Topical Advisory Panel applications are now closed. Please contact the Editorial Office with any queries.
-
Dynamic Management Tool for Improving Passenger Experience at Transport Interchanges
-
Intercity Railfares After HSR Liberalisation in Spain: Price Patterns in the Madrid–Barcelona Corridor
-
Model-Based Bikeability Indexing for Inter-City Comparisons to Evaluate Infrastructure and Level of Service for Cyclists
Journal Description
Future Transportation
Future Transportation
is an international, peer-reviewed, open access journal on the civil engineering, economics, environment and geography, computer science and other transdisciplinary dimensions of transportation published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, EBSCO, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 33.4 days after submission; acceptance to publication is undertaken in 10.6 days (median values for papers published in this journal in the first half of 2025).
- Journal Rank: CiteScore - Q2 (Engineering (miscellaneous))
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Future Transportation is a companion journal of Sustainability.
Impact Factor:
1.7 (2024);
5-Year Impact Factor:
2.0 (2024)
Latest Articles
A Short-Term Storytelling Framework for Understanding Surrogate Safety Measures in Intelligent Vehicle Interactions
Future Transp. 2025, 5(3), 86; https://doi.org/10.3390/futuretransp5030086 (registering DOI) - 4 Jul 2025
Abstract
Traffic safety assessments rely on Surrogate Safety Measures (SSMs), yet their diversity hinders understanding and selection. This paper proposes a novel conceptual framework to systematically categorize SSMs through what we term Motion Scenario Mapping, an approach inspired by queuing theory notation and the
[...] Read more.
Traffic safety assessments rely on Surrogate Safety Measures (SSMs), yet their diversity hinders understanding and selection. This paper proposes a novel conceptual framework to systematically categorize SSMs through what we term Motion Scenario Mapping, an approach inspired by queuing theory notation and the concept of short-term behavioral storytelling. The framework explicitly defines interaction stories between a following and leading vehicle to reveal hidden assumptions within each SSM, achieved through a combined coding system. Examining ten common SSMs, the research demonstrates that the framework effectively exposes underlying assumptions, enabling critical evaluation of their contextual validity. By emphasizing short-term risk dynamics, this approach offers a structured understanding of interaction mechanisms and provides a systematic foundation for comparing existing SSMs, identifying research gaps, and guiding future development. This structured ontology has the potential to enhance the analysis and design of safety measures for future transportation systems.
Full article
Open AccessReview
Integrating Risk Assessment and Scheduling in Highway Construction: A Systematic Review of Techniques, Challenges, and Hybrid Methodologies
by
Aigul Zhasmukhambetova, Harry Evdorides and Richard J. Davies
Future Transp. 2025, 5(3), 85; https://doi.org/10.3390/futuretransp5030085 (registering DOI) - 4 Jul 2025
Abstract
►▼
Show Figures
This study presents a comprehensive review of risk assessment and scheduling techniques in highway construction, addressing the complex interplay between uncertainty, project planning, and decision-making. The research critically reviews key risk assessment methods, including Probability–Impact (P-I), Monte Carlo Simulation (MCS), Fuzzy Set Theory
[...] Read more.
This study presents a comprehensive review of risk assessment and scheduling techniques in highway construction, addressing the complex interplay between uncertainty, project planning, and decision-making. The research critically reviews key risk assessment methods, including Probability–Impact (P-I), Monte Carlo Simulation (MCS), Fuzzy Set Theory (FST), and the Analytical Hierarchy Process (AHP), alongside traditional scheduling approaches such as the Critical Path Method (CPM) and the Program Evaluation and Review Technique (PERT). The findings reveal that, although traditional methods like CPM and PERT remain widely used, they exhibit limitations in addressing the dynamic and uncertain nature of construction projects. Advanced techniques such as MCS, FST, and AHP enhance decision-making capabilities but require careful adaptation. The review further highlights the growing relevance of hybrid and integrated approaches that combine risk assessment and scheduling. Bayesian Networks (BNs) are identified as highly promising due to their capacity to integrate both qualitative and quantitative data, offering potential for greater reliability in risk-informed scheduling while supporting improvements in cost efficiency, schedule reliability, and adaptability under uncertainty. The study outlines recommendations for the future development of intelligent, risk-based scheduling frameworks suitable for industry adoption.
Full article

Figure 1
Open AccessArticle
Strengthening Active Transportation Through Small Grants
by
Charles Chancellor, Trevor S. Romans, Thomas Clanton, Tiffany Rhodes and Sunwoo Park
Future Transp. 2025, 5(3), 84; https://doi.org/10.3390/futuretransp5030084 - 4 Jul 2025
Abstract
►▼
Show Figures
Bicycle use has been increasing in many countries for active, sustainable transportation and recreation. Bicycling can benefit an individual’s mental and physical health and contribute to a community’s well-being and desirability, and it is more environmentally sustainable than automobiles. Nonprofit organizations lead bicycle
[...] Read more.
Bicycle use has been increasing in many countries for active, sustainable transportation and recreation. Bicycling can benefit an individual’s mental and physical health and contribute to a community’s well-being and desirability, and it is more environmentally sustainable than automobiles. Nonprofit organizations lead bicycle advocacy efforts in the USA, both for bicycling as recreation and as part of local transportation systems. Outride is one of the larger advocacy organizations, and it sponsors a unique grant system targeting grassroots bicycling organizations dedicated to increasing bicycling. Using the Bicycle Community Development Framework (BCDF) as a lens, this study aims to evaluate Outride’s efforts through an interpretative phenomenological approach (IPA) using semi-structured interviews to gather data regarding grant recipients’ experiences using Outride funds. Findings suggest fund recipients are increasing bicycling through programs and infrastructure development, but with more intentionality, could better support building bicycle communities. Regarding the BCDF, the recipients strongly promoted education, engineering, and equity & accessibility while fostering a sense of community, belonging, and empowerment in their participants.
Full article

Figure 1
Open AccessReview
Rail Maintenance, Sensor Systems and Digitalization: A Comprehensive Review
by
Higinio Gonzalez-Jorge, Eduardo Ríos-Otero, Enrique Aldao, Eduardo Balvís, Fernando Veiga-López and Gabriel Fontenla-Carrera
Future Transp. 2025, 5(3), 83; https://doi.org/10.3390/futuretransp5030083 - 1 Jul 2025
Abstract
►▼
Show Figures
Railway infrastructures necessitate the inspection of various elements to ensure operational safety. This study concentrates on five key components: rail, sleepers and ballast, track geometry, and catenary. The operational principles of the primary defect measurement sensors are elaborated, emphasizing the use of ultrasound,
[...] Read more.
Railway infrastructures necessitate the inspection of various elements to ensure operational safety. This study concentrates on five key components: rail, sleepers and ballast, track geometry, and catenary. The operational principles of the primary defect measurement sensors are elaborated, emphasizing the use of ultrasound, eddy currents, active and passive optical elements, accelerometers, and ground penetrating radar. Each sensor type is evaluated in terms of its advantages and limitations. Examples of mobile inspection platforms are provided, ranging from laboratory trains to draisines and track trolleys. The authors foresee future trends in railway inspection, including the implementation of IoT sensors, autonomous robots, and geospatial intelligence technologies. It is anticipated that the integration of sensors within both infrastructure and rolling stock will enhance maintenance and safety, with an increased utilization of autonomous robotic systems for hazardous and hard-to-reach areas.
Full article

Figure 1
Open AccessSystematic Review
Success Factors in Transport Interventions: A Mixed-Method Systematic Review (1990–2022)
by
Pierré Esser, Shehani Pigera, Miglena Campbell, Paul van Schaik and Tracey Crosbie
Future Transp. 2025, 5(3), 82; https://doi.org/10.3390/futuretransp5030082 - 1 Jul 2025
Abstract
►▼
Show Figures
This study is titled “Success Factors in Transport Interventions: A Mixed-Method Systematic Review (1990–2022)”. The purpose of the systematic review is to (1) identify effective interventions for transitioning individuals from private car reliance to sustainable transport, (2) summarise psychosocial theories shaping transportation choices
[...] Read more.
This study is titled “Success Factors in Transport Interventions: A Mixed-Method Systematic Review (1990–2022)”. The purpose of the systematic review is to (1) identify effective interventions for transitioning individuals from private car reliance to sustainable transport, (2) summarise psychosocial theories shaping transportation choices and identify enablers and barriers influencing sustainable mode adoption, and (3) determine the success factors for interventions promoting sustainable transport choices. The last search was conducted on 18 November 2022. Five databases (Scopus, Web of Science, MEDLINE, APA PsycInfo, and ProQuest) were searched using customised Boolean search strings. The identified papers were included or excluded based on the following criteria: (a) reported a modal shift from car users or cars to less CO2-emitting modes of transport, (b) covered the adoption of low-carbon transport alternatives, (c) comprised interventions to promote sustainable transport, (d) assessed or measured the effectiveness of interventions, or (e) proposed behavioural models related to mode choice and/or psychosocial barriers or drivers for car/no-car use. The identified papers eligible for inclusion were critically appraised using Sirriyeh’s Quality Assessment Tool for Studies with Diverse Designs. Inter-rater reliability was assessed using Cohen’s Kappa to evaluate the risk of bias throughout the review process, and low-quality studies identified by the quality assessment were excluded to prevent sample bias. Qualitative data were extracted in a contextually relevant manner, preserving context and meaning to avoid the author’s bias of misinterpretation. Data were extracted using a form derived from the Joanna Briggs Institute. Data transformation and synthesis followed the recommendations of the Joanna Briggs Institution for mixed-method systematic reviews using a convergent integrated approach. Of the 7999 studies, 4 qualitative, 2 mixed-method, and 30 quantitative studies successfully passed all three screening cycles and were included in the review. Many of these studies focused on modelling individuals’ mode choice decisions from a psychological perspective. In contrast, case studies explored various transport interventions to enhance sustainability in densely populated areas. Nevertheless, the current systematic reviews do not show how individuals’ inner dispositions, such as acceptance, intention, or attitude, have evolved from before to after the implementation of schemes. Of the 11 integrated findings, 9 concerned enablers and barriers to an individual’s sustainable mode choice behaviour. In addition, two integrated findings emerged based on the effectiveness of the interventions. Although numerous interventions target public acceptance of sustainable transport, this systematic review reveals a critical knowledge gap regarding their longitudinal impact on individuals and effectiveness in influencing behavioural change. However, the study may be affected by language bias as it only included peer-reviewed articles published in English. Due to methodological heterogeneity across the studies, a meta-analysis was not feasible. Further high-quality research is needed to strengthen the evidence. This systematic review is self-funded and has been registered on the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY; Registration Number INPLASY202420011).
Full article

Figure 1
Open AccessSystematic Review
From Paratransit to Emerging Transportation and Micro-Mobility: A Conceptual Discussion on Alternative Transportation from a Systematic Literature Review
by
Juan Carlos Finck Carrales
Future Transp. 2025, 5(3), 81; https://doi.org/10.3390/futuretransp5030081 - 1 Jul 2025
Abstract
►▼
Show Figures
This study outlines a conceptual discussion within the transport planning field through an extensive systematic literature review that draws upon diverse case studies on alternative transportation. The article focuses on context-dependent multidimensional understandings of alternative transport services in the Global South and the
[...] Read more.
This study outlines a conceptual discussion within the transport planning field through an extensive systematic literature review that draws upon diverse case studies on alternative transportation. The article focuses on context-dependent multidimensional understandings of alternative transport services in the Global South and the Global North, which other systematic literature review studies lack. Thus, this research aims to pose conceptual differentiations between paratransit, informal transportation, emerging transportation, and micro-mobility to pinpoint specific characteristics and varied understandings of such phenomena for further academic research within transport planning. Tendencies of research approaches and case studies’ policy and regulation based on geographical zones are also addressed. The outcomes enrich the field of study at a theoretical and practical level toward its application in policy and regulation for green transitions of alternative transport services.
Full article

Figure 1
Open AccessArticle
A Strategic AHP-Based Framework for Mitigating Delays in Road Construction Projects in the Philippines
by
Jolina Marie O. Pedron, Divina R. Gonzales, Dante L. Silva, Bernard S. Villaverde, Edgar M. Adina, Jerome G. Gacu and Cris Edward F. Monjardin
Future Transp. 2025, 5(3), 80; https://doi.org/10.3390/futuretransp5030080 - 1 Jul 2025
Abstract
►▼
Show Figures
Delays in road construction projects pose significant challenges in the Philippines, resulting in increased costs, project overruns, and unmet infrastructure goals. Common causes include poor financial management, inadequate subcontractor performance, deficient planning, and regulatory bottlenecks. This study aims to develop a comprehensive and
[...] Read more.
Delays in road construction projects pose significant challenges in the Philippines, resulting in increased costs, project overruns, and unmet infrastructure goals. Common causes include poor financial management, inadequate subcontractor performance, deficient planning, and regulatory bottlenecks. This study aims to develop a comprehensive and data-driven framework to mitigate construction delays using the Analytical Hierarchy Process (AHP). The methodology integrates literature review, expert surveys, and pairwise comparisons to identify and prioritize critical delay factors. Experts from the Department of Public Works and Highways (DPWH), private contractors, and academia contributed to the AHP model. The results highlight seven major factor groups: client-related, contractor-related, consultant-related, materials, labor and equipment, contractual issues, and external influences. AHP analysis identified financial management, planning and scheduling, and regulatory coordination as the most impactful causes. Based on these findings, a strategic framework was developed and visualized using a Fishbone Diagram to present mitigation strategies tailored to each factor. While environmental engineering principles—such as material efficiency, energy use optimization, and impact assessments—are acknowledged, they serve as guiding themes rather than formal components of the framework. The study offers practical, stakeholder-validated recommendations for both pre- and post-construction phases, including real-time monitoring, risk anticipation, and improved multi-agency coordination. This framework provides a scalable tool for DPWH and related agencies to improve infrastructure delivery while supporting long-term sustainability goals.
Full article

Figure 1
Open AccessSystematic Review
Promoting Sustainable Transport: A Systematic Review of Walking and Cycling Adoption Using the COM-B Model
by
Hisham Y. Makahleh, Madhar M. Taamneh and Dilum Dissanayake
Future Transp. 2025, 5(3), 79; https://doi.org/10.3390/futuretransp5030079 - 1 Jul 2025
Abstract
►▼
Show Figures
Walking and cycling, as active modes of transportation, play a vital role in advancing sustainable urban mobility by reducing emissions and improving public health. However, widespread adoption faces challenges such as inadequate infrastructure, safety concerns, socio-cultural barriers, and policy limitations. This study systematically
[...] Read more.
Walking and cycling, as active modes of transportation, play a vital role in advancing sustainable urban mobility by reducing emissions and improving public health. However, widespread adoption faces challenges such as inadequate infrastructure, safety concerns, socio-cultural barriers, and policy limitations. This study systematically reviewed 56 peer-reviewed articles from 2004 to 2024, across 30 countries across five continents, employing the Capability, Opportunity and Motivation-Behaviour (COM-B) framework to identify the main drivers of walking and cycling behaviours. Findings highlight that the lack of dedicated infrastructure, inadequate enforcement of road safety measures, personal and traffic safety concerns, and social stigmas collectively hinder active mobility. Strategic interventions such as developing integrated cycling networks, financial incentives, urban planning initiatives, and behavioural change programs have promoted increased engagement in walking and cycling. Enhancing urban mobility further requires investment in pedestrian and cycling infrastructure, improved integration with public transportation, the implementation of traffic-calming measures, and public education campaigns. Post-pandemic initiatives to establish new pedestrian and cycling spaces offer a unique opportunity to establish enduring changes that support active transportation. The study suggests expanding protected cycling lanes and integrating pedestrian pathways with public transit systems to strengthen safety and accessibility. Additionally, leveraging digital tools can enhance mobility planning and coordination. Future research is needed to explore the potential of artificial intelligence in enhancing mobility analysis, supporting the development of climate-resilient infrastructure, and informing transport policies that integrate gender perspectives to better understand long-term behavioural changes. Coordinated policy efforts and targeted investments can lead to more equitable transportation access, support sustainability goals, and alleviate urban traffic congestion.
Full article

Figure 1
Open AccessArticle
How Humans Evaluate AI Systems for Person Detection in Automatic Train Operation: Not All Misses Are Alike
by
Romy Müller
Future Transp. 2025, 5(3), 78; https://doi.org/10.3390/futuretransp5030078 - 1 Jul 2025
Abstract
►▼
Show Figures
If artificial intelligence (AI) is to be applied in safety-critical domains, its performance needs to be evaluated reliably. The present study investigated how humans evaluate AI systems for person detection in automatic train operation. In three experiments, participants viewed image sequences of people
[...] Read more.
If artificial intelligence (AI) is to be applied in safety-critical domains, its performance needs to be evaluated reliably. The present study investigated how humans evaluate AI systems for person detection in automatic train operation. In three experiments, participants viewed image sequences of people moving in the vicinity of railway tracks. A simulated AI system highlighted all detected people—sometimes correctly and sometimes not. Participants had to provide a numerical rating of the AI’s performance and then verbally explain their rating. The experiments manipulated several factors that might influence human ratings: the types and plausibility of AI mistakes, the number of affected images, the number of people present in an image, the position of people relevant to the tracks, and the methods used to elicit human evaluations. While all these factors influenced human ratings, some effects were unexpected or deviated from normative standards. For instance, the factor with the strongest impact was people’s position relative to the tracks, although participants had explicitly been instructed that the AI could not process such information. Taken together, the results suggest that humans may sometimes evaluate more than the AI’s performance on the assigned task. Such mismatches between AI capabilities and human expectations should be taken into consideration when conducting safety audits of AI systems.
Full article

Figure 1
Open AccessArticle
Potential Assessment of Electrified Heavy-Duty Trailers Based on the Methods Developed for EU Legislation (VECTO Trailer)
by
Stefan Present and Martin Rexeis
Future Transp. 2025, 5(3), 77; https://doi.org/10.3390/futuretransp5030077 - 1 Jul 2025
Abstract
►▼
Show Figures
Since 1 January 2024, newly produced heavy-duty trailers are subject to the assessment of their performance regarding CO2 and fuel consumption according to Implementing Regulation (EU) 2022/1362. The method is based on the already established approach for the CO2 and energy
[...] Read more.
Since 1 January 2024, newly produced heavy-duty trailers are subject to the assessment of their performance regarding CO2 and fuel consumption according to Implementing Regulation (EU) 2022/1362. The method is based on the already established approach for the CO2 and energy consumption evaluation of trucks and buses, i.e., applying a combination of component testing and vehicle simulation using the software VECTO (Vehicle Energy Consumption calculation TOol). For the evaluation of trailers, generic conventional towing vehicles in combination with the specific CO2 and fuel consumption-relevant properties of the trailer, such as mass, aerodynamics, rolling resistance etc., are simulated in the “VECTO Trailer” software. The corresponding results are used in the European HDV CO2 standards with which manufacturers must comply to avoid penalty payments (2030: −10% for semitrailers and −7.5% for trailers compared with the baseline year 2025). Methodology and legislation are currently being extended to also cover the effects of electrified trailers (trailers with an electrified axle and/or electrically supplied auxiliaries) on CO2, electrical energy consumption, and electric range extension (special use case in combination with a battery-electric towing vehicle). This publication gives an overview of the developed regulatory framework and methods to be implemented in a future extension of VECTO Trailer as well as a comparison of different e-trailer configurations and usage scenarios regarding their impact on CO2, energy consumption, and electric range by applying the developed methods in a preliminary potential analysis. Results from this analysis indicate that e-trailers that use small batteries (5–50 kWh) to power electric refrigeration units achieve a CO2 reduction of 5–10%, depending primarily on battery capacity. In contrast, e-trailers designed for propulsion support with larger batteries (50–500 kWh) and e-axle(s) (50–500 kW) demonstrate a reduction potential of up to 40%, largely determined by battery capacity and e-axle rating. Despite their reduction potential, market acceptance of e-trailers remains uncertain as the higher number of trailers compared with towing vehicles could lead to slow adoption, especially of the more expensive configurations.
Full article

Figure 1
Open AccessSystematic Review
Congestion Forecasting Using Machine Learning Techniques: A Systematic Review
by
Mehdi Attioui and Mohamed Lahby
Future Transp. 2025, 5(3), 76; https://doi.org/10.3390/futuretransp5030076 - 1 Jul 2025
Abstract
►▼
Show Figures
Traffic congestion constitutes a substantial global issue, adversely impacting economic productivity and quality of life, with associated costs estimated at approximately 2% of GDP in various nations. This systematic review investigates the application of machine learning (ML) in traffic congestion forecasting from 2010
[...] Read more.
Traffic congestion constitutes a substantial global issue, adversely impacting economic productivity and quality of life, with associated costs estimated at approximately 2% of GDP in various nations. This systematic review investigates the application of machine learning (ML) in traffic congestion forecasting from 2010 to 2024, adhering to the PRISMA 2020 guidelines. A comprehensive search of three major databases (IEEE Xplore, SpringerLink, and ScienceDirect) yielded 9695 initial records, with 115 studies meeting the inclusion criteria following rigorous screening. Data extraction encompassed methodological approaches, ML techniques, traffic characteristics, and forecasting periods, with quality assessment achieving near-perfect inter-rater reliability (Cohen’s = 0.89). Deep Neural Networks were the predominant technical approach (47%), with supervised learning being the most prevalent (57%). Classification tasks were the most common (42%), primarily addressing recurrent congestion scenarios (76%) and passenger vehicles (90%). The quality of publications was notably high, with 85% appearing in Q1-ranked journals, demonstrating exponential growth from minimal activity in 2010 to 18 studies in 2022. Significant research gaps persist: reinforcement learning is underutilized (8%), rural road networks are underrepresented (2%), and industry–academia collaboration is limited (3%). Future research should prioritize multimodal transportation systems, real-time adaptation mechanisms, and enhanced practical implementation to advance intelligent transportation systems (ITSs). This review was not registered because it focused on mapping the research landscape rather than intervention effects.
Full article

Figure 1
Open AccessArticle
Shifting Landscapes, Escalating Risks: How Land Use Conversion Shapes Long-Term Road Crash Outcomes in Melbourne
by
Ali Soltani, Mohsen RoohaniQadikolaei and Amir Sobhani
Future Transp. 2025, 5(2), 75; https://doi.org/10.3390/futuretransp5020075 - 17 Jun 2025
Abstract
►▼
Show Figures
Road crashes impose significant societal costs, and while links between static land use and safety are established, the long-term impacts of dynamic land use conversions remain under-explored. This study addresses this gap by investigating and quantifying how specific land use transitions over a
[...] Read more.
Road crashes impose significant societal costs, and while links between static land use and safety are established, the long-term impacts of dynamic land use conversions remain under-explored. This study addresses this gap by investigating and quantifying how specific land use transitions over a decade influence subsequent road crash frequency in Metropolitan Melbourne. Our objective was to understand which conversion pathways pose the greatest risks or offer safety benefits, informing urban planning and policy. Utilizing extensive observational data covering numerous land use conversions, we employed Negative Binomial models (selected as the best fit over Poisson and quasi-Poisson alternatives) to analyze the association between various transition types and crash occurrences in surrounding areas. The analysis revealed distinct and statistically significant safety outcomes. Major findings indicate that transitions introducing intensified activity and vulnerable road users, such as converting agricultural land or parks to educational facilities (e.g., Agri → Edu, coefficient ≈ +0.10; Park → Edu, ≈+0.12), or intensifying land use in previously less active zones (e.g., Park → Com, ≈+0.07; Trans → Park, ≈+0.10), significantly elevate long-term crash risk, particularly when infrastructure is inadequate. Conversely, conversions creating low-traffic, nature-focused environments (e.g., Water → Park, ≈–0.16) or channeling activity onto well-suited infrastructure (e.g., Trans → Com, ≈–0.12) demonstrated substantial reductions in crash frequency. The critical role of context-specific infrastructure adaptation, highlighted by increased risks in some park conversions (e.g., Com → Park, ≈+0.06), emerged as a key mediator of safety outcomes. These findings underscore the necessity of integrating dynamic, long-term road safety considerations into land use planning, mandating appropriate infrastructure redesign during conversions, and prioritizing interventions for identified high-risk transition scenarios to foster safer and more sustainable urban development.
Full article

Figure 1
Open AccessArticle
Risk and Crisis Management Strategies in the Logistics Sector: Theoretical Approaches and Practical Models
by
Aldona Jarašūnienė and Marius Gelžinis
Future Transp. 2025, 5(2), 74; https://doi.org/10.3390/futuretransp5020074 - 12 Jun 2025
Abstract
►▼
Show Figures
The logistics sector plays a critical role in global trade but faces significant risks due to geopolitical instability, economic downturns, and environmental disruptions. This study investigates risk and crisis management strategies within the logistics industry by integrating qualitative expert interviews with quantitative analysis
[...] Read more.
The logistics sector plays a critical role in global trade but faces significant risks due to geopolitical instability, economic downturns, and environmental disruptions. This study investigates risk and crisis management strategies within the logistics industry by integrating qualitative expert interviews with quantitative analysis using the Analytic Hierarchy Process (AHP). It identifies key risks, such as supply chain disruptions, fluctuating market conditions, and infrastructure challenges, and assesses the most effective mitigation strategies. Findings indicate that diversifying transport routes and implementing business continuity planning are the most critical strategies, while technological advancements, including artificial intelligence and predictive analytics, significantly enhance resilience. Collaboration among logistics companies, suppliers, and policymakers is essential for effective crisis management. The AHP analysis ranks crisis management strategies, providing a practical framework for logistics firms to improve risk preparedness. This study contributes to the field by offering actionable recommendations to enhance crisis response and long-term sustainability. The results underscore the necessity of adaptive and proactive risk management approaches in an increasingly volatile global logistics landscape.
Full article

Figure 1
Open AccessArticle
Expected Challenges and Anticipated Benefits of Implementing Remote Train Control and Automatic Train Operation: A Tramway Case Study
by
Xavier Morin, Nils O. E. Olsson and Albert Lau
Future Transp. 2025, 5(2), 73; https://doi.org/10.3390/futuretransp5020073 - 6 Jun 2025
Abstract
►▼
Show Figures
The digital transformation of the railway industry is necessary for addressing growing challenges and advancing its sustainable development. Digital technologies include Automatic Train Operation (ATO) and Remote Train Control (RTC), which offer opportunities to potentially optimize operations and enhance safety. Both technologies, however,
[...] Read more.
The digital transformation of the railway industry is necessary for addressing growing challenges and advancing its sustainable development. Digital technologies include Automatic Train Operation (ATO) and Remote Train Control (RTC), which offer opportunities to potentially optimize operations and enhance safety. Both technologies, however, could pose significant challenges that need to be addressed in order to capture the anticipated benefits in an urban public street environment. This study thus bridges the gap between theory and practice by exploring the projected benefits and challenges of implementing RTC and ATO through a case study of a European public transport operator deploying these technologies in tramway operations. Employing a case study methodology, the research draws on 44 semi-structured interviews with stakeholders from the operator and its supplier. The findings highlight significant anticipated benefits, including increased productivity, improved safety, and enhanced sustainability. Yet, prospective challenges such as regulatory hurdles, technical complexities, and organizational changes pose barriers to implementation. Key obstacles include ensuring robust connectivity, addressing cybersecurity concerns, and managing workforce transitions. This study underscores the importance of collaborative approaches, stakeholder engagement, and incremental deployment to mitigate risks and maximize the impact of automation technologies. By providing actionable insights into the practical adoption of RTC and ATO, this research supports the development of advanced urban transport systems.
Full article

Figure 1
Open AccessReview
Evaluating Project Selection Criteria for Transportation Improvement Plans (TIPs): A Study of Southeastern U.S. Metropolitan Planning Organizations
by
Mahdi Baghersad, Virginia P. Sisiopiku and Avinash Unnikrishnan
Future Transp. 2025, 5(2), 72; https://doi.org/10.3390/futuretransp5020072 - 5 Jun 2025
Abstract
►▼
Show Figures
Metropolitan Planning Organizations (MPOs) are required to prepare a Transportation Improvement Plan (TIP) that outlines a fiscal strategy over a four-year period in order to qualify for federal funding. However, the growing population and limited financial resources available often pose significant challenges for
[...] Read more.
Metropolitan Planning Organizations (MPOs) are required to prepare a Transportation Improvement Plan (TIP) that outlines a fiscal strategy over a four-year period in order to qualify for federal funding. However, the growing population and limited financial resources available often pose significant challenges for transportation agencies in aligning their needs with available budgets. This article examines the project selection criteria used by 20 MPOs in the Southeastern United States to identify the best practices for prioritizing projects in TIPs. Using document analysis, this study categorizes the most commonly used criteria into nine broad groups: safety and security; environmental impacts; mobility, accessibility, and connectivity; preservation; environmental justice; equity; economic factors; alignment with other plans; and local support. Many of these categories are further divided into subcategories and metrics. Despite variations in criteria, weighting, scoring, and methodologies across these MPOs, the study identifies several shared factors that support effective decision-making in regional transportation planning. These findings can help transportation planners and policymakers refine their project prioritization strategies, promote consistency, and lead to improved decision-making frameworks for future TIP development.
Full article

Figure 1
Open AccessArticle
Analysis of Route-Way Dynamics in Urban Traffic Congestion of Enugu, Nigeria
by
Gladys Ogochukwu Chukwurah, Francis Ogochukwu Okeke, Matthew Ogorchukwu Isimah, Rosemary Nnaemeka-Okeke, Ebere Donatus Okonta, Foluso Charles Awe, Augustine Enechojo Idoko, Shuang Guo and Chioma Angela Okeke
Future Transp. 2025, 5(2), 71; https://doi.org/10.3390/futuretransp5020071 - 4 Jun 2025
Abstract
►▼
Show Figures
Urban traffic congestion poses significant challenges to sustainable development in rapidly growing cities. This study examines the spatiotemporal dynamics of traffic congestion in Enugu, Nigeria, a representative mid-sized sub-Saharan city, through a comprehensive analysis of volumetric traffic flows along three major distributors: Abakpa,
[...] Read more.
Urban traffic congestion poses significant challenges to sustainable development in rapidly growing cities. This study examines the spatiotemporal dynamics of traffic congestion in Enugu, Nigeria, a representative mid-sized sub-Saharan city, through a comprehensive analysis of volumetric traffic flows along three major distributors: Abakpa, Nike, and Trans-Ekulu Road. The research employed direct observation and vehicle counts, conducting a week-long traffic census during peak morning (7:30–9:30 AM) and evening (4:00–8:00 PM) periods. Data was analyzed using peak hour factor (PHF), mean plots, and chi-square tests. The results reveal a daily mean of 2334 vehicles/h. Abakpa/Nike Road demonstrated the highest traffic volumes (mean = 809.2 vehicles/h) and most concentrated peak flows (PHF = 0.79), while Trans-Ekulu Road exhibited lower, more uniformly distributed volumes (mean = 719.4 vehicles/h, PHF = 0.93). Evening peaks (6:00–8:00 PM) consistently surpassed morning volumes, with Abakpa/Nike Road reaching 974 vehicles/hour during the evening rush compared to 620 vehicles/hour in the mornings. Chi-square analysis (χ2 = 55.5, df = 8) confirmed statistically significant differences in flow distribution among the routes. The complete absence of Monday traffic due to regional “sit-at-home” orders created a distinctive weekly pattern, with Tuesdays experiencing disproportionate congestion as the de facto first workday. Non-linear relationships between volume increases and congestion severity were observed, where modest volume changes produced amplified system-wide effects. Spatial analysis revealed that evening congestion disparities between distributors (14.9%) significantly exceeded morning differences (8.9%), indicating uneven network utilization. These findings illuminate how socio-political factors, activity patterns, and complex network dynamics shape urban mobility in rapidly developing contexts. This study offers empirical evidence supporting targeted interventions, including Tuesday-specific traffic management, evening-focused congestion mitigation strategies, and corridor-specific infrastructure improvements to enhance mobility in this representative mid-sized sub-Saharan city.
Full article

Figure 1
Open AccessArticle
Detecting Transit Deserts Through a Blend of Machine Learning (ML) Approaches, Including Decision Trees (DTs), Logistic Regression (LR), and Random Forest (RF) in Lucknow
by
Alok Tiwari
Future Transp. 2025, 5(2), 70; https://doi.org/10.3390/futuretransp5020070 - 3 Jun 2025
Abstract
Transit deserts, defined by insufficient public transit provision relative to demand, aggravate socio-economic inequalities by restricting access to employment, education, and healthcare. With increasing urbanization and growing disparities in public transport accessibility, identifying transit deserts is critical for equitable mobility planning. As urban
[...] Read more.
Transit deserts, defined by insufficient public transit provision relative to demand, aggravate socio-economic inequalities by restricting access to employment, education, and healthcare. With increasing urbanization and growing disparities in public transport accessibility, identifying transit deserts is critical for equitable mobility planning. As urban populations expand, addressing transit accessibility requires advanced data-driven approaches. This study applies machine learning (ML) models, decision trees (DTs), logistic regression (LR), and random forest (RF), within an Intelligent Transport System (ITS) framework to detect transit deserts in Lucknow, India. Employing a 100 × 100 m spatial grid data, the models classify transit accessibility based on economic status, trip frequency, population density, and service access. The results indicate that RF achieves superior classification accuracy, while DT offers interpretability with slightly lower recall. LR underperforms due to its linear assumptions. The findings reveal the spatial clustering of transit deserts in socio-economically disadvantaged areas, highlighting the need for targeted interventions. This study advances ML-driven ITS analytics, offering a novel approach for classifying transit accessibility patterns at a granular level, thereby aiding policy interventions for improved urban mobility.
Full article
(This article belongs to the Special Issue Machine Learning for Sustainable Planning and Modelling in Future Smart Transportation System)
►▼
Show Figures

Figure 1
Open AccessArticle
Policy Formulations to Establish More Dry Port Infrastructures to Increase Seaport Efficiency, Productivity, and Competitiveness in Bangladesh
by
Razon Chandra Saha and Khairir Bin Khalil
Future Transp. 2025, 5(2), 69; https://doi.org/10.3390/futuretransp5020069 - 3 Jun 2025
Abstract
►▼
Show Figures
Maritime trade in Bangladesh is growing significantly, as observed by UNCTAD, which reported 3.20 mTEUs throughput in 2022. Additionally, the principal seaport, Chattogram Port, reported a port throughput of 3.27 mTEUs in 2024, the historical record for any port in Bangladesh. More than
[...] Read more.
Maritime trade in Bangladesh is growing significantly, as observed by UNCTAD, which reported 3.20 mTEUs throughput in 2022. Additionally, the principal seaport, Chattogram Port, reported a port throughput of 3.27 mTEUs in 2024, the historical record for any port in Bangladesh. More than 50% of imports and exports, including empty containers, were handled in 2024 through 19 nos close dry ports in Chattogram City by applying small-scale intermodal systems, where the performance of pure intermodal from/to mid-range dry ports (3 Nos) to Chattogram Port is 2.53%. By 2030, the government wants all import and export operations to be conducted through dry ports. Furthermore, the current volume of international goods freight cannot be handled by the dry ports that are currently in place. This research applied mixed methods to explore the opportunities to set more dry ports and the application of intermodal systems for increasing the seaport’s efficiency, productivity, and competitiveness. The Focus Group Discussion (FGD) method was used to know the dry port location, investment, and policy in creating the opportunity to set up more dry ports in Bangladesh. In the findings, 82.50% of participants agreed that existing facilities are not enough and need to establish more dry ports to handle current and future volumes of containers. Moreover, the responses reveal a division of opinion on establishing a dry port outside of Chattogram, with a notable inclination towards opposition. According to 62% of respondents, dry ports outside Chattogram are necessary. To enhance intermodal connectivity and facilitate easier cargo transfers between ports and hinterland regions, integrated infrastructure development would be in line with national economic objectives. The research aims to investigate the possibilities for establishing additional dry ports across the country to boost seaport productivity, efficiency, and competitiveness by utilizing intermodal freight transportation systems to cut costs and time while also considering environmental factors like CO2 emissions.
Full article

Figure 1
Open AccessArticle
High-Speed Railway Planning for Sustainable Development: The Role of Length Between Conventional Line and Straight Length
by
Francesco Russo, Corrado Rindone and Giuseppe A. Maiolo
Future Transp. 2025, 5(2), 68; https://doi.org/10.3390/futuretransp5020068 - 3 Jun 2025
Abstract
►▼
Show Figures
The extension of high-speed rail (HSR) lines around the world is increasing. The largest network today is in China, followed by Spain, Japan, France, and Italy; currently, new lines are being built in Morocco and Saudi Arabia. The goal of the new lines
[...] Read more.
The extension of high-speed rail (HSR) lines around the world is increasing. The largest network today is in China, followed by Spain, Japan, France, and Italy; currently, new lines are being built in Morocco and Saudi Arabia. The goal of the new lines built is to drastically reduce the time distances between the extreme railway terminals by intervening on the two main components of time: space and speed. The two components have been investigated in various fields of engineering for design conditions (ex ante/a priori). In the literature, there is no analysis of what happened in the realization of the projects (ex post/retrospective). The research problem that arises is to analyze the high-speed lines built in order to verify, given a pair of extreme terminals, how much the length is reduced by passing from a conventional line to a high-speed line, and to verify how this length is getting closer and closer to the distance as the crow flies. The reduction of spatial distance produces direct connections between two territories, making the railway system (HSR) more competitive compared to other transport alternatives (e.g., air travel). To address the problem posed, information and data are collected on European HSR lines, which constitute a sufficiently homogeneous set in terms of railway and structural standards. The planimetric characteristics of specially built lines such as HSR are examined. A test method is proposed, consisting of a model that is useful to compare the length along the HSR line, with direct lengths, and existing conventional lines. The results obtained from the elaborations offer a first answer to the problem posed, demonstrating that in the HSR lines realized the spatial distances approach the distance as the crow flies between the cities located at the extremes, and are always shorter than the lengths of conventional lines. The final indications that can be drawn concern the possibility of using the results obtained as a reference for decision-makers and planners involved in the transport planning process at national and international level. Future research directions should study the values of the indicators in other large HSR networks, such as those built in Asia, and more generally study all the elements of the lines specially built to allow better sustainable planning, reducing the negative elements found and increasing the positive ones.
Full article

Figure 1
Open AccessReview
Toward the Inclusion of Waste Materials at Road Upper Layers: Integrative Exploration of Critical Aspects
by
Konstantinos Gkyrtis and Alexandros Kokkalis
Future Transp. 2025, 5(2), 67; https://doi.org/10.3390/futuretransp5020067 - 3 Jun 2025
Abstract
►▼
Show Figures
Nowadays, recycling in pavement engineering is not a novelty. Utilization of recycled aggregates and other waste materials for the asphalt layers appeared as a well-established approach during the last decades, at least at a research level, in favor of preservation of natural resources,
[...] Read more.
Nowadays, recycling in pavement engineering is not a novelty. Utilization of recycled aggregates and other waste materials for the asphalt layers appeared as a well-established approach during the last decades, at least at a research level, in favor of preservation of natural resources, economical balance in road construction and reconstruction, and overall pavement sustainability. The focus on the asphalt layers does make sense based on the fact that these layers are to be more frequently replaced in the framework of periodical pavement maintenance or rehabilitation. Taking as a fact that mainly laboratory-scale studies and limited field trials have already proven the performance-based viability of using alternative materials in the asphalt layers, including waste plastic, waste glass, steel slag, waste tires in the form of rubber, reclaimed asphalt pavement (RAP), etc., this study tries to identify additional critical aspects and reasons why recycled materials are not consistently selected and uniformly applied during construction and reconstruction activities in real practice. A comprehensive discussion for interdisciplinary issues is provided with respect to (i) the challenge of comparing the performance of asphalt mixtures containing recycling materials with a reference condition status, related to mechanical testing, (ii) the aspect of recycled material availability versus peculiar conditions applied to some countries, related to socioeconomical issues, (iii) the unawareness of the actual lifecycle assessment of pavement structures with recycled mixtures, related to environmental assessment, and (iv) some legislative and health issues that could make pavement engineers reluctant to extensively use non-conventional materials. After a multi-parametric discussion, some useful remarks for fostering further research are given together with the ambition to bridge the gap between research and practice toward a greener future in pavement engineering.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Aerospace, AI, Future Transportation, Applied Sciences
AI-Enhanced Techniques for Air Traffic Management
Topic Editors: Yi Lin, Honggang ChenDeadline: 31 December 2025
Topic in
Electricity, Electronics, Energies, Future Transportation
Innovative Solutions to Increase Energy Efficiency in Railways
Topic Editors: Philippe Ladoux, Vítor MonteiroDeadline: 30 April 2026
Topic in
Energies, Machines, Modelling, Vehicles, Applied Mechanics, Future Transportation, Technologies
Dynamics, Control and Simulation of Electric Vehicles
Topic Editors: Xiang Chen, Xiangyu Wang, Congzhi LiuDeadline: 30 June 2026

Conferences
Special Issues
Special Issue in
Future Transportation
Machine Learning for Sustainable Planning and Modelling in Future Smart Transportation System
Guest Editors: Raj Mani Shukla, Lakshmi Babu-SaheerDeadline: 31 December 2025
Special Issue in
Future Transportation
Autonomous Vehicles and Urban Evolution: Technological, Social and Environmental Perspectives
Guest Editors: Luigi dell’Olio, Andres Rodriguez, Silvia SIponeDeadline: 31 December 2025
Special Issue in
Future Transportation
Sustainable Transportation and Quality of Life
Guest Editors: Ankit R. Patel, Mukti Advani, Areen Alsaid, Katarzyna TuronDeadline: 31 March 2026
Special Issue in
Future Transportation
Travel Behavior in the Era of Future Public Transport Systems
Guest Editors: Ghadir Pourhashem, Cristina PronelloDeadline: 8 April 2026