVID-19) pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The most widely used method for COVID-19 diagnosis is the detection of viral RNA by RT-qPCR with a specific set [...] Read more.
For 1 year now, the world is undergoing a coronavirus disease-2019 (COVID-19) pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The most widely used method for COVID-19 diagnosis is the detection of viral RNA by RT-qPCR with a specific set of primers and probe. It is important to frequently evaluate the performance of these tests and this can be done first by an in silico approach. Previously, we reported some mismatches between the oligonucleotides of publicly available RT-qPCR assays and SARS-CoV-2 genomes collected from GISAID and NCBI, potentially impacting proper detection of the virus. In the present study, 11 primers and probe sets investigated during the first study were evaluated again with 84,305 new SARS-CoV-2 unique genomes collected between June 2020 and January 2021. The lower inclusivity of the China CDC assay targeting the gene N has continued to decrease with new mismatches detected, whereas the other evaluated assays kept their inclusivity above 99%. Additionally, some mutations specific to new SARS-CoV-2 variants of concern were found to be located in oligonucleotide annealing sites. This might impact the strategy to be considered for future SARS-CoV-2 testing. Given the potential threat of the new variants, it is crucial to assess if they can still be correctly targeted by the primers and probes of the RT-qPCR assays. Our study highlights that considering the evolution of the virus and the emergence of new variants, an in silico (re-)evaluation should be performed on a regular basis. Ideally, this should be done for all the RT-qPCR assays employed for SARS-CoV-2 detection, including also commercial tests, although the primer and probe sequences used in these kits are rarely disclosed, which impedes independent performance evaluation. Full article
(This article belongs to the Special Issue COVID-19 and Molecular Genetics)
21 pages, 6386 KiB  
Article
OTUs and ASVs Produce Comparable Taxonomic and Diversity from Shrimp Microbiota 16S Profiles Using Tailored Abundance Filters
by Rodrigo García-López, Fernanda Cornejo-Granados, Alonso A. Lopez-Zavala, Andrés Cota-Huízar, Rogerio R. Sotelo-Mundo, Bruno Gómez-Gil and Adrian Ochoa-Leyva
Genes 2021, 12(4), 564; https://doi.org/10.3390/genes12040564 - 13 Apr 2021
Cited by 23 | Viewed by 6528
Abstract
The interplay between shrimp immune system, its environment, and microbiota contributes to the organism’s homeostasis and optimal production. The metagenomic composition is typically studied using 16S rDNA profiling by clustering amplicon sequences into operational taxonomic units (OTUs) and, more recently, amplicon sequence variants [...] Read more.
The interplay between shrimp immune system, its environment, and microbiota contributes to the organism’s homeostasis and optimal production. The metagenomic composition is typically studied using 16S rDNA profiling by clustering amplicon sequences into operational taxonomic units (OTUs) and, more recently, amplicon sequence variants (ASVs). Establish the compatibility of the taxonomy, α, and β diversity described by both methods is necessary to compare past and future shrimp microbiota studies. Here, we used identical sequences to survey the V3 16S hypervariable-region using 97% and 99% OTUs and ASVs to assess the hepatopancreas and intestine microbiota of L. vannamei from two ponds under standardized rearing conditions. We found that applying filters to retain clusters >0.1% of the total abundance per sample enabled a consistent taxonomy comparison while preserving >94% of the total reads. The three sets turned comparable at the family level, whereas the 97% identity OTU set produced divergent genus and species profiles. Interestingly, the detection of organ and pond variations was robust to the clustering method’s choice, producing comparable α and β-diversity profiles. For comparisons on shrimp microbiota between past and future studies, we strongly recommend that ASVs be compared at the family level to 97% identity OTUs or use 99% identity OTUs, both using tailored frequency filters. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Graphical abstract

17 pages, 3284 KiB  
Article
Allelic Diversity at Abiotic Stress Responsive Genes in Relationship to Ecological Drought Indices for Cultivated Tepary Bean, Phaseolus acutifolius A. Gray, and Its Wild Relatives
by María A. Buitrago-Bitar, Andrés J. Cortés, Felipe López-Hernández, Jorge M. Londoño-Caicedo, Jaime E. Muñoz-Florez, L. Carmenza Muñoz and Matthew Wohlgemuth Blair
Genes 2021, 12(4), 556; https://doi.org/10.3390/genes12040556 - 12 Apr 2021
Cited by 35 | Viewed by 4371
Abstract
Some of the major impacts of climate change are expected in regions where drought stress is already an issue. Grain legumes are generally drought susceptible. However, tepary bean and its wild relatives within Phaseolus acutifolius or P. parvifolius are from arid areas between [...] Read more.
Some of the major impacts of climate change are expected in regions where drought stress is already an issue. Grain legumes are generally drought susceptible. However, tepary bean and its wild relatives within Phaseolus acutifolius or P. parvifolius are from arid areas between Mexico and the United States. Therefore, we hypothesize that these bean accessions have diversity signals indicative of adaptation to drought at key candidate genes such as: Asr2, Dreb2B, and ERECTA. By sequencing alleles of these genes and comparing to estimates of drought tolerance indices from climate data for the collection site of geo-referenced, tepary bean accessions, we determined the genotype x environmental association (GEA) of each gene. Diversity analysis found that cultivated and wild P. acutifolius were intermingled with var. tenuifolius and P. parvifolius, signifying that allele diversity was ample in the wild and cultivated clade over a broad sense (sensu lato) evaluation. Genes Dreb2B and ERECTA harbored signatures of directional selection, represented by six SNPs correlated with the environmental drought indices. This suggests that wild tepary bean is a reservoir of novel alleles at genes for drought tolerance, as expected for a species that originated in arid environments. Our study corroborated that candidate gene approach was effective for marker validation across a broad genetic base of wild tepary accessions. Full article
Show Figures

Figure 1

16 pages, 312 KiB  
Article
Towards a Change in the Diagnostic Algorithm of Autism Spectrum Disorders: Evidence Supporting Whole Exome Sequencing as a First-Tier Test
by Ana Arteche-López, Maria José Gómez Rodríguez, Maria Teresa Sánchez Calvin, Juan Francisco Quesada-Espinosa, Jose Miguel Lezana Rosales, Carmen Palma Milla, Irene Gómez-Manjón, Irene Hidalgo Mayoral, Rubén Pérez de la Fuente, Arancha Díaz de Bustamante, María Teresa Darnaude, Belén Gil-Fournier, Soraya Ramiro León, Patricia Ramos Gómez, Olalla Sierra Tomillo, Alexandra Juárez Rufián, Maria Isabel Arranz Cano, Rebeca Villares Alonso, Pablo Morales-Pérez, Alejandro Segura-Tudela, Ana Camacho, Noemí Nuñez, Rogelio Simón, Marta Moreno-García and Maria Isabel Alvarez-Moraadd Show full author list remove Hide full author list
Genes 2021, 12(4), 560; https://doi.org/10.3390/genes12040560 - 12 Apr 2021
Cited by 18 | Viewed by 4234
Abstract
Autism spectrum disorder (ASD) is a prevalent and extremely heterogeneous neurodevelopmental disorder (NDD) with a strong genetic component. In recent years, the clinical relevance of de novo mutations to the aetiology of ASD has been demonstrated. Current guidelines recommend chromosomal microarray (CMA) and [...] Read more.
Autism spectrum disorder (ASD) is a prevalent and extremely heterogeneous neurodevelopmental disorder (NDD) with a strong genetic component. In recent years, the clinical relevance of de novo mutations to the aetiology of ASD has been demonstrated. Current guidelines recommend chromosomal microarray (CMA) and a FMR1 testing as first-tier tests, but there is increasing evidence that support the use of NGS for the diagnosis of NDDs. Specifically in ASD, it has not been extensively evaluated and, thus, we performed and compared the clinical utility of CMA, FMR1 testing, and/or whole exome sequencing (WES) in a cohort of 343 ASD patients. We achieved a global diagnostic rate of 12.8% (44/343), the majority of them being characterised by WES (33/44; 75%) compared to CMA (9/44; 20.4%) or FMR1 testing (2/44; 4.5%). Taking into account the age at which genetic testing was carried out, we identified a causal genetic alteration in 22.5% (37/164) of patients over 5 years old, but only in 3.9% (7/179) of patients under this age. Our data evidence the higher diagnostic power of WES compared to CMA in the study of ASD and support the implementation of WES as a first-tier test for the genetic diagnosis of this disorder, when there is no suspicion of fragile X syndrome. Full article
(This article belongs to the Special Issue Genetics of Psychiatric Disease and the Basics of Neurobiology)
16 pages, 10042 KiB  
Article
Kinetics and Topology of DNA Associated with Circulating Extracellular Vesicles Released during Exercise
by Elmo W. I. Neuberger, Barlo Hillen, Katharina Mayr, Perikles Simon, Eva-Maria Krämer-Albers and Alexandra Brahmer
Genes 2021, 12(4), 522; https://doi.org/10.3390/genes12040522 - 02 Apr 2021
Cited by 21 | Viewed by 3145
Abstract
Although it is widely accepted that cancer-derived extracellular vesicles (EVs) carry DNA cargo, the association of cell-free circulating DNA (cfDNA) and EVs in plasma of healthy humans remains elusive. Using a physiological exercise model, where EVs and cfDNA are synchronously released, we aimed [...] Read more.
Although it is widely accepted that cancer-derived extracellular vesicles (EVs) carry DNA cargo, the association of cell-free circulating DNA (cfDNA) and EVs in plasma of healthy humans remains elusive. Using a physiological exercise model, where EVs and cfDNA are synchronously released, we aimed to characterize the kinetics and localization of DNA associated with EVs. EVs were separated from human plasma using size exclusion chromatography or immuno-affinity capture for CD9+, CD63+, and CD81+ EVs. DNA was quantified with an ultra-sensitive qPCR assay targeting repetitive LINE elements, with or without DNase digestion. This model shows that a minute part of circulating cell-free DNA is associated with EVs. During rest and following exercise, only 0.12% of the total cfDNA occurs in association with CD9+/CD63+/CD81+EVs. DNase digestion experiments indicate that the largest part of EV associated DNA is sensitive to DNase digestion and only ~20% are protected within the lumen of the separated EVs. A single bout of running or cycling exercise increases the levels of EVs, cfDNA, and EV-associated DNA. While EV surface DNA is increasing, DNAse-resistant DNA remains at resting levels, indicating that EVs released during exercise (ExerVs) do not contain DNA. Consequently, DNA is largely associated with the outer surface of circulating EVs. ExerVs recruit cfDNA to their corona, but do not carry DNA in their lumen. Full article
Show Figures

Figure 1

21 pages, 3869 KiB  
Article
Regulation of DNA (de)Methylation Positively Impacts Seed Germination during Seed Development under Heat Stress
by Jaiana Malabarba, David Windels, Wenjia Xu and Jerome Verdier
Genes 2021, 12(3), 457; https://doi.org/10.3390/genes12030457 - 23 Mar 2021
Cited by 20 | Viewed by 4523
Abstract
Seed development needs the coordination of multiple molecular mechanisms to promote correct tissue development, seed filling, and the acquisition of germination capacity, desiccation tolerance, longevity, and dormancy. Heat stress can negatively impact these processes and upon the increase of global mean temperatures, global [...] Read more.
Seed development needs the coordination of multiple molecular mechanisms to promote correct tissue development, seed filling, and the acquisition of germination capacity, desiccation tolerance, longevity, and dormancy. Heat stress can negatively impact these processes and upon the increase of global mean temperatures, global food security is threatened. Here, we explored the impact of heat stress on seed physiology, morphology, gene expression, and methylation on three stages of seed development. Notably, Arabidopsis Col-0 plants under heat stress presented a decrease in germination capacity as well as a decrease in longevity. We observed that upon mild stress, gene expression and DNA methylation were moderately affected. Nevertheless, upon severe heat stress during seed development, gene expression was intensively modified, promoting heat stress response mechanisms including the activation of the ABA pathway. By analyzing candidate epigenetic markers using the mutants’ physiological assays, we observed that the lack of DNA demethylation by the ROS1 gene impaired seed germination by affecting germination-related gene expression. On the other hand, we also observed that upon severe stress, a large proportion of differentially methylated regions (DMRs) were located in the promoters and gene sequences of germination-related genes. To conclude, our results indicate that DNA (de)methylation could be a key regulatory process to ensure proper seed germination of seeds produced under heat stress. Full article
(This article belongs to the Special Issue Seeds and Epigenetics)
Show Figures

Graphical abstract

14 pages, 1461 KiB  
Article
Maternal Vitamin and Mineral Supplementation and Rate of Maternal Weight Gain Affects Placental Expression of Energy Metabolism and Transport-Related Genes
by Wellison J. S. Diniz, Lawrence P. Reynolds, Pawel P. Borowicz, Alison K. Ward, Kevin K. Sedivec, Kacie L. McCarthy, Cierrah J. Kassetas, Friederike Baumgaertner, James D. Kirsch, Sheri T. Dorsam, Tammi L. Neville, J. Chris Forcherio, Ronald R. Scott, Joel S. Caton and Carl R. Dahlen
Genes 2021, 12(3), 385; https://doi.org/10.3390/genes12030385 - 09 Mar 2021
Cited by 24 | Viewed by 2929
Abstract
Maternal nutrients are essential for proper fetal and placental development and function. However, the effects of vitamin and mineral supplementation under two rates of maternal weight gain on placental genome-wide gene expression have not been investigated so far. Furthermore, biological processes and pathways [...] Read more.
Maternal nutrients are essential for proper fetal and placental development and function. However, the effects of vitamin and mineral supplementation under two rates of maternal weight gain on placental genome-wide gene expression have not been investigated so far. Furthermore, biological processes and pathways in the placenta that act in response to early maternal nutrition are yet to be elucidated. Herein, we examined the impact of maternal vitamin and mineral supplementation (from pre-breeding to day 83 post-breeding) and two rates of gain during the first 83 days of pregnancy on the gene expression of placental caruncles (CAR; maternal placenta) and cotyledons (COT; fetal placenta) of crossbred Angus beef heifers. We identified 267 unique differentially expressed genes (DEG). Among the DEGs from CAR, we identified ACAT2, SREBF2, and HMGCCS1 that underlie the cholesterol biosynthesis pathway. Furthermore, the transcription factors PAX2 and PAX8 were over-represented in biological processes related to kidney organogenesis. The DEGs from COT included SLC2A1, SLC2A3, SLC27A4, and INSIG1. Our over-representation analysis retrieved biological processes related to nutrient transport and ion homeostasis, whereas the pathways included insulin secretion, PPAR signaling, and biosynthesis of amino acids. Vitamin and mineral supplementation and rate of gain were associated with changes in gene expression, biological processes, and KEGG pathways in beef cattle placental tissues. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1814 KiB  
Article
Whole Genome Sequencing in the Evaluation of Fetal Structural Anomalies: A Parallel Test with Chromosomal Microarray Plus Whole Exome Sequencing
by Jia Zhou, Ziying Yang, Jun Sun, Lipei Liu, Xinyao Zhou, Fengxia Liu, Ya Xing, Shuge Cui, Shiyi Xiong, Xiaoyu Liu, Yingjun Yang, Xiuxiu Wei, Gang Zou, Zhonghua Wang, Xing Wei, Yaoshen Wang, Yun Zhang, Saiying Yan, Fengyu Wu, Fanwei Zeng, Jian Wang, Tao Duan, Zhiyu Peng and Luming Sunadd Show full author list remove Hide full author list
Genes 2021, 12(3), 376; https://doi.org/10.3390/genes12030376 - 06 Mar 2021
Cited by 35 | Viewed by 4684
Abstract
Whole genome sequencing (WGS) is a powerful tool for postnatal genetic diagnosis, but relevant clinical studies in the field of prenatal diagnosis are limited. The present study aimed to prospectively evaluate the utility of WGS compared with chromosomal microarray (CMA) and whole exome [...] Read more.
Whole genome sequencing (WGS) is a powerful tool for postnatal genetic diagnosis, but relevant clinical studies in the field of prenatal diagnosis are limited. The present study aimed to prospectively evaluate the utility of WGS compared with chromosomal microarray (CMA) and whole exome sequencing (WES) in the prenatal diagnosis of fetal structural anomalies. We performed trio WGS (≈40-fold) in parallel with CMA in 111 fetuses with structural or growth anomalies, and sequentially performed WES when CMA was negative (CMA plus WES). In comparison, WGS not only detected all pathogenic genetic variants in 22 diagnosed cases identified by CMA plus WES, yielding a diagnostic rate of 19.8% (22/110), but also provided additional and clinically significant information, including a case of balanced translocations and a case of intrauterine infection, which might not be detectable by CMA or WES. WGS also required less DNA (100 ng) as input and could provide a rapid turnaround time (TAT, 18 ± 6 days) compared with that (31 ± 8 days) of the CMA plus WES. Our results showed that WGS provided more comprehensive and precise genetic information with a rapid TAT and less DNA required than CMA plus WES, which enables it as an alternative prenatal diagnosis test for fetal structural anomalies. Full article
(This article belongs to the Special Issue Advances in Prenatal Genetic Screening and Diagnosis Technologies)
Show Figures

Figure 1

18 pages, 11313 KiB  
Article
Complete Mitochondrial DNA Genome of Nine Species of Sharks and Rays and Their Phylogenetic Placement among Modern Elasmobranchs
by Vasiliki Kousteni, Sofia Mazzoleni, Katerina Vasileiadou and Michail Rovatsos
Genes 2021, 12(3), 324; https://doi.org/10.3390/genes12030324 - 24 Feb 2021
Cited by 33 | Viewed by 5445
Abstract
Chondrichthyes occupy a key position in the phylogeny of vertebrates. The complete sequence of the mitochondrial genome (mitogenome) of four species of sharks and five species of rays was obtained by whole genome sequencing (DNA-seq) in the Illumina HiSeq2500 platform. The arrangement and [...] Read more.
Chondrichthyes occupy a key position in the phylogeny of vertebrates. The complete sequence of the mitochondrial genome (mitogenome) of four species of sharks and five species of rays was obtained by whole genome sequencing (DNA-seq) in the Illumina HiSeq2500 platform. The arrangement and features of the genes in the assembled mitogenomes were identical to those found in vertebrates. Both Maximum Likelihood (ML) and Bayesian Inference (BI) analyses were used to reconstruct the phylogenetic relationships among 172 species (including 163 mitogenomes retrieved from GenBank) based on the concatenated dataset of 13 individual protein coding genes. Both ML and BI analyses did not support the “Hypnosqualea” hypothesis and confirmed the monophyly of sharks and rays. The broad notion in shark phylogeny, namely the division of sharks into Galeomorphii and Squalomorphii and the monophyly of the eight shark orders, was also supported. The phylogenetic placement of all nine species sequenced in this study produced high statistical support values. The present study expands our knowledge on the systematics, genetic differentiation, and conservation genetics of the species studied, and contributes to our understanding of the evolutionary history of Chondrichthyes. Full article
(This article belongs to the Special Issue Molecular Evolution of the Mitochondrial DNA in Animals)
Show Figures

Figure 1

25 pages, 9434 KiB  
Article
Comparative Analysis, Characterization and Evolutionary Study of Dirigent Gene Family in Cucurbitaceae and Expression of Novel Dirigent Peptide against Powdery Mildew Stress
by Vivek Yadav, Zhongyuan Wang, Xiaozhen Yang, Chunhua Wei, Xuan Changqing and Xian Zhang
Genes 2021, 12(3), 326; https://doi.org/10.3390/genes12030326 - 24 Feb 2021
Cited by 17 | Viewed by 2742
Abstract
Dirigent (DIR) proteins are induced under various stress conditions and involved in sterio- and regio-selective coupling of monolignol. A striking lack of information about dirigent genes in cucurbitaceae plants underscores the importance of functional characterization. In this study, 112 DIR genes were identified [...] Read more.
Dirigent (DIR) proteins are induced under various stress conditions and involved in sterio- and regio-selective coupling of monolignol. A striking lack of information about dirigent genes in cucurbitaceae plants underscores the importance of functional characterization. In this study, 112 DIR genes were identified in six species, and 61 genes from major cultivated species were analyzed. DIRs were analyzed using various bioinformatics tools and complemented by expression profiling. Phylogenetic analysis segregated the putative DIRs into six distinctively known subgroups. Chromosomal mapping revealed uneven distribution of genes, whereas synteny analysis exhibited that duplication events occurred during gene evolution. Gene structure analysis suggested the gain of introns during gene diversification. Gene ontology (GO) enrichment analysis indicates the participation of proteins in lignification and pathogen resistance activities. We also determined their organ-specific expression levels in three species revealing preferential expression in root and leaves. Furthermore, the number of CmDIR (CmDIR1, 6, 7 and 12) and ClDIR (ClDIR2, 5, 8, 9 and 17) genes exhibited higher expression in resistant cultivars after powdery mildew (PM) inoculation. In summary, based on the expression and in-silico analysis, we propose a role of DIRs in disease resistance mechanisms. Full article
(This article belongs to the Special Issue Powdery Mildew Resistance Genetics)
Show Figures

Figure 1

17 pages, 3585 KiB  
Article
miR-34a and miR-200c Have an Additive Tumor-Suppressive Effect on Breast Cancer Cells and Patient Prognosis
by Behzad Mansoori, Nicola Silvestris, Ali Mohammadi, Vahid Khaze, Elham Baghbani, Ahad Mokhtarzadeh, Dariush Shanehbandi, Afshin Derakhshani, Pascal H. G. Duijf and Behzad Baradaran
Genes 2021, 12(2), 267; https://doi.org/10.3390/genes12020267 - 12 Feb 2021
Cited by 26 | Viewed by 3206
Abstract
Breast cancer is the most common women’s malignancy in the world and, for subgroups of patients, treatment outcomes remain poor. Thus, more effective therapeutic strategies are urgently needed. MicroRNAs (miRNAs) have emerged as promising therapeutic tools and targets, as they play significant roles [...] Read more.
Breast cancer is the most common women’s malignancy in the world and, for subgroups of patients, treatment outcomes remain poor. Thus, more effective therapeutic strategies are urgently needed. MicroRNAs (miRNAs) have emerged as promising therapeutic tools and targets, as they play significant roles in regulating key cellular processes by suppressing gene expression. However, additive opportunities involving miRNAs have been underexplored. For example, both miR-34a and miR-200c individually suppress the development of different types of cancer, but the cellular effects of their combined actions remain unknown. Here, we show that miR-34a and miR-200c levels are reduced in breast tumors compared to adjacent normal tissues and that this additively predicts poor patient survival. In addition, in cell lines, miR-34a and miR-200c additively induce apoptosis and cell cycle arrest, while also inhibiting proliferation, invasion, migration, stemness and epithelial-to-mesenchymal transition (EMT). Mechanistically, both miRNA-34a and miR-200c directly target HIF1-α and subsequently downregulate VEGFR, MMP9 and CXCR4, although combined miRNA-34a and miR-200c delivery suppresses mouse xenograft tumor development as effectively as individual delivery. We establish a model, supported by in vitro and clinical data, which collectively suggest that the co-delivery of miR-34a and miR-200c represents a promising novel therapeutic strategy for breast cancer patients. Full article
(This article belongs to the Special Issue Transcription Factors in Cancer Progression)
Show Figures

Figure 1

16 pages, 6533 KiB  
Article
Two Expansin Genes, AtEXPA4 and AtEXPB5, Are Redundantly Required for Pollen Tube Growth and AtEXPA4 Is Involved in Primary Root Elongation in Arabidopsis thaliana
by Weimiao Liu, Liai Xu, Hui Lin and Jiashu Cao
Genes 2021, 12(2), 249; https://doi.org/10.3390/genes12020249 - 10 Feb 2021
Cited by 28 | Viewed by 2648
Abstract
The growth of plant cells is inseparable from relaxation and expansion of cell walls. Expansins are a class of cell wall binding proteins, which play important roles in the relaxation of cell walls. Although there are many members in expansin gene family, the [...] Read more.
The growth of plant cells is inseparable from relaxation and expansion of cell walls. Expansins are a class of cell wall binding proteins, which play important roles in the relaxation of cell walls. Although there are many members in expansin gene family, the functions of most expansin genes in plant growth and development are still poorly understood. In this study, the functions of two expansin genes, AtEXPA4 and AtEXPB5 were characterized in Arabidopsis thaliana. AtEXPA4 and AtEXPB5 displayed consistent expression patterns in mature pollen grains and pollen tubes, but AtEXPA4 also showed a high expression level in primary roots. Two single mutants, atexpa4 and atexpb5, showed normal reproductive development, whereas atexpa4atexpb5 double mutant was defective in pollen tube growth. Moreover, AtEXPA4 overexpression enhanced primary root elongation, on the contrary, knocking out AtEXPA4 made the growth of primary root slower. Our results indicated that AtEXPA4 and AtEXPB5 were redundantly involved in pollen tube growth and AtEXPA4 was required for primary root elongation. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 4853 KiB  
Article
Paracellular and Transcellular Leukocytes Diapedesis Are Divergent but Interconnected Evolutionary Events
by Michel-Edwar Mickael, Norwin Kubick, Pavel Klimovich, Patrick Henckell Flournoy, Irmina Bieńkowska and Mariusz Sacharczuk
Genes 2021, 12(2), 254; https://doi.org/10.3390/genes12020254 - 10 Feb 2021
Cited by 16 | Viewed by 3023
Abstract
Infiltration of the endothelial layer of the blood-brain barrier by leukocytes plays a critical role in health and disease. When passing through the endothelial layer during the diapedesis process lymphocytes can either follow a paracellular route or a transcellular one. There is a [...] Read more.
Infiltration of the endothelial layer of the blood-brain barrier by leukocytes plays a critical role in health and disease. When passing through the endothelial layer during the diapedesis process lymphocytes can either follow a paracellular route or a transcellular one. There is a debate whether these two processes constitute one mechanism, or they form two evolutionary distinct migration pathways. We used artificial intelligence, phylogenetic analysis, HH search, ancestor sequence reconstruction to investigate further this intriguing question. We found that the two systems share several ancient components, such as RhoA protein that plays a critical role in controlling actin movement in both mechanisms. However, some of the key components differ between these two transmigration processes. CAV1 genes emerged during Trichoplax adhaerens, and it was only reported in transcellular process. Paracellular process is dependent on PECAM1. PECAM1 emerged from FASL5 during Zebrafish divergence. Lastly, both systems employ late divergent genes such as ICAM1 and VECAM1. Taken together, our results suggest that these two systems constitute two different mechanical sensing mechanisms of immune cell infiltrations of the brain, yet these two systems are connected. We postulate that the mechanical properties of the cellular polarity is the main driving force determining the migration pathway. Our analysis indicates that both systems coevolved with immune cells, evolving to a higher level of complexity in association with the evolution of the immune system. Full article
(This article belongs to the Special Issue The Immune Response in the Time of Omics Research)
Show Figures

Figure 1

13 pages, 3717 KiB  
Article
Comparative Genomic Analysis of Lactiplantibacillus plantarum Isolated from Different Niches
by Bingyong Mao, Ruimin Yin, Xiaoshu Li, Shumao Cui, Hao Zhang, Jianxin Zhao and Wei Chen
Genes 2021, 12(2), 241; https://doi.org/10.3390/genes12020241 - 08 Feb 2021
Cited by 32 | Viewed by 3314
Abstract
Lactiplantibacillus plantarum can adapt to a variety of niches and is widely distributed in many sources. We used comparative genomics to explore the differences in the genome and in the physiological characteristics of L. plantarum isolated from pickles, fermented sauce, and human feces. [...] Read more.
Lactiplantibacillus plantarum can adapt to a variety of niches and is widely distributed in many sources. We used comparative genomics to explore the differences in the genome and in the physiological characteristics of L. plantarum isolated from pickles, fermented sauce, and human feces. The relationships between genotypes and phenotypes were analyzed to address the effects of isolation source on the genetic variation of L. plantarum. The comparative genomic results indicate that the numbers of unique genes in the different strains were niche-dependent. L. plantarum isolated from fecal sources generally had more strain-specific genes than L. plantarum isolated from pickles. The phylogenetic tree and average nucleotide identity (ANI) results indicate that L. plantarum in pickles and fermented sauce clustered independently, whereas the fecal L. plantarum was distributed more uniformly in the phylogenetic tree. The pan-genome curve indicated that the L. plantarum exhibited high genomic diversity. Based on the analysis of the carbohydrate active enzyme and carbohydrate-use abilities, we found that L. plantarum strains isolated from different sources exhibited different expression of the Glycoside Hydrolases (GH) and Glycosyl Transferases (GT) families and that the expression patterns of carbohydrate active enzymes were consistent with the evolution relationships of the strains. L. plantarum strains exhibited niche-specific characteristicsand the results provided better understating on genetics of this species. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

27 pages, 4255 KiB  
Article
Long-Term Waterlogging as Factor Contributing to Hypoxia Stress Tolerance Enhancement in Cucumber: Comparative Transcriptome Analysis of Waterlogging Sensitive and Tolerant Accessions
by Kinga Kęska, Michał Wojciech Szcześniak, Izabela Makałowska and Małgorzata Czernicka
Genes 2021, 12(2), 189; https://doi.org/10.3390/genes12020189 - 28 Jan 2021
Cited by 28 | Viewed by 3293
Abstract
Waterlogging (WL), excess water in the soil, is a phenomenon often occurring during plant cultivation causing low oxygen levels (hypoxia) in the soil. The aim of this study was to identify candidate genes involved in long-term waterlogging tolerance in cucumber using RNA sequencing. [...] Read more.
Waterlogging (WL), excess water in the soil, is a phenomenon often occurring during plant cultivation causing low oxygen levels (hypoxia) in the soil. The aim of this study was to identify candidate genes involved in long-term waterlogging tolerance in cucumber using RNA sequencing. Here, we also determined how waterlogging pre-treatment (priming) influenced long-term memory in WL tolerant (WL-T) and WL sensitive (WL-S) i.e., DH2 and DH4 accessions, respectively. This work uncovered various differentially expressed genes (DEGs) activated in the long-term recovery in both accessions. De novo assembly generated 36,712 transcripts with an average length of 2236 bp. The results revealed that long-term waterlogging had divergent impacts on gene expression in WL-T DH2 and WL-S DH4 cucumber accessions: after 7 days of waterlogging, more DEGs in comparison to control conditions were identified in WL-S DH4 (8927) than in WL-T DH2 (5957). Additionally, 11,619 and 5007 DEGs were identified after a second waterlogging treatment in the WL-S and WL-T accessions, respectively. We identified genes associated with WL in cucumber that were especially related to enhanced glycolysis, adventitious roots development, and amino acid metabolism. qRT-PCR assay for hypoxia marker genes i.e., alcohol dehydrogenase (adh), 1-aminocyclopropane-1-carboxylate oxidase (aco) and long chain acyl-CoA synthetase 6 (lacs6) confirmed differences in response to waterlogging stress between sensitive and tolerant cucumbers and effectiveness of priming to enhance stress tolerance. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

17 pages, 3810 KiB  
Article
Identification of Key Pathways and Genes Related to the Development of Hair Follicle Cycle in Cashmere Goats
by Jianfang Wang, Jie Sui, Chao Mao, Xiaorui Li, Xingyi Chen, Chengcheng Liang, Xiaohui Wang, Si-Hu Wang and Cunling Jia
Genes 2021, 12(2), 180; https://doi.org/10.3390/genes12020180 - 27 Jan 2021
Cited by 24 | Viewed by 2915
Abstract
The development of hair follicle in cashmere goats shows significant periodic change, as with mice and humans. However, for cashmere goat with double-coat, the periodic change may be due to other regulatory molecules and signal pathways. To understand the mechanism of periodic development [...] Read more.
The development of hair follicle in cashmere goats shows significant periodic change, as with mice and humans. However, for cashmere goat with double-coat, the periodic change may be due to other regulatory molecules and signal pathways. To understand the mechanism of periodic development of hair follicle, we performed a weighted gene coexpression network analysis (WGCNA) to mine key genes and establish an interaction network by utilizing the NCBI public dataset. Ten coexpression modules, including 7689 protein-coding genes, were constructed by WGCNA, six of which are considered to be significantly related to the development of the hair follicle cycle. A functional enrichment analysis for each model showed that they are closely related to ECM- receptor interaction, focal adhesion, PI3K-Akt signaling pathway, estrogen signaling pathway, and so on. Combined with the analysis of differential expressed genes, 12 hub genes from coexpression modules were selected as candidate markers, i.e., COL1A1, C1QTNF6, COL1A2, AQP3, KRTAP3-1, KRTAP11-1, FA2H, NDUFS5, DERL2, MRPL14, ANTKMT and XAB2, which might be applied to improve cashmere production. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

20 pages, 3406 KiB  
Article
Epigenetic Evolution of ACE2 and IL-6 Genes: Non-Canonical Interferon-Stimulated Genes Correlate to COVID-19 Susceptibility in Vertebrates
by Eric R. Sang, Yun Tian, Laura C. Miller and Yongming Sang
Genes 2021, 12(2), 154; https://doi.org/10.3390/genes12020154 - 25 Jan 2021
Cited by 29 | Viewed by 4823
Abstract
The current novel coronavirus disease (COVID-19) has spread globally within a matter of months. The virus establishes a success in balancing its deadliness and contagiousness, and causes substantial differences in susceptibility and disease progression in people of different ages, genders and pre-existing comorbidities. [...] Read more.
The current novel coronavirus disease (COVID-19) has spread globally within a matter of months. The virus establishes a success in balancing its deadliness and contagiousness, and causes substantial differences in susceptibility and disease progression in people of different ages, genders and pre-existing comorbidities. These host factors are subjected to epigenetic regulation; therefore, relevant analyses on some key genes underlying COVID-19 pathogenesis were performed to longitudinally decipher their epigenetic correlation to COVID-19 susceptibility. The genes of host angiotensin-converting enzyme 2 (ACE2, as the major virus receptor) and interleukin (IL)-6 (a key immuno-pathological factor triggering cytokine storm) were shown to evince active epigenetic evolution via histone modification and cis/trans-factors interaction across different vertebrate species. Extensive analyses revealed that ACE2 ad IL-6 genes are among a subset of non-canonical interferon-stimulated genes (non-ISGs), which have been designated for their unconventional responses to interferons (IFNs) and inflammatory stimuli through an epigenetic cascade. Furthermore, significantly higher positive histone modification markers and position weight matrix (PWM) scores of key cis-elements corresponding to inflammatory and IFN signaling, were discovered in both ACE2 and IL6 gene promoters across representative COVID-19-susceptible species compared to unsusceptible ones. The findings characterize ACE2 and IL-6 genes as non-ISGs that respond differently to inflammatory and IFN signaling from the canonical ISGs. The epigenetic properties ACE2 and IL-6 genes may serve as biomarkers to longitudinally predict COVID-19 susceptibility in vertebrates and partially explain COVID-19 inequality in people of different subgroups. Full article
(This article belongs to the Special Issue The Immune Response in the Time of Omics Research)
Show Figures

Figure 1

15 pages, 2261 KiB  
Article
Evaluation of DNA Extraction Methods Developed for Forensic and Ancient DNA Applications Using Bone Samples of Different Age
by Catarina Xavier, Mayra Eduardoff, Barbara Bertoglio, Christina Amory, Cordula Berger, Andrea Casas-Vargas, Johannes Pallua and Walther Parson
Genes 2021, 12(2), 146; https://doi.org/10.3390/genes12020146 - 22 Jan 2021
Cited by 28 | Viewed by 9927
Abstract
The efficient extraction of DNA from challenging samples, such as bones, is critical for the success of downstream genotyping analysis in molecular genetic disciplines. Even though the ancient DNA community has developed several protocols targeting small DNA fragments that are typically present in [...] Read more.
The efficient extraction of DNA from challenging samples, such as bones, is critical for the success of downstream genotyping analysis in molecular genetic disciplines. Even though the ancient DNA community has developed several protocols targeting small DNA fragments that are typically present in decomposed or old specimens, only recently forensic geneticists have started to adopt those protocols. Here, we compare an ancient DNA extraction protocol (Dabney) with a bone extraction method (Loreille) typically used in forensics. Real-time quantitative PCR and forensically representative typing methods including fragment size analysis and sequencing were used to assess protocol performance. We used four bone samples of different age in replicates to study the effects of both extraction methods. Our results confirm Loreille’s overall increased gain of DNA when enough tissue is available and Dabney’s improved efficiency for retrieving shorter DNA fragments that is beneficial when highly degraded DNA is present. The results suggest that the choice of extraction method needs to be based on available sample, degradation state, and targeted genotyping method. We modified the Dabney protocol by pooling parallel lysates prior to purification to study gain and performance in single tube typing assays and found that up to six parallel lysates lead to an almost linear gain of extracted DNA. These data are promising for further forensic investigations as the adapted Dabney protocol combines increased sensitivity for degraded DNA with necessary total DNA amount for forensic applications. Full article
(This article belongs to the Special Issue Forensic Mitochondrial Genomics)
Show Figures

Figure 1

13 pages, 1877 KiB  
Article
The Desmin (DES) Mutation p.A337P Is Associated with Left-Ventricular Non-Compaction Cardiomyopathy
by Olga Kulikova, Andreas Brodehl, Anna Kiseleva, Roman Myasnikov, Alexey Meshkov, Caroline Stanasiuk, Anna Gärtner, Mikhail Divashuk, Evgeniia Sotnikova, Sergey Koretskiy, Maria Kharlap, Viktoria Kozlova, Elena Mershina, Polina Pilus, Valentin Sinitsyn, Hendrik Milting, Sergey Boytsov and Oxana Drapkina
Genes 2021, 12(1), 121; https://doi.org/10.3390/genes12010121 - 19 Jan 2021
Cited by 23 | Viewed by 3812
Abstract
Here, we present a small Russian family, where the index patient received a diagnosis of left-ventricular non-compaction cardiomyopathy (LVNC) in combination with a skeletal myopathy. Clinical follow-up analysis revealed a LVNC phenotype also in her son. Therefore, we applied a broad next-generation sequencing [...] Read more.
Here, we present a small Russian family, where the index patient received a diagnosis of left-ventricular non-compaction cardiomyopathy (LVNC) in combination with a skeletal myopathy. Clinical follow-up analysis revealed a LVNC phenotype also in her son. Therefore, we applied a broad next-generation sequencing gene panel approach for the identification of the underlying mutation. Interestingly, DES-p.A337P was identified in the genomes of both patients, whereas only the index patient carried DSP-p.L1348X. DES encodes the muscle-specific intermediate filament protein desmin and DSP encodes desmoplakin, which is a cytolinker protein connecting desmosomes with the intermediate filaments. Because the majority of DES mutations cause severe filament assembly defects and because this mutation was found in both affected patients, we analyzed this DES mutation in vitro by cell transfection experiments in combination with confocal microscopy. Of note, desmin-p.A337P forms cytoplasmic aggregates in transfected SW-13 cells and in cardiomyocytes derived from induced pluripotent stem cells underlining its pathogenicity. In conclusion, we suggest including the DES gene in the genetic analysis for LVNC patients in the future, especially if clinical involvement of the skeletal muscle is present. Full article
(This article belongs to the Special Issue Cardiovascular Genetics)
Show Figures

Figure 1

15 pages, 2357 KiB  
Article
Weighted Single-Step GWAS Identified Candidate Genes Associated with Growth Traits in a Duroc Pig Population
by Donglin Ruan, Zhanwei Zhuang, Rongrong Ding, Yibin Qiu, Shenping Zhou, Jie Wu, Cineng Xu, Linjun Hong, Sixiu Huang, Enqin Zheng, Gengyuan Cai, Zhenfang Wu and Jie Yang
Genes 2021, 12(1), 117; https://doi.org/10.3390/genes12010117 - 19 Jan 2021
Cited by 25 | Viewed by 3747
Abstract
Growth traits are important economic traits of pigs that are controlled by several major genes and multiple minor genes. To better understand the genetic architecture of growth traits, we performed a weighted single-step genome-wide association study (wssGWAS) to identify genomic regions and candidate [...] Read more.
Growth traits are important economic traits of pigs that are controlled by several major genes and multiple minor genes. To better understand the genetic architecture of growth traits, we performed a weighted single-step genome-wide association study (wssGWAS) to identify genomic regions and candidate genes that are associated with days to 100 kg (AGE), average daily gain (ADG), backfat thickness (BF) and lean meat percentage (LMP) in a Duroc pig population. In this study, 3945 individuals with phenotypic and genealogical information, of which 2084 pigs were genotyped with a 50 K single-nucleotide polymorphism (SNP) array, were used for association analyses. We found that the most significant regions explained 2.56–3.07% of genetic variance for four traits, and the detected significant regions (>1%) explained 17.07%, 18.59%, 23.87% and 21.94% for four traits. Finally, 21 genes that have been reported to be associated with metabolism, bone growth, and fat deposition were treated as candidate genes for growth traits in pigs. Moreover, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses implied that the identified genes took part in bone formation, the immune system, and digestion. In conclusion, such full use of phenotypic, genotypic, and genealogical information will accelerate the genetic improvement of growth traits in pigs. Full article
(This article belongs to the Special Issue Pig Genomics and Genetics)
Show Figures

Figure 1

11 pages, 1411 KiB  
Article
Sex Chromosome Turnover in Bent-Toed Geckos (Cyrtodactylus)
by Shannon E. Keating, Madison Blumer, L. Lee Grismer, Aung Lin, Stuart V. Nielsen, Myint Kyaw Thura, Perry L. Wood, Jr., Evan S. H. Quah and Tony Gamble
Genes 2021, 12(1), 116; https://doi.org/10.3390/genes12010116 - 19 Jan 2021
Cited by 19 | Viewed by 3461
Abstract
Lizards and snakes (squamates) are known for their varied sex determining systems, and gecko lizards are especially diverse, having evolved sex chromosomes independently multiple times. While sex chromosomes frequently turnover among gecko genera, intrageneric turnovers are known only from Gekko and Hemidactylus. [...] Read more.
Lizards and snakes (squamates) are known for their varied sex determining systems, and gecko lizards are especially diverse, having evolved sex chromosomes independently multiple times. While sex chromosomes frequently turnover among gecko genera, intrageneric turnovers are known only from Gekko and Hemidactylus. Here, we used RADseq to identify sex-specific markers in two species of Burmese bent-toed geckos. We uncovered XX/XY sex chromosomes in Cyrtodactylus chaunghanakwaensis and ZZ/ZW sex chromosomes in Cyrtodactylus pharbaungensis. This is the third instance of intrageneric turnover of sex chromosomes in geckos. Additionally, Cyrtodactylus are closely related to another genus with intrageneric turnover, Hemidactylus. Together, these data suggest that sex chromosome turnover may be common in this clade, setting them apart as exceptionally diverse in a group already known for diverse sex determination systems. Full article
Show Figures

Figure 1

26 pages, 10369 KiB  
Article
Defining the Rhizobium leguminosarum Species Complex
by J. Peter W. Young, Sara Moeskjær, Alexey Afonin, Praveen Rahi, Marta Maluk, Euan K. James, Maria Izabel A. Cavassim, M. Harun-or Rashid, Aregu Amsalu Aserse, Benjamin J. Perry, En Tao Wang, Encarna Velázquez, Evgeny E. Andronov, Anastasia Tampakaki, José David Flores Félix, Raúl Rivas González, Sameh H. Youseif, Marc Lepetit, Stéphane Boivin, Beatriz Jorrin, Gregory J. Kenicer, Álvaro Peix, Michael F. Hynes, Martha Helena Ramírez-Bahena, Arvind Gulati and Chang-Fu Tianadd Show full author list remove Hide full author list
Genes 2021, 12(1), 111; https://doi.org/10.3390/genes12010111 - 18 Jan 2021
Cited by 45 | Viewed by 8864
Abstract
Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show [...] Read more.
Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is R. anhuiense. We constructed a phylogeny based on concatenated sequences of 120 universal (core) genes, and calculated pairwise average nucleotide identity (ANI) between all genomes. From these analyses, we concluded that the Rlc includes 18 distinct genospecies, plus 7 unique strains that are not placed in these genospecies. Each genospecies is separated by a distinct gap in ANI values, usually at approximately 96% ANI, implying that it is a ‘natural’ unit. Five of the genospecies include the type strains of named species: R. laguerreae, R. sophorae, R. ruizarguesonis, “R. indicum” and R. leguminosarum itself. The 16S ribosomal RNA sequence is remarkably diverse within the Rlc, but does not distinguish the genospecies. Partial sequences of housekeeping genes, which have frequently been used to characterize isolate collections, can mostly be assigned unambiguously to a genospecies, but alleles within a genospecies do not always form a clade, so single genes are not a reliable guide to the true phylogeny of the strains. We conclude that access to a large number of genome sequences is a powerful tool for characterizing the diversity of bacteria, and that taxonomic conclusions should be based on all available genome sequences, not just those of type strains. Full article
(This article belongs to the Special Issue Genes at Ten)
Show Figures

Figure 1

18 pages, 1902 KiB  
Article
Real-Time Culture-Independent Microbial Profiling Onboard the International Space Station Using Nanopore Sequencing
by Sarah Stahl-Rommel, Miten Jain, Hang N. Nguyen, Richard R. Arnold, Serena M. Aunon-Chancellor, Gretta Marie Sharp, Christian L. Castro, Kristen K. John, Sissel Juul, Daniel J. Turner, David Stoddart, Benedict Paten, Mark Akeson, Aaron S. Burton and Sarah L. Castro-Wallace
Genes 2021, 12(1), 106; https://doi.org/10.3390/genes12010106 - 16 Jan 2021
Cited by 37 | Viewed by 9475
Abstract
For the past two decades, microbial monitoring of the International Space Station (ISS) has relied on culture-dependent methods that require return to Earth for analysis. This has a number of limitations, with the most significant being bias towards the detection of culturable organisms [...] Read more.
For the past two decades, microbial monitoring of the International Space Station (ISS) has relied on culture-dependent methods that require return to Earth for analysis. This has a number of limitations, with the most significant being bias towards the detection of culturable organisms and the inherent delay between sample collection and ground-based analysis. In recent years, portable and easy-to-use molecular-based tools, such as Oxford Nanopore Technologies’ MinION™ sequencer and miniPCR bio’s miniPCR™ thermal cycler, have been validated onboard the ISS. Here, we report on the development, validation, and implementation of a swab-to-sequencer method that provides a culture-independent solution to real-time microbial profiling onboard the ISS. Method development focused on analysis of swabs collected in a low-biomass environment with limited facility resources and stringent controls on allowed processes and reagents. ISS-optimized procedures included enzymatic DNA extraction from a swab tip, bead-based purifications, altered buffers, and the use of miniPCR and the MinION. Validation was conducted through extensive ground-based assessments comparing current standard culture-dependent and newly developed culture-independent methods. Similar microbial distributions were observed between the two methods; however, as expected, the culture-independent data revealed microbial profiles with greater diversity. Protocol optimization and verification was established during NASA Extreme Environment Mission Operations (NEEMO) analog missions 21 and 22, respectively. Unique microbial profiles obtained from analog testing validated the swab-to-sequencer method in an extreme environment. Finally, four independent swab-to-sequencer experiments were conducted onboard the ISS by two crewmembers. Microorganisms identified from ISS swabs were consistent with historical culture-based data, and primarily consisted of commonly observed human-associated microbes. This simplified method has been streamlined for high ease-of-use for a non-trained crew to complete in an extreme environment, thereby enabling environmental and human health diagnostics in real-time as future missions take us beyond low-Earth orbit. Full article
(This article belongs to the Special Issue MetaGenomics Sequencing In Situ)
Show Figures

Figure 1

14 pages, 2181 KiB  
Article
Metagenome Analysis of a Hydrocarbon-Degrading Bacterial Consortium Reveals the Specific Roles of BTEX Biodegraders
by Michael O. Eze
Genes 2021, 12(1), 98; https://doi.org/10.3390/genes12010098 - 14 Jan 2021
Cited by 19 | Viewed by 3916
Abstract
Environmental contamination by petroleum hydrocarbons is of concern due to the carcinogenicity and neurotoxicity of these compounds. Successful bioremediation of organic contaminants requires bacterial populations with degradative capacity for these contaminants. Through successive enrichment of microorganisms from a petroleum-contaminated soil using diesel fuel [...] Read more.
Environmental contamination by petroleum hydrocarbons is of concern due to the carcinogenicity and neurotoxicity of these compounds. Successful bioremediation of organic contaminants requires bacterial populations with degradative capacity for these contaminants. Through successive enrichment of microorganisms from a petroleum-contaminated soil using diesel fuel as the sole carbon and energy source, we successfully isolated a bacterial consortium that can degrade diesel fuel hydrocarbons. Metagenome analysis revealed the specific roles of different microbial populations involved in the degradation of benzene, toluene, ethylbenzene and xylene (BTEX), and the metabolic pathways involved in these reactions. One hundred and five putative coding DNA sequences were identified as responsible for both the activation of BTEX and central metabolism (ring-cleavage) of catechol and alkylcatechols during BTEX degradation. The majority of the Coding DNA sequences (CDSs) were affiliated to Acidocella, which was also the dominant bacterial genus in the consortium. The inoculation of diesel fuel contaminated soils with the consortium resulted in approximately 70% hydrocarbon biodegradation, indicating the potential of the consortium for environmental remediation of petroleum hydrocarbons. Full article
Show Figures

Figure 1

13 pages, 6726 KiB  
Article
Inhibition of the Lipid Droplet–Peroxisome Proliferator-Activated Receptor α Axis Suppresses Cancer Stem Cell Properties
by Kenta Kuramoto, Masahiro Yamamoto, Shuhei Suzuki, Keita Togashi, Tomomi Sanomachi, Chifumi Kitanaka and Masashi Okada
Genes 2021, 12(1), 99; https://doi.org/10.3390/genes12010099 - 14 Jan 2021
Cited by 26 | Viewed by 3078
Abstract
Cancer stem cells (CSCs), having both self-renewal and tumorigenic capacity, utilize an energy metabolism system different from that of non-CSCs. Lipid droplets (LDs) are organelles that store neutral lipids, including triacylglycerol. Previous studies demonstrated that LDs are formed and store lipids as an [...] Read more.
Cancer stem cells (CSCs), having both self-renewal and tumorigenic capacity, utilize an energy metabolism system different from that of non-CSCs. Lipid droplets (LDs) are organelles that store neutral lipids, including triacylglycerol. Previous studies demonstrated that LDs are formed and store lipids as an energy source in some CSCs. LDs play central roles not only in lipid storage, but also as a source of endogenous lipid ligands, which are involved in numerous signaling pathways, including the peroxisome proliferator-activated receptor (PPAR) signaling pathway. However, it remains unclear whether LD-derived signal transduction is involved in the maintenance of the properties of CSCs. We investigated the roles of LDs in cancer stemness using pancreatic and colorectal CSCs and isogenic non-CSCs. PPARα was activated in CSCs in which LDs accumulated, but not in non-CSCs, and pharmacological and genetic inhibition of PPARα suppressed cancer stemness. In addition, inhibition of both re-esterification and lipolysis pathways suppressed cancer stemness. Our study suggested that LD metabolic turnover accompanying PPARα activation is a promising anti-CSC therapeutic target. Full article
(This article belongs to the Special Issue Molecular Oncology–Unmask the True Nature of Cancer)
Show Figures

Graphical abstract

10 pages, 1089 KiB  
Article
Overcoming Supply Shortage for SARS-CoV-2 Detection by RT-qPCR
by Gustavo Barcelos Barra, Ticiane Henriques Santa Rita, Pedro Góes Mesquita, Rafael Henriques Jácomo and Lídia Freire Abdalla Nery
Genes 2021, 12(1), 90; https://doi.org/10.3390/genes12010090 - 13 Jan 2021
Cited by 16 | Viewed by 2390
Abstract
In February 2020, our laboratory started to offer a RT-qPCR assay for the qualitative detection of severe acute respiratory syndrome coronavirus 2. A few months after the assay was released to our patients, some materials, reagents, and equipment became in short supply. Alternative [...] Read more.
In February 2020, our laboratory started to offer a RT-qPCR assay for the qualitative detection of severe acute respiratory syndrome coronavirus 2. A few months after the assay was released to our patients, some materials, reagents, and equipment became in short supply. Alternative protocols were necessary in order to avoid stopping testing to the population. However, the suitability of these alternatives needs to be validated before their use. Here, we investigated if saliva is a reliable alternative specimen to nasopharyngeal swabs; if 0.45% saline is a reliable alternative to guanidine hydrochloride as a collection viral transport media; the stability of SARS-COV-2 in guanidine hydrochloride and in 0.45% saline for 10 and 50 days at room temperature; and if the primers/probe concentration and thermocycling times could be reduced so as to overcome the short supply of these reagents and equipment, without a significant loss of the assay performance. We found that saliva is not an appropriated specimen for our method—nasopharyngeal swabs perform better. Saline (0.45%) and guanidine hydrochloride have a similar SARS-CoV-2 diagnostic capability as tube additives. Reliable SARS-CoV-2 RNA detection can be performed after sample storage for 10 days at room temperature (18–23 °C) in both 0.45% saline and guanidine hydrochloride. Using synthetic RNA, and decreasing the concentration of primers by five-fold and probes by 2.5-fold, changed the assay limit of detection (LOD) from 7.2 copies/reaction to 23.7 copies/reaction and the subsequent reducing of thermocycling times changed the assay LOD from 23.7 copies/reaction to 44.2 copies/reaction. However, using real clinical samples with Cq values ranging from ~12.15 to ~36.46, the results of the three tested conditions were almost identical. These alterations will not affect the vast majority of diagnostics and increase the daily testing capability in 30% and increase primers and probe stocks in 500% and 250%, respectively. Taken together, the alternative protocols described here overcome the short supply of tubes, reagents and equipment during the SARS-CoV-2 pandemic, avoiding the collapse of test offering for the population: 105,757 samples were processed, and 25,156 SARS-CoV-2 diagnostics were performed from 9 May 2020 to 30 June 2020. Full article
Show Figures

Figure 1

11 pages, 3377 KiB  
Article
Meta-Analysis of Mutations in ALOX12B or ALOXE3 Identified in a Large Cohort of 224 Patients
by Alrun Hotz, Julia Kopp, Emmanuelle Bourrat, Vinzenz Oji, Katalin Komlosi, Kathrin Giehl, Bakar Bouadjar, Anette Bygum, Iliana Tantcheva-Poor, Maritta Hellström Pigg, Cristina Has, Zhou Yang, Alan D. Irvine, Regina C. Betz, Giovanna Zambruno, Gianluca Tadini, Kira Süßmuth, Robert Gruber, Matthias Schmuth, Juliette Mazereeuw-Hautier, Natalie Jonca, Sophie Guez, Michela Brena, Angela Hernandez-Martin, Peter van den Akker, Maria C. Bolling, Katariina Hannula-Jouppi, Andreas D. Zimmer, Svenja Alter, Anders Vahlquist and Judith Fischeradd Show full author list remove Hide full author list
Genes 2021, 12(1), 80; https://doi.org/10.3390/genes12010080 - 09 Jan 2021
Cited by 20 | Viewed by 4234
Abstract
The autosomal recessive congenital ichthyoses (ARCI) are a nonsyndromic group of cornification disorders that includes lamellar ichthyosis, congenital ichthyosiform erythroderma, and harlequin ichthyosis. To date mutations in ten genes have been identified to cause ARCI: TGM1, ALOX12B, ALOXE3, NIPAL4, [...] Read more.
The autosomal recessive congenital ichthyoses (ARCI) are a nonsyndromic group of cornification disorders that includes lamellar ichthyosis, congenital ichthyosiform erythroderma, and harlequin ichthyosis. To date mutations in ten genes have been identified to cause ARCI: TGM1, ALOX12B, ALOXE3, NIPAL4, CYP4F22, ABCA12, PNPLA1, CERS3, SDR9C7, and SULT2B1. The main focus of this report is the mutational spectrum of the genes ALOX12B and ALOXE3, which encode the epidermal lipoxygenases arachidonate 12-lipoxygenase, i.e., 12R type (12R-LOX), and the epidermis-type lipoxygenase-3 (eLOX3), respectively. Deficiency of 12R-LOX and eLOX3 disrupts the epidermal barrier function and leads to an abnormal epidermal differentiation. The type and the position of the mutations may influence the ARCI phenotype; most patients present with a mild erythrodermic ichthyosis, and only few individuals show severe erythroderma. To date, 88 pathogenic mutations in ALOX12B and 27 pathogenic mutations in ALOXE3 have been reported in the literature. Here, we presented a large cohort of 224 genetically characterized ARCI patients who carried mutations in these genes. We added 74 novel mutations in ALOX12B and 25 novel mutations in ALOXE3. We investigated the spectrum of mutations in ALOX12B and ALOXE3 in our cohort and additionally in the published mutations, the distribution of these mutations within the gene and gene domains, and potential hotspots and recurrent mutations. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 1669 KiB  
Article
The LDLR, APOB, and PCSK9 Variants of Index Patients with Familial Hypercholesterolemia in Russia
by Alexey Meshkov, Alexandra Ershova, Anna Kiseleva, Evgenia Zotova, Evgeniia Sotnikova, Anna Petukhova, Anastasia Zharikova, Pavel Malyshev, Tatyana Rozhkova, Anastasia Blokhina, Alena Limonova, Vasily Ramensky, Mikhail Divashuk, Zukhra Khasanova, Anna Bukaeva, Olga Kurilova, Olga Skirko, Maria Pokrovskaya, Valeriya Mikova, Ekaterina Snigir, Alexsandra Akinshina, Sergey Mitrofanov, Daria Kashtanova, Valentin Makarov, Valeriy Kukharchuk, Sergey Boytsov, Sergey Yudin and Oxana Drapkinaadd Show full author list remove Hide full author list
Genes 2021, 12(1), 66; https://doi.org/10.3390/genes12010066 - 06 Jan 2021
Cited by 32 | Viewed by 6126
Abstract
Familial hypercholesterolemia (FH) is a common autosomal codominant disorder, characterized by elevated low-density lipoprotein cholesterol levels causing premature atherosclerotic cardiovascular disease. About 2900 variants of LDLR, APOB, and PCSK9 genes potentially associated with FH have been described earlier. Nevertheless, the genetics [...] Read more.
Familial hypercholesterolemia (FH) is a common autosomal codominant disorder, characterized by elevated low-density lipoprotein cholesterol levels causing premature atherosclerotic cardiovascular disease. About 2900 variants of LDLR, APOB, and PCSK9 genes potentially associated with FH have been described earlier. Nevertheless, the genetics of FH in a Russian population is poorly understood. The aim of this study is to present data on the spectrum of LDLR, APOB, and PCSK9 gene variants in a cohort of 595 index Russian patients with FH, as well as an additional systematic analysis of the literature for the period of 1995–2020 on LDLR, APOB and PCSK9 gene variants described in Russian patients with FH. We used targeted and whole genome sequencing to search for variants. Accordingly, when combining our novel data and the data of a systematic literature review, we described 224 variants: 187 variants in LDLR, 14 variants in APOB, and 23 variants in PCSK9. A significant proportion of variants, 81 of 224 (36.1%), were not described earlier in FH patients in other populations and may be specific for Russia. Thus, this study significantly supplements knowledge about the spectrum of variants causing FH in Russia and may contribute to a wider implementation of genetic diagnostics in FH patients in Russia. Full article
(This article belongs to the Special Issue Cardiovascular Genetics)
Show Figures

Figure 1

24 pages, 5754 KiB  
Article
The AP2/ERF Gene Family in Triticum durum: Genome-Wide Identification and Expression Analysis under Drought and Salinity Stresses
by Sahar Faraji, Ertugrul Filiz, Seyed Kamal Kazemitabar, Alessandro Vannozzi, Fabio Palumbo, Gianni Barcaccia and Parviz Heidari
Genes 2020, 11(12), 1464; https://doi.org/10.3390/genes11121464 - 07 Dec 2020
Cited by 78 | Viewed by 6165
Abstract
Members of the AP2/ERF transcription factor family play critical roles in plant development, biosynthesis of key metabolites, and stress response. A detailed study was performed to identify TtAP2s/ERFs in the durum wheat (Triticum turgidum ssp. durum) [...] Read more.
Members of the AP2/ERF transcription factor family play critical roles in plant development, biosynthesis of key metabolites, and stress response. A detailed study was performed to identify TtAP2s/ERFs in the durum wheat (Triticum turgidum ssp. durum) genome, which resulted in the identification of 271 genes distributed on chromosomes 1A-7B. By carrying 27 genes, chromosome 6A had the highest number of TtAP2s/ERFs. Furthermore, a duplication assay of TtAP2s/ERFs demonstrated that 70 duplicated gene pairs had undergone purifying selection. According to RNA-seq analysis, the highest expression levels in all tissues and in response to stimuli were associated with DRF and ERF subfamily genes. In addition, the results revealed that TtAP2/ERF genes have tissue-specific expression patterns, and most TtAP2/ERF genes were significantly induced in the root tissue. Additionally, 13 TtAP2/ERF genes (six ERFs, three DREBs, two DRFs, one AP2, and one RAV) were selected for further analysis via qRT-PCR of their potential in coping with drought and salinity stresses. The TtAP2/ERF genes belonging to the DREB subfamily were markedly induced under both drought-stress and salinity-stress conditions. Furthermore, docking simulations revealed several residues in the pocket sites of the proteins associated with the stress response, which may be useful in future site-directed mutagenesis studies to increase the stress tolerance of durum wheat. This study could provide valuable insights for further evolutionary and functional assays of this important gene family in durum wheat. Full article
(This article belongs to the Special Issue Genetics and Breeding of Triticeae: Improving Small Grain Crop Plants)
Show Figures

Figure 1

8 pages, 236 KiB  
Article
COVID-19 and Genetic Variants of Protein Involved in the SARS-CoV-2 Entry into the Host Cells
by Andrea Latini, Emanuele Agolini, Antonio Novelli, Paola Borgiani, Rosalinda Giannini, Paolo Gravina, Andrea Smarrazzo, Mario Dauri, Massimo Andreoni, Paola Rogliani, Sergio Bernardini, Manuela Helmer-Citterich, Michela Biancolella and Giuseppe Novelli
Genes 2020, 11(9), 1010; https://doi.org/10.3390/genes11091010 - 27 Aug 2020
Cited by 85 | Viewed by 10475
Abstract
The recent global COVID-19 public health emergency is caused by SARS-CoV-2 infections and can manifest extremely variable clinical symptoms. Host human genetic variability could influence susceptibility and response to infection. It is known that ACE2 acts as a receptor for this pathogen, but [...] Read more.
The recent global COVID-19 public health emergency is caused by SARS-CoV-2 infections and can manifest extremely variable clinical symptoms. Host human genetic variability could influence susceptibility and response to infection. It is known that ACE2 acts as a receptor for this pathogen, but the viral entry into the target cell also depends on other proteins. The aim of this study was to investigate the variability of genes coding for these proteins involved in the SARS-CoV-2 entry into the cells. We analyzed 131 COVID-19 patients by exome sequencing and examined the genetic variants of TMPRSS2, PCSK3, DPP4, and BSG genes. In total we identified seventeen variants. In PCSK3 gene, we observed a missense variant (c.893G>A) statistically more frequent compared to the EUR GnomAD reference population and a missense mutation (c.1906A>G) not found in the GnomAD database. In TMPRSS2 gene, we observed a significant difference in the frequency of c.331G>A, c.23G>T, and c.589G>A variant alleles in COVID-19 patients, compared to the corresponding allelic frequency in GnomAD. Genetic variants in these genes could influence the entry of the SARS-CoV-2. These data also support the hypothesis that host genetic variability may contribute to the variability in infection susceptibility and severity. Full article
(This article belongs to the Special Issue Host Genetics in Susceptibility to Infectious Diseases)
12 pages, 2217 KiB  
Communication
Prediction and Analysis of SARS-CoV-2-Targeting MicroRNA in Human Lung Epithelium
by Jonathan Tak-Sum Chow and Leonardo Salmena
Genes 2020, 11(9), 1002; https://doi.org/10.3390/genes11091002 - 26 Aug 2020
Cited by 79 | Viewed by 7416
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus, is responsible for the coronavirus disease 2019 (COVID-19) pandemic of 2020. Experimental evidence suggests that microRNA can mediate an intracellular defence mechanism against some RNA viruses. The purpose of this study was to [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus, is responsible for the coronavirus disease 2019 (COVID-19) pandemic of 2020. Experimental evidence suggests that microRNA can mediate an intracellular defence mechanism against some RNA viruses. The purpose of this study was to identify microRNA with predicted binding sites in the SARS-CoV-2 genome, compare these to their microRNA expression profiles in lung epithelial tissue and make inference towards possible roles for microRNA in mitigating coronavirus infection. We hypothesize that high expression of specific coronavirus-targeting microRNA in lung epithelia may protect against infection and viral propagation, conversely, low expression may confer susceptibility to infection. We have identified 128 human microRNA with potential to target the SARS-CoV-2 genome, most of which have very low expression in lung epithelia. Six of these 128 microRNA are differentially expressed upon in vitro infection of SARS-CoV-2. Additionally, 28 microRNA also target the SARS-CoV genome while 23 microRNA target the MERS-CoV genome. We also found that a number of microRNA are commonly identified in two other studies. Further research into identifying bona fide coronavirus targeting microRNA will be useful in understanding the importance of microRNA as a cellular defence mechanism against pathogenic coronavirus infections. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1725 KiB  
Article
Whole Genome Sequencing of SARS-CoV-2: Adapting Illumina Protocols for Quick and Accurate Outbreak Investigation during a Pandemic
by Sureshnee Pillay, Jennifer Giandhari, Houriiyah Tegally, Eduan Wilkinson, Benjamin Chimukangara, Richard Lessells, Yunus Moosa, Stacey Mattison, Inbal Gazy, Maryam Fish, Lavanya Singh, Khulekani Sedwell Khanyile, James Emmanuel San, Vagner Fonseca, Marta Giovanetti, Luiz Carlos Alcantara, Jr. and Tulio de Oliveira
Genes 2020, 11(8), 949; https://doi.org/10.3390/genes11080949 - 17 Aug 2020
Cited by 51 | Viewed by 12738
Abstract
The COVID-19 pandemic has spread very fast around the world. A few days after the first detected case in South Africa, an infection started in a large hospital outbreak in Durban, KwaZulu-Natal (KZN). Phylogenetic analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [...] Read more.
The COVID-19 pandemic has spread very fast around the world. A few days after the first detected case in South Africa, an infection started in a large hospital outbreak in Durban, KwaZulu-Natal (KZN). Phylogenetic analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes can be used to trace the path of transmission within a hospital. It can also identify the source of the outbreak and provide lessons to improve infection prevention and control strategies. This manuscript outlines the obstacles encountered in order to genotype SARS-CoV-2 in near-real time during an urgent outbreak investigation. This included problems with the length of the original genotyping protocol, unavailability of reagents, and sample degradation and storage. Despite this, three different library preparation methods for Illumina sequencing were set up, and the hands-on library preparation time was decreased from twelve to three hours, which enabled the outbreak investigation to be completed in just a few weeks. Furthermore, the new protocols increased the success rate of sequencing whole viral genomes. A simple bioinformatics workflow for the assembly of high-quality genomes in near-real time was also fine-tuned. In order to allow other laboratories to learn from our experience, all of the library preparation and bioinformatics protocols are publicly available at protocols.io and distributed to other laboratories of the Network for Genomics Surveillance in South Africa (NGS-SA) consortium. Full article
Show Figures

Figure 1

19 pages, 8806 KiB  
Article
Protein Coding and Long Noncoding RNA (lncRNA) Transcriptional Landscape in SARS-CoV-2 Infected Bronchial Epithelial Cells Highlight a Role for Interferon and Inflammatory Response
by Radhakrishnan Vishnubalaji, Hibah Shaath and Nehad M. Alajez
Genes 2020, 11(7), 760; https://doi.org/10.3390/genes11070760 - 07 Jul 2020
Cited by 94 | Viewed by 8538
Abstract
The global spread of COVID-19, caused by pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for an imminent response from medical research communities to better understand this rapidly spreading infection. Employing multiple bioinformatics and computational pipelines on transcriptome data from [...] Read more.
The global spread of COVID-19, caused by pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for an imminent response from medical research communities to better understand this rapidly spreading infection. Employing multiple bioinformatics and computational pipelines on transcriptome data from primary normal human bronchial epithelial cells (NHBE) during SARS-CoV-2 infection revealed activation of several mechanistic networks, including those involved in immunoglobulin G (IgG) and interferon lambda (IFNL) in host cells. Induction of acute inflammatory response and activation of tumor necrosis factor (TNF) was prominent in SARS-CoV-2 infected NHBE cells. Additionally, disease and functional analysis employing ingenuity pathway analysis (IPA) revealed activation of functional categories related to cell death, while those associated with viral infection and replication were suppressed. Several interferon (IFN) responsive gene targets (IRF9, IFIT1, IFIT2, IFIT3, IFITM1, MX1, OAS2, OAS3, IFI44 and IFI44L) were highly upregulated in SARS-CoV-2 infected NBHE cell, implying activation of antiviral IFN innate response. Gene ontology and functional annotation of differently expressed genes in patient lung tissues with COVID-19 revealed activation of antiviral response as the hallmark. Mechanistic network analysis in IPA identified 14 common activated, and 9 common suppressed networks in patient tissue, as well as in the NHBE cell model, suggesting a plausible role for these upstream regulator networks in the pathogenesis of COVID-19. Our data revealed expression of several viral proteins in vitro and in patient-derived tissue, while several host-derived long noncoding RNAs (lncRNAs) were identified. Our data highlights activation of IFN response as the main hallmark associated with SARS-CoV-2 infection in vitro and in human, and identified several differentially expressed lncRNAs during the course of infection, which could serve as disease biomarkers, while their precise role in the host response to SARS-CoV-2 remains to be investigated. Full article
(This article belongs to the Special Issue Genomics of Host-Pathogen Interactions)
Show Figures

Figure 1

13 pages, 2439 KiB  
Article
Mutation Patterns of Human SARS-CoV-2 and Bat RaTG13 Coronavirus Genomes Are Strongly Biased Towards C>U Transitions, Indicating Rapid Evolution in Their Hosts
by Roman Matyášek and Aleš Kovařík
Genes 2020, 11(7), 761; https://doi.org/10.3390/genes11070761 - 07 Jul 2020
Cited by 70 | Viewed by 10223
Abstract
The pandemic caused by the spread of SARS-CoV-2 has led to considerable interest in its evolutionary origin and genome structure. Here, we analyzed mutation patterns in 34 human SARS-CoV-2 isolates and a closely related RaTG13 isolated from Rhinolophus affinis (a horseshoe bat). We [...] Read more.
The pandemic caused by the spread of SARS-CoV-2 has led to considerable interest in its evolutionary origin and genome structure. Here, we analyzed mutation patterns in 34 human SARS-CoV-2 isolates and a closely related RaTG13 isolated from Rhinolophus affinis (a horseshoe bat). We also evaluated the CpG dinucleotide contents in SARS-CoV-2 and other human and animal coronavirus genomes. Out of 1136 single nucleotide variations (~4% divergence) between human SARS-CoV-2 and bat RaTG13, 682 (60%) can be attributed to C>U and U>C substitutions, far exceeding other types of substitutions. An accumulation of C>U mutations was also observed in SARS-CoV2 variants that arose within the human population. Globally, the C>U substitutions increased the frequency of codons for hydrophobic amino acids in SARS-CoV-2 peptides, while U>C substitutions decreased it. In contrast to most other coronaviruses, both SARS-CoV-2 and RaTG13 exhibited CpG depletion in their genomes. The data suggest that C-to-U conversion mediated by C deamination played a significant role in the evolution of the SARS-CoV-2 coronavirus. We hypothesize that the high frequency C>U transitions reflect virus adaptation processes in their hosts, and that SARS-CoV-2 could have been evolving for a relatively long period in humans following the transfer from animals before spreading worldwide. Full article
(This article belongs to the Special Issue Rapid Evolution)
Show Figures

Figure 1

10 pages, 1393 KiB  
Communication
Analysis of ACE2 Genetic Variability among Populations Highlights a Possible Link with COVID-19-Related Neurological Complications
by Claudia Strafella, Valerio Caputo, Andrea Termine, Shila Barati, Stefano Gambardella, Paola Borgiani, Carlo Caltagirone, Giuseppe Novelli, Emiliano Giardina and Raffaella Cascella
Genes 2020, 11(7), 741; https://doi.org/10.3390/genes11070741 - 03 Jul 2020
Cited by 48 | Viewed by 6577
Abstract
Angiotensin-converting enzyme 2 (ACE2) has been recognized as the entry receptor of the novel severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). Structural and sequence variants in ACE2 gene may affect its expression in different tissues and determine a differential response to SARS-Cov-2 infection [...] Read more.
Angiotensin-converting enzyme 2 (ACE2) has been recognized as the entry receptor of the novel severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). Structural and sequence variants in ACE2 gene may affect its expression in different tissues and determine a differential response to SARS-Cov-2 infection and the COVID-19-related phenotype. The present study investigated the genetic variability of ACE2 in terms of single nucleotide variants (SNVs), copy number variations (CNVs), and expression quantitative loci (eQTLs) in a cohort of 268 individuals representative of the general Italian population. The analysis identified five SNVs (rs35803318, rs41303171, rs774469453, rs773676270, and rs2285666) in the Italian cohort. Of them, rs35803318 and rs2285666 displayed a significant different frequency distribution in the Italian population with respect to worldwide population. The eQTLs analysis located in and targeting ACE2 revealed a high distribution of eQTL variants in different brain tissues, suggesting a possible link between ACE2 genetic variability and the neurological complications in patients with COVID-19. Further research is needed to clarify the possible relationship between ACE2 expression and the susceptibility to neurological complications in patients with COVID-19. In fact, patients at higher risk of neurological involvement may need different monitoring and treatment strategies in order to prevent severe, permanent brain injury. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1423 KiB  
Article
Rapid Direct Nucleic Acid Amplification Test without RNA Extraction for SARS-CoV-2 Using a Portable PCR Thermocycler
by Soon Keong Wee, Suppiah Paramalingam Sivalingam and Eric Peng Huat Yap
Genes 2020, 11(6), 664; https://doi.org/10.3390/genes11060664 - 18 Jun 2020
Cited by 60 | Viewed by 11021
Abstract
There is an ongoing worldwide coronavirus disease 2019 (Covid-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At present, confirmatory diagnosis is by reverse transcription polymerase chain reaction (RT-PCR), typically taking several hours and requiring a molecular laboratory to perform. There [...] Read more.
There is an ongoing worldwide coronavirus disease 2019 (Covid-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At present, confirmatory diagnosis is by reverse transcription polymerase chain reaction (RT-PCR), typically taking several hours and requiring a molecular laboratory to perform. There is an urgent need for rapid, simplified, and cost-effective detection methods. We have developed and analytically validated a protocol for direct rapid extraction-free PCR (DIRECT-PCR) detection of SARS-CoV-2 without the need for nucleic acid purification. As few as six RNA copies per reaction of viral nucleocapsid (N) gene from respiratory samples such as sputum and nasal exudate can be detected directly using our one-step inhibitor-resistant assay. The performance of this assay was validated on a commercially available portable PCR thermocycler. Viral lysis, reverse transcription, amplification, and detection are achieved in a single-tube homogeneous reaction within 36 min. This minimizes hands-on time, reduces turnaround-time for sample-to-result, and obviates the need for RNA purification reagents. It could enable wider use of Covid-19 testing for diagnosis, screening, and research in countries and regions where laboratory capabilities are limiting. Full article
Show Figures

Figure 1

19 pages, 2462 KiB  
Article
Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors
by Duran Sürün, Aksana Schneider, Jovan Mircetic, Katrin Neumann, Felix Lansing, Maciej Paszkowski-Rogacz, Vanessa Hänchen, Min Ae Lee-Kirsch and Frank Buchholz
Genes 2020, 11(5), 511; https://doi.org/10.3390/genes11050511 - 06 May 2020
Cited by 77 | Viewed by 11574
Abstract
In contrast to CRISPR/Cas9 nucleases, CRISPR base editors (BE) and prime editors (PE) enable predefined nucleotide exchanges in genomic sequences without generating DNA double strand breaks. Here, we employed BE and PE mRNAs in conjunction with chemically synthesized sgRNAs and pegRNAs for efficient [...] Read more.
In contrast to CRISPR/Cas9 nucleases, CRISPR base editors (BE) and prime editors (PE) enable predefined nucleotide exchanges in genomic sequences without generating DNA double strand breaks. Here, we employed BE and PE mRNAs in conjunction with chemically synthesized sgRNAs and pegRNAs for efficient editing of human induced pluripotent stem cells (iPSC). Whereas we were unable to correct a disease-causing mutation in patient derived iPSCs using a CRISPR/Cas9 nuclease approach, we corrected the mutation back to wild type with high efficiency utilizing an adenine BE. We also used adenine and cytosine BEs to introduce nine different cancer associated TP53 mutations into human iPSCs with up to 90% efficiency, generating a panel of cell lines to investigate the biology of these mutations in an isogenic background. Finally, we pioneered the use of prime editing in human iPSCs, opening this important cell type for the precise modification of nucleotides not addressable by BEs and to multiple nucleotide exchanges. These approaches eliminate the necessity of deriving disease specific iPSCs from human donors and allows the comparison of different disease-causing mutations in isogenic genetic backgrounds. Full article
(This article belongs to the Special Issue Genes at Ten)
Show Figures

Figure 1

25 pages, 3904 KiB  
Article
Down Regulation and Loss of Auxin Response Factor 4 Function Using CRISPR/Cas9 Alters Plant Growth, Stomatal Function and Improves Tomato Tolerance to Salinity and Osmotic Stress
by Sarah Bouzroud, Karla Gasparini, Guojian Hu, Maria Antonia Machado Barbosa, Bruno Luan Rosa, Mouna Fahr, Najib Bendaou, Mondher Bouzayen, Agustin Zsögön, Abdelaziz Smouni and Mohamed Zouine
Genes 2020, 11(3), 272; https://doi.org/10.3390/genes11030272 - 03 Mar 2020
Cited by 101 | Viewed by 8078
Abstract
Auxin controls multiple aspects of plant growth and development. However, its role in stress responses remains poorly understood. Auxin acts on the transcriptional regulation of target genes, mainly through Auxin Response Factors (ARF). This study focuses on the involvement of SlARF4 [...] Read more.
Auxin controls multiple aspects of plant growth and development. However, its role in stress responses remains poorly understood. Auxin acts on the transcriptional regulation of target genes, mainly through Auxin Response Factors (ARF). This study focuses on the involvement of SlARF4 in tomato tolerance to salinity and osmotic stress. Using a reverse genetic approach, we found that the antisense down-regulation of SlARF4 promotes root development and density, increases soluble sugars content and maintains chlorophyll content at high levels under stress conditions. Furthermore, ARF4-as displayed higher tolerance to salt and osmotic stress through reduced stomatal conductance coupled with increased leaf relative water content and Abscisic acid (ABA) content under normal and stressful conditions. This increase in ABA content was correlated with the activation of ABA biosynthesis genes and the repression of ABA catabolism genes. Cu/ZnSOD and mdhar genes were up-regulated in ARF4-as plants which can result in a better tolerance to salt and osmotic stress. A CRISPR/Cas9 induced SlARF4 mutant showed similar growth and stomatal responses as ARF4-as plants, which suggest that arf4-cr can tolerate salt and osmotic stresses. Our data support the involvement of ARF4 as a key factor in tomato tolerance to salt and osmotic stresses and confirm the use of CRISPR technology as an efficient tool for functional reverse genetics studies. Full article
(This article belongs to the Special Issue TILLING and CRISPR to design the varieties of tomorrow)
Show Figures

Figure 1

30 pages, 13376 KiB  
Article
mRNAsi Index: Machine Learning in Mining Lung Adenocarcinoma Stem Cell Biomarkers
by Yitong Zhang, Joseph Ta-Chien Tseng, I-Chia Lien, Fenglan Li, Wei Wu and Hui Li
Genes 2020, 11(3), 257; https://doi.org/10.3390/genes11030257 - 27 Feb 2020
Cited by 60 | Viewed by 6653
Abstract
Cancer stem cells (CSCs), characterized by self-renewal and unlimited proliferation, lead to therapeutic resistance in lung cancer. In this study, we aimed to investigate the expressions of stem cell-related genes in lung adenocarcinoma (LUAD). The stemness index based on mRNA expression (mRNAsi) was [...] Read more.
Cancer stem cells (CSCs), characterized by self-renewal and unlimited proliferation, lead to therapeutic resistance in lung cancer. In this study, we aimed to investigate the expressions of stem cell-related genes in lung adenocarcinoma (LUAD). The stemness index based on mRNA expression (mRNAsi) was utilized to analyze LUAD cases in the Cancer Genome Atlas (TCGA). First, mRNAsi was analyzed with differential expressions, survival analysis, clinical stages, and gender in LUADs. Then, the weighted gene co-expression network analysis was performed to discover modules of stemness and key genes. The interplay among the key genes was explored at the transcription and protein levels. The enrichment analysis was performed to annotate the function and pathways of the key genes. The expression levels of key genes were validated in a pan-cancer scale. The pathological stage associated gene expression level and survival probability were also validated. The Gene Expression Omnibus (GEO) database was additionally used for validation. The mRNAsi was significantly upregulated in cancer cases. In general, the mRNAsi score increases according to clinical stages and differs in gender significantly. Lower mRNAsi groups had a better overall survival in major LUADs, within five years. The distinguished modules and key genes were selected according to the correlations to the mRNAsi. Thirteen key genes (CCNB1, BUB1, BUB1B, CDC20, PLK1, TTK, CDC45, ESPL1, CCNA2, MCM6, ORC1, MCM2, and CHEK1) were enriched from the cell cycle Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, relating to cell proliferation Gene Ontology (GO) terms, as well. Eight of the thirteen genes have been reported to be associated with the CSC characteristics. However, all of them have been previously ignored in LUADs. Their expression increased according to the pathological stages of LUAD, and these genes were clearly upregulated in pan-cancers. In the GEO database, only the tumor necrosis factor receptor associated factor-interacting protein (TRAIP) from the blue module was matched with the stemness microarray data. These key genes were found to have strong correlations as a whole, and could be used as therapeutic targets in the treatment of LUAD, by inhibiting the stemness features. Full article
(This article belongs to the Section Technologies and Resources for Genetics)
Show Figures

Figure 1

18 pages, 6036 KiB  
Article
Inhibition of Angiotensin-Converting Enzyme Ameliorates Renal Fibrosis by Mitigating DPP-4 Level and Restoring Antifibrotic MicroRNAs
by Swayam Prakash Srivastava, Julie E. Goodwin, Keizo Kanasaki and Daisuke Koya
Genes 2020, 11(2), 211; https://doi.org/10.3390/genes11020211 - 18 Feb 2020
Cited by 56 | Viewed by 4667
Abstract
Two class of drugs 1) angiotensin-converting enzyme inhibitors (ACEis) and 2) angiotensin II receptor blockers (ARBs) are well-known conventional drugs that can retard the progression of chronic nephropathies to end-stage renal disease. However, there is a lack of comparative studies on the effects [...] Read more.
Two class of drugs 1) angiotensin-converting enzyme inhibitors (ACEis) and 2) angiotensin II receptor blockers (ARBs) are well-known conventional drugs that can retard the progression of chronic nephropathies to end-stage renal disease. However, there is a lack of comparative studies on the effects of ACEi versus ARB on renal fibrosis. Here, we observed that ACEi ameliorated renal fibrosis by mitigating DPP-4 and TGFβ signaling, whereas, ARB did not show. Moreover, the combination of N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), one of the substrates of ACE, with ACEi slightly enhanced the inhibitory effects of ACEi on DPP-4 and associated-TGFβ signaling. Further, the comprehensive miRome analysis in kidneys of ACEi+AcSDKP (combination) treatment revealed the emergence of miR-29s and miR-let-7s as key antifibrotic players. Treatment of cultured cells with ACEi alone or in combination with AcSDKP prevented the downregulated expression of miR-29s and miR-let-7s induced by TGFβ stimulation. Interestingly, ACEi also restored miR-29 and miR-let-7 family cross-talk in endothelial cells, an effect that is shared by AcSDKP suggesting that AcSDKP may be partially involved in the anti-mesenchymal action of ACEi. The results of the present study promise to advance our understanding of how ACEi regulates antifibrotic microRNAs crosstalk and DPP-4 associated-fibrogenic processes which is a critical event in the development of diabetic kidney disease. Full article
(This article belongs to the Collection microRNA Omnibus)
Show Figures

Figure 1

18 pages, 2007 KiB  
Article
Circulatory miR-133b and miR-21 as Novel Biomarkers in Early Prediction and Diagnosis of Coronary Artery Disease
by Dinesh Kumar, Rajiv Narang, Vishnubhatla Sreenivas, Vandana Rastogi, Jagriti Bhatia, Daman Saluja and Kamna Srivastava
Genes 2020, 11(2), 164; https://doi.org/10.3390/genes11020164 - 05 Feb 2020
Cited by 54 | Viewed by 5689
Abstract
While coronary artery disease (CAD) has become a major threat worldwide, the timely biomarker-based early diagnosis of CAD remains a major unmet clinical challenge. We aimed towards assessing the level of circulatory microRNAs as candidates of novel biomarkers in patients with CAD. A [...] Read more.
While coronary artery disease (CAD) has become a major threat worldwide, the timely biomarker-based early diagnosis of CAD remains a major unmet clinical challenge. We aimed towards assessing the level of circulatory microRNAs as candidates of novel biomarkers in patients with CAD. A total of 147 subjects were recruited which includes 78 subjects with angiographically proven CAD, 15 pre-atherosclerotic normal coronary artery (NCA) subjects and 54 healthy individuals. Quantitative real-time PCR assays were performed. MiR-133b was downregulated by 4.6 fold (p < 0.0001) whereas miR-21 was upregulated by ~2 fold (p < 0.0001) in plasma samples of CAD patients. Importantly, both the miRNAs showed association with disease severity as miR-133b was downregulated by 8.45 fold in acute coronary syndrome (ACS), 3.38 fold in Stable angina (SA) and 2.08 fold in NCA. MiR-21 was upregulated by 2.46 fold in ACS, 1.90 fold in SA and 1.12 fold in NCA. Moreover, miR-133b could significantly differentiate subjects with ST-elevation myocardial infarction (STEMI) from Non-STEMI. Area under the curve (AUC) for miR-133b was 0.80 with >75.6% sensitivity and specificity, AUC for miR-21 was 0.79 with >69.4% sensitivity and specificity. Our results suggest that miR-133b and miR-21 could be possible candidates of novel biomarkers in early prediction of CAD. Full article
(This article belongs to the Collection microRNA Omnibus)
Show Figures

Figure 1

17 pages, 2172 KiB  
Article
Genomics in Bacterial Taxonomy: Impact on the Genus Pseudomonas
by Jorge Lalucat, Magdalena Mulet, Margarita Gomila and Elena García-Valdés
Genes 2020, 11(2), 139; https://doi.org/10.3390/genes11020139 - 29 Jan 2020
Cited by 133 | Viewed by 11271
Abstract
The introduction of genomics is profoundly changing current bacterial taxonomy. Phylogenomics provides accurate methods for delineating species and allows us to infer the phylogeny of higher taxonomic ranks as well as those at the subspecies level. We present as a model the currently [...] Read more.
The introduction of genomics is profoundly changing current bacterial taxonomy. Phylogenomics provides accurate methods for delineating species and allows us to infer the phylogeny of higher taxonomic ranks as well as those at the subspecies level. We present as a model the currently accepted taxonomy of the genus Pseudomonas and how it can be modified when new taxonomic methodologies are applied. A phylogeny of the species in the genus deduced from analyses of gene sequences or by whole genome comparison with different algorithms allows three main conclusions: (i) several named species are synonymous and have to be reorganized in a single genomic species; (ii) many strains assigned to known species have to be proposed as new genomic species within the genus; and (iii) the main phylogenetic groups defined by 4-, 100- and 120-gene multilocus sequence analyses are concordant with the groupings in the whole genome analyses. Moreover, the boundaries of the genus Pseudomonas are also discussed based on phylogenomic analyses in relation to other genera in the family Pseudomonadaceae. The new technologies will result in a substantial increase in the number of species and probably split the current genus into several genera or subgenera, although these classifications have to be supported by a polyphasic taxonomic approach. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

20 pages, 1552 KiB  
Article
Extracellular Vesicles Derived from Human Gingival Mesenchymal Stem Cells: A Transcriptomic Analysis
by Serena Silvestro, Luigi Chiricosta, Agnese Gugliandolo, Jacopo Pizzicannella, Francesca Diomede, Placido Bramanti, Oriana Trubiani and Emanuela Mazzon
Genes 2020, 11(2), 118; https://doi.org/10.3390/genes11020118 - 21 Jan 2020
Cited by 51 | Viewed by 3492
Abstract
Human gingival mesenchymal stem cells (hGMSCs) have outstanding characteristics of proliferation and are able to differentiate into osteogenic, chondrogenic, adipogenic, and neurogenic cell lineages. The extracellular vesicles (EVs) secreted by hGMSCs contain proteins, lipids, mRNA and microRNA have emerged as important mediators of [...] Read more.
Human gingival mesenchymal stem cells (hGMSCs) have outstanding characteristics of proliferation and are able to differentiate into osteogenic, chondrogenic, adipogenic, and neurogenic cell lineages. The extracellular vesicles (EVs) secreted by hGMSCs contain proteins, lipids, mRNA and microRNA have emerged as important mediators of cell-to-cell communication. In this study, we analyzed the transcriptome of hGMSCs-derived EVs using Next Generation Sequencing (NGS). The functional evaluation of the transcriptome highlighted 26 structural protein classes and the presence of “non-coding RNAs”. Our results showed that EVs contain several growth factors such as Transforming Growth Factor-β (TGF-β), Fibroblast Growth Factor (FGF), and Vascular Endothelial Growth Factors (VEGF) implicated in osteoblast differentiation and in angiogenetic process. Furthermore, the transcriptomic analysis showed the presence of glial cell-derived neurotrophic factor (GDNF) family ligands and neurotrophins involved in neuronal development. The NGS analysis also identified the presence of several interleukins among which some with anti-inflammatory action. Moreover, the transcriptome profile of EVs contained members of the Wnt family, involved in several biological processes, such as cellular proliferation and tissue regeneration. In conclusion, the huge amount of growth factors included in the hGMSCs-derived EVs could make them a big resource in regenerative medicine. Full article
(This article belongs to the Special Issue Stem Cells Application in Clinical Practice: Advances and Challenges)
Show Figures

Figure 1

Review

42 pages, 3406 KiB  
Review
The Hexosamine Biosynthesis Pathway: Regulation and Function
by Alysta Paneque, Harvey Fortus, Julia Zheng, Guy Werlen and Estela Jacinto
Genes 2023, 14(4), 933; https://doi.org/10.3390/genes14040933 - 18 Apr 2023
Cited by 25 | Viewed by 6284
Abstract
The hexosamine biosynthesis pathway (HBP) produces uridine diphosphate-N-acetyl glucosamine, UDP-GlcNAc, which is a key metabolite that is used for N- or O-linked glycosylation, a co- or post-translational modification, respectively, that modulates protein activity and expression. The production of hexosamines [...] Read more.
The hexosamine biosynthesis pathway (HBP) produces uridine diphosphate-N-acetyl glucosamine, UDP-GlcNAc, which is a key metabolite that is used for N- or O-linked glycosylation, a co- or post-translational modification, respectively, that modulates protein activity and expression. The production of hexosamines can occur via de novo or salvage mechanisms that are catalyzed by metabolic enzymes. Nutrients including glutamine, glucose, acetyl-CoA, and UTP are utilized by the HBP. Together with availability of these nutrients, signaling molecules that respond to environmental signals, such as mTOR, AMPK, and stress-regulated transcription factors, modulate the HBP. This review discusses the regulation of GFAT, the key enzyme of the de novo HBP, as well as other metabolic enzymes that catalyze the reactions to produce UDP-GlcNAc. We also examine the contribution of the salvage mechanisms in the HBP and how dietary supplementation of the salvage metabolites glucosamine and N-acetylglucosamine could reprogram metabolism and have therapeutic potential. We elaborate on how UDP-GlcNAc is utilized for N-glycosylation of membrane and secretory proteins and how the HBP is reprogrammed during nutrient fluctuations to maintain proteostasis. We also consider how O-GlcNAcylation is coupled to nutrient availability and how this modification modulates cell signaling. We summarize how deregulation of protein N-glycosylation and O-GlcNAcylation can lead to diseases including cancer, diabetes, immunodeficiencies, and congenital disorders of glycosylation. We review the current pharmacological strategies to inhibit GFAT and other enzymes involved in the HBP or glycosylation and how engineered prodrugs could have better therapeutic efficacy for the treatment of diseases related to HBP deregulation. Full article
(This article belongs to the Special Issue Signaling and Gene Regulation in Metabolism)
Show Figures

Figure 1

Back to TopTop