Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2796 KiB  
Article
Age-Related Decline in Gangliosides GM1 and GD1a in Non-CNS Tissues of Normal Mice: Implications for Peripheral Symptoms of Parkinson’s Disease
by Suman Chowdhury, Gusheng Wu, Zi-Hua Lu, Ranjeet Kumar and Robert Ledeen
Biomedicines 2023, 11(1), 209; https://doi.org/10.3390/biomedicines11010209 - 14 Jan 2023
Cited by 5 | Viewed by 1498
Abstract
The purpose of this study was to determine whether the age-related decline in a-series gangliosides (especially GM1), shown to be a factor in the brain-related etiology of Parkinson’s disease (PD), also pertains to the peripheral nervous system (PNS) and aspects of PD unrelated [...] Read more.
The purpose of this study was to determine whether the age-related decline in a-series gangliosides (especially GM1), shown to be a factor in the brain-related etiology of Parkinson’s disease (PD), also pertains to the peripheral nervous system (PNS) and aspects of PD unrelated to the central nervous system (CNS). Following Svennerholm’s demonstration of the age-dependent decline in a-series gangliosides (both GM1 and GD1a) in the human brain, we previously demonstrated a similar decline in the normal mouse brain. The present study seeks to determine whether a similar a-series decline occurs in the periphery of normal mice as a possible prelude to the non-CNS symptoms of PD. We used mice of increasing age to measure a-series gangliosides in three peripheral tissues closely associated with PD pathology. Employing high-performance thin-layer chromatography (HPTLC), we found a substantial decrease in both GM1 and GD1a in all three tissues from 191 days of age. Motor and cognitive dysfunction were also shown to worsen, as expected, in synchrony with the decrease in GM1. Based on the previously demonstrated parallel between mice and humans concerning age-related a-series ganglioside decline in the brain, we propose the present findings to suggest a similar a-series decline in human peripheral tissues as the primary contributor to non-CNS pathologies of PD. An onset of sporadic PD would thus be seen as occurring simultaneously throughout the brain and body, albeit at varying rates, in association with the decline in a-series gangliosides. This would obviate the need to postulate the transfer of aggregated α-synuclein between brain and body or to debate brain vs. body as the origin of PD. Full article
(This article belongs to the Special Issue Sphingolipid Metabolism and Signaling in Health and Diseases)
Show Figures

Figure 1

12 pages, 3521 KiB  
Article
The Inflammatory Gene PYCARD of the Entorhinal Cortex as an Early Diagnostic Target for Alzheimer’s Disease
by Wenjia Liu, Sophia Chen, Xin Rao, Yisong Yang, Xiaodong Chen and Liyang Yu
Biomedicines 2023, 11(1), 194; https://doi.org/10.3390/biomedicines11010194 - 12 Jan 2023
Cited by 3 | Viewed by 1801
Abstract
The incidence of Alzheimer’s disease (AD) is increasing year by year, which brings great challenges to human health. However, the pathogenesis of AD is still unclear, and it lacks early diagnostic targets. The entorhinal cortex (EC) is a key brain region for the [...] Read more.
The incidence of Alzheimer’s disease (AD) is increasing year by year, which brings great challenges to human health. However, the pathogenesis of AD is still unclear, and it lacks early diagnostic targets. The entorhinal cortex (EC) is a key brain region for the occurrence of AD neurodegeneration, and neuroinflammation plays a significant role in EC degeneration in AD. This study aimed to reveal the close relationship between inflammation-related genes in the EC and AD by detecting key differentially expressed genes (DEGs) via gene function enrichment pathway analysis. GSE4757 and GSE21779 gene expression profiles of AD were downloaded from the Gene Expression Omnibus (GEO) database. R language was used for the standardization and differential analysis of DEGs. Then, significantly enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed to predict the potential biological functions of the DEGs. Finally, the significant expressions of identified DEGs were verified, and the therapeutic values were detected by a receiver operating characteristic (ROC) curve. The results showed that eight up-regulated genes (SLC22A2, ITGB2-AS1, NIT1, FGF14-AS2, SEMA3E, PYCARD, PRORY, ADIRF) and two down-regulated genes (AKAIN1, TRMT2B) may have a potential diagnostic value for AD, and participate in inflammatory pathways. The area under curve (AUC) results of the ten genes showed that they had potential diagnostic value for AD. The AUC of PYCARD was 0.95, which had the most significant diagnostic value, and it is involved in inflammatory processes such as the inflammasome complex adaptor protein. The DEGs screened, and subsequent pathway analysis revealed a close relationship between inflammation-related PYCARD and AD, thus providing a new basis for an early diagnostic target for AD. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

15 pages, 3139 KiB  
Review
Converging Evidence of Similar Symptomatology of ME/CFS and PASC Indicating Multisystemic Dyshomeostasis
by David F. Marks
Biomedicines 2023, 11(1), 180; https://doi.org/10.3390/biomedicines11010180 - 11 Jan 2023
Cited by 9 | Viewed by 13626
Abstract
The purpose of this article is to review the evidence of similar symptomatology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and post-acute sequelae of SARS-CoV-2 infection (PASC). Reanalysis of data from a study by Jason comparing symptom reports from two groups of ME/CFS and [...] Read more.
The purpose of this article is to review the evidence of similar symptomatology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and post-acute sequelae of SARS-CoV-2 infection (PASC). Reanalysis of data from a study by Jason comparing symptom reports from two groups of ME/CFS and PASC patients shows a notably similar symptomatology. Symptom scores of the PASC group and the ME/CFS group correlated 0.902 (p < 0.0001) across items. The hypothesis is presented that ME/CFS and PASC are caused by a chronic state of multisystemic disequilibrium including endocrinological, immunological, and/or metabolic changes. The hypothesis holds that a changed set point persistently pushes the organism towards a pathological dysfunctional state which fails to reset. To use an analogy of a thermostat, if the ‘off switch’ of a thermostat intermittently stops working, for periods the house would become warmer and warmer without limit. The hypothesis draws on recent investigations of the Central Homeostasis Network showing multiple interconnections between the autonomic system, central nervous system, and brain stem. The hypothesis helps to explain the shared symptomatology of ME/CFS and PASC and the unpredictable, intermittent, and fluctuating pattern of symptoms of ME/CFS and PASC. The current theoretical approach remains speculative and requires in-depth investigation before any definite conclusions can be drawn. Full article
(This article belongs to the Special Issue Feature Review Papers on Brain and Nervous Related Diseases)
Show Figures

Figure 1

19 pages, 4554 KiB  
Article
A Mitochondrion-Targeting Protein (B2) Primes ROS/Nrf2-Mediated Stress Signals, Triggering Apoptosis and Necroptosis in Lung Cancer
by Hsuan-Wen Chiu, Shao-Wen Hung, Ching-Feng Chiu and Jiann-Ruey Hong
Biomedicines 2023, 11(1), 186; https://doi.org/10.3390/biomedicines11010186 - 11 Jan 2023
Cited by 1 | Viewed by 1681
Abstract
The betanodavirus B2 protein targets mitochondria and triggers mitochondrion-mediated cell death signaling in lung cancer cells; however, its molecular mechanism remains unknown. In this study, we observed that B2 triggers hydrogen peroxide/Nrf2-involved stress signals in the dynamic regulation of non-small lung cancer cell [...] Read more.
The betanodavirus B2 protein targets mitochondria and triggers mitochondrion-mediated cell death signaling in lung cancer cells; however, its molecular mechanism remains unknown. In this study, we observed that B2 triggers hydrogen peroxide/Nrf2-involved stress signals in the dynamic regulation of non-small lung cancer cell (NSCLC)-programmed cell death. Here, the B2 protein works as a necrotic inducer that triggers lung cancer death via p53 upregulation and RIP3 expression, suggesting a new perspective on lung cancer therapy. We employed the B2 protein to target A549 lung cancer cells and solid tumors in NOD/SCID mice. Tumors were collected and processed for the hematoxylin and eosin staining of tissue and cell sections, and their sera were used for blood biochemistry analysis. We observed that B2 killed an A549 cell-induced solid tumor in NOD/SCID mice; however, the mutant ΔB2 did not. In NOD/SCID mice, B2 (but not ΔB2) induced both p53/Bax-mediated apoptosis and RIPK3-mediated necroptosis. Finally, immunochemistry analysis showed hydrogen peroxide /p38/Nrf2 stress strongly inhibited the production of tumor markers CD133, Thy1, and napsin, which correlate with migration and invasion in cancer cells. This B2-triggered, ROS/Nrf2-mediated stress signal triggered multiple signals via pathways that killed A549 lung cancer tumor cells in vivo. Our results provide novel insight into lung cancer management and drug therapy. Full article
(This article belongs to the Special Issue Mitochondrial Dysfunction in Disease)
Show Figures

Figure 1

13 pages, 1386 KiB  
Article
Intestinal Barrier Dysfunction and Microbial Translocation in Patients with First-Diagnosed Atrial Fibrillation
by Leon Blöbaum, Marco Witkowski, Max Wegner, Stella Lammel, Philipp-Alexander Schencke, Kai Jakobs, Marianna Puccini, Daniela Reißner, Daniel Steffens, Ulf Landmesser, Ursula Rauch and Julian Friebel
Biomedicines 2023, 11(1), 176; https://doi.org/10.3390/biomedicines11010176 - 10 Jan 2023
Cited by 7 | Viewed by 2325
Abstract
Background: According to the leaky gut concept, microbial products (e.g., lipopolysaccharide, LPS) enter the circulation and mediate pro-inflammatory immunological responses. Higher plasma LPS levels have been reported in patients with various cardiovascular diseases, but not specifically during early atrial fibrillation (AF). Methods: We [...] Read more.
Background: According to the leaky gut concept, microbial products (e.g., lipopolysaccharide, LPS) enter the circulation and mediate pro-inflammatory immunological responses. Higher plasma LPS levels have been reported in patients with various cardiovascular diseases, but not specifically during early atrial fibrillation (AF). Methods: We studied data and blood samples from patients presenting with first-diagnosed AF (FDAF) (n = 80) and 20 controls. Results: Circulating biomarkers that are suggestive of mucosal inflammation (zonulin, mucosal adhesion molecule MAdCAM-1) and intestinal epithelium damage (intestinal fatty acid binding protein, IFABP) were increased in the plasma of patients with FDAF when compared to patients with chronic cardiovascular diseases but without AF. Surrogate plasma markers of increased intestinal permeability (LPS, CD14, LPS-binding protein, gut-derived LPS-neutralising IgA antibodies, EndoCAbs) were detected during early AF. A reduced ratio of IgG/IgM EndoCAbs titres indicated chronic endotoxaemia. Collagen turnover biomarkers, which corresponded to the LPS values, suggested an association of gut-derived low-grade endotoxaemia with adverse structural remodelling. The LPS concentrations were higher in FDAF patients who experienced a major adverse cardiovascular event. Conclusions: Intestinal barrier dysfunction and microbial translocation accompany FDAF. Improving gut permeability and low-grade endotoxaemia might be a potential therapeutic approach to reducing the disease progression and cardiovascular complications in FDAF. Full article
(This article belongs to the Special Issue Recent Advances in Gut Microbiome and Heart Failure)
Show Figures

Figure 1

15 pages, 1712 KiB  
Review
SERPINA3: Stimulator or Inhibitor of Pathological Changes
by Mateusz de Mezer, Jan Rogaliński, Stanisław Przewoźny, Michał Chojnicki, Leszek Niepolski, Magdalena Sobieska and Agnieszka Przystańska
Biomedicines 2023, 11(1), 156; https://doi.org/10.3390/biomedicines11010156 - 07 Jan 2023
Cited by 11 | Viewed by 4854
Abstract
SERPINA3, also called α-1-antichymotrypsin (AACT, ACT), is one of the inhibitors of serine proteases, one of which is cathepsin G. As an acute-phase protein secreted into the plasma by liver cells, it plays an important role in the anti-inflammatory response and antiviral response. [...] Read more.
SERPINA3, also called α-1-antichymotrypsin (AACT, ACT), is one of the inhibitors of serine proteases, one of which is cathepsin G. As an acute-phase protein secreted into the plasma by liver cells, it plays an important role in the anti-inflammatory response and antiviral response. Elevated levels of SERPINA3 have been observed in heart failure and neurological diseases such as Alzheimer’s disease or Creutzfeldt–Jakob disease. Many studies have shown increased expression levels of the SERPINA3 gene in various types of cancer, such as glioblastoma, colorectal cancer, endometrial cancer, breast cancer, or melanoma. In this case, the SERPINA3 protein is associated with an antiapoptotic function implemented by adjusting the PI3K/AKT or MAPK/ERK 1/2 signal pathways. However, the functions of the SERPINA3 protein are still only partially understood, mainly in the context of cancerogenesis, so it seems necessary to summarize the available information and describe its mechanism of action. In particular, we sought to amass the existing body of research focusing on the description of the underlying mechanisms of various diseases not related to cancer. Our goal was to present an overview of the correct function of SERPINA3 as part of the defense system, which unfortunately easily becomes the “Fifth Column” and begins to support processes of destruction. Full article
(This article belongs to the Special Issue State-of-the-Art Gene-Target and Cell Therapy in Poland)
Show Figures

Figure 1

30 pages, 11986 KiB  
Article
Automated Detection of Broncho-Arterial Pairs Using CT Scans Employing Different Approaches to Classify Lung Diseases
by Sami Azam, A.K.M. Rakibul Haque Rafid, Sidratul Montaha, Asif Karim, Mirjam Jonkman and Friso De Boer
Biomedicines 2023, 11(1), 133; https://doi.org/10.3390/biomedicines11010133 - 05 Jan 2023
Cited by 8 | Viewed by 3266
Abstract
Current research indicates that for the identification of lung disorders, comprising pneumonia and COVID-19, structural distortions of bronchi and arteries (BA) should be taken into account. CT scans are an effective modality to detect lung anomalies. However, anomalies in bronchi and arteries can [...] Read more.
Current research indicates that for the identification of lung disorders, comprising pneumonia and COVID-19, structural distortions of bronchi and arteries (BA) should be taken into account. CT scans are an effective modality to detect lung anomalies. However, anomalies in bronchi and arteries can be difficult to detect. Therefore, in this study, alterations of bronchi and arteries are considered in the classification of lung diseases. Four approaches to highlight these are introduced: (a) a Hessian-based approach, (b) a region-growing algorithm, (c) a clustering-based approach, and (d) a color-coding-based approach. Prior to this, the lungs are segmented, employing several image preprocessing algorithms. The utilized COVID-19 Lung CT scan dataset contains three classes named Non-COVID, COVID, and community-acquired pneumonia, having 6983, 7593, and 2618 samples, respectively. To classify the CT scans into three classes, two deep learning architectures, (a) a convolutional neural network (CNN) and (b) a CNN with long short-term memory (LSTM) and an attention mechanism, are considered. Both these models are trained with the four datasets achieved from the four approaches. Results show that the CNN model achieved test accuracies of 88.52%, 87.14%, 92.36%, and 95.84% for the Hessian, the region-growing, the color-coding, and the clustering-based approaches, respectively. The CNN with LSTM and an attention mechanism model results in an increase in overall accuracy for all approaches with an 89.61%, 88.28%, 94.61%, and 97.12% test accuracy for the Hessian, region-growing, color-coding, and clustering-based approaches, respectively. To assess overfitting, the accuracy and loss curves and k-fold cross-validation technique are employed. The Hessian-based and region-growing algorithm-based approaches produced nearly equivalent outcomes. Our proposed method outperforms state-of-the-art studies, indicating that it may be worthwhile to pay more attention to BA features in lung disease classification based on CT images. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

18 pages, 1645 KiB  
Review
Seventy Years of Antipsychotic Development: A Critical Review
by Mujeeb U. Shad
Biomedicines 2023, 11(1), 130; https://doi.org/10.3390/biomedicines11010130 - 04 Jan 2023
Cited by 7 | Viewed by 4387
Abstract
Since the mid-1950s discovery of the first effective antipsychotic medications (APM), we have only been able to improve the tolerability but not the overall efficacy of currently available APMs, as reflected by effectiveness trials in Europe and the United States. This inability to [...] Read more.
Since the mid-1950s discovery of the first effective antipsychotic medications (APM), we have only been able to improve the tolerability but not the overall efficacy of currently available APMs, as reflected by effectiveness trials in Europe and the United States. This inability to develop more effective APMs is attributable to multiple factors, including failure to create and use assessment tools to assess core symptom domains in schizophrenia, move beyond the dopaminergic hypothesis and to develop “me too” drugs, imposing ill-defined research domain criteria, and lacking federal funding for clinical trials. The classification of APMs is also confusing, including second-generation, partial agonists, and multimodal APMs in the same class of APMs, despite significant differences in their mechanisms of action. Other factors stagnating drug development include inadequate sample sizes to address heterogeneity, lack of statistical measures correlating with clinical significance, using the atheoretical basis of psychiatric diagnoses, failure to control placebo response, and high cost of newer and perhaps more tolerable APMs. Furthermore, there has been a failure to develop early predictors of antipsychotic response and various tools to optimize an APM response. Finally, some mental health providers are also responsible for the suboptimal use of APMs, by using excessive maintenance doses, often with irrational polypharmacy, further compromising effectiveness and medication adherence. However, some bright spots in antipsychotic development include improved tolerability of APMs and long-acting injectables to address the high prevalence of medication nonadherence. This review critically reviews 70 years of antipsychotic development, the reasons behind the failure to develop more effective APMs, and suggestions for future direction. Full article
(This article belongs to the Special Issue Antipsychotics: 70 Years)
Show Figures

Figure 1

20 pages, 2029 KiB  
Review
Stem Cell Therapy for Alzheimer’s Disease: A Scoping Review for 2017–2022
by Yunxiao Duan, Linshuoshuo Lyu and Siyan Zhan
Biomedicines 2023, 11(1), 120; https://doi.org/10.3390/biomedicines11010120 - 03 Jan 2023
Cited by 3 | Viewed by 5490
Abstract
Alzheimer’s disease (AD) has been a major causal factor for mortality among elders around the world. The treatments for AD, however, are still in the stage of development. Stem cell therapy, compared to drug therapies and many other therapeutic options, has many advantages [...] Read more.
Alzheimer’s disease (AD) has been a major causal factor for mortality among elders around the world. The treatments for AD, however, are still in the stage of development. Stem cell therapy, compared to drug therapies and many other therapeutic options, has many advantages and is very promising in the future. There are four major types of stem cells used in AD therapy: neural stem cells, mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells. All of them have applications in the treatments, either at the (1) cellular level, in an (2) animal model, or at the (3) clinical level. In general, many more types of stem cells were studied on the cellular level and animal model, than the clinical level. We suggest for future studies to increase research on various types of stem cells and include cross-disciplinary research with other diseases. In the future, there could also be improvements in the timeliness of research and individualization for stem cell therapies for AD. Full article
Show Figures

Figure 1

17 pages, 1264 KiB  
Review
Targeting PI3K/AKT/mTOR Pathway in Breast Cancer: From Biology to Clinical Challenges
by Krisida Cerma, Federico Piacentini, Luca Moscetti, Monica Barbolini, Fabio Canino, Antonio Tornincasa, Federica Caggia, Sara Cerri, Alessia Molinaro, Massimo Dominici and Claudia Omarini
Biomedicines 2023, 11(1), 109; https://doi.org/10.3390/biomedicines11010109 - 01 Jan 2023
Cited by 22 | Viewed by 3301
Abstract
Breast cancer (BC) is the most common women cancer and cause of cancer death. Despite decades of scientific progress in BC treatments, the clinical benefit of new drugs is modest in several cases. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin [...] Read more.
Breast cancer (BC) is the most common women cancer and cause of cancer death. Despite decades of scientific progress in BC treatments, the clinical benefit of new drugs is modest in several cases. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway mutations are frequent in BC (20–40%) and are significant causes of aggressive tumor behavior, as well as treatment resistance. Improving knowledge of the PI3K/AKT/mTOR pathway is an urgent need. This review aims to highlight the central role of PI3K-mTORC1/C2 mutations in the different BC subtypes, in terms of clinical outcomes and treatment efficacy. The broad base of knowledge in tumor biology is a key point for personalized BC therapy in the precision medicine era. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

20 pages, 813 KiB  
Review
How the Tumor Micromilieu Modulates the Recruitment and Activation of Colorectal Cancer-Infiltrating Lymphocytes
by Imke Atreya and Markus F. Neurath
Biomedicines 2022, 10(11), 2940; https://doi.org/10.3390/biomedicines10112940 - 15 Nov 2022
Cited by 4 | Viewed by 2747
Abstract
The successful treatment of advanced colorectal cancer disease still represents an insufficiently solved clinical challenge, which is further complicated by the fact that the majority of malignant colon tumors show only relatively low immunogenicity and therefore have only limited responsiveness to immunotherapeutic approaches, [...] Read more.
The successful treatment of advanced colorectal cancer disease still represents an insufficiently solved clinical challenge, which is further complicated by the fact that the majority of malignant colon tumors show only relatively low immunogenicity and therefore have only limited responsiveness to immunotherapeutic approaches, such as, for instance, the use of checkpoint inhibitors. As it has been well established over the past two decades that the local tumor microenvironment and, in particular, the quantity, quality, and activation status of intratumoral immune cells critically influence the clinical prognosis of patients diagnosed with colorectal cancer and their individual benefits from immunotherapy, the enhancement of the intratumoral accumulation of cytolytic effector T lymphocytes and other cellular mediators of the antitumor immune response has emerged as a targeted objective. For the future identification and clinical validation of novel therapeutic target structures, it will thus be essential to further decipher the molecular mechanisms and cellular interactions in the intestinal tumor microenvironment, which are crucially involved in immune cell recruitment and activation. In this context, our review article aims at providing an overview of the key chemokines and cytokines whose presence in the tumor micromilieu relevantly modulates the numeric composition and antitumor capacity of tumor-infiltrating lymphocytes. Full article
(This article belongs to the Special Issue The Role of Inflammatory Cytokines in Cancer Progression)
Show Figures

Figure 1

11 pages, 1558 KiB  
Article
Sorafenib versus Lenvatinib Causes Stronger Oxidative Damage to Membrane Lipids in Noncancerous Tissues of the Thyroid, Liver, and Kidney: Effective Protection by Melatonin and Indole-3-Propionic Acid
by Jan Stępniak, Joanna Krawczyk-Lipiec, Andrzej Lewiński and Małgorzata Karbownik-Lewińska
Biomedicines 2022, 10(11), 2890; https://doi.org/10.3390/biomedicines10112890 - 11 Nov 2022
Cited by 8 | Viewed by 1611
Abstract
Sorafenib and lenvatinib are multi-targeted tyrosine kinase inhibitors which are currently approved to treat advanced hepatocellular carcinoma, renal cell carcinoma and radioiodine-refractory differentiated thyroid carcinoma. However this treatment is often limited due to common adverse events which may occur via oxidative stress. The [...] Read more.
Sorafenib and lenvatinib are multi-targeted tyrosine kinase inhibitors which are currently approved to treat advanced hepatocellular carcinoma, renal cell carcinoma and radioiodine-refractory differentiated thyroid carcinoma. However this treatment is often limited due to common adverse events which may occur via oxidative stress. The study aims to compare sorafenib- and lenvatinib-induced oxidative damage to membrane lipids (lipid peroxidation, LPO) in homogenates of porcine noncancerous tissues of the thyroid, the liver, and the kidney and to check if it can be prevented by antioxidants melatonin and indole-3-propionic acid (IPA). Homogenates of individual tissues were incubated in the presence of sorafenib or lenvatinib (1 mM, 100 µM, 10 µM, 1 µM, 100 nM, 10 nM, 1 nM, 100 pM) together with/without melatonin (5.0 mM) or IPA (5.0 mM). The concentration of malondialdehyde + 4-hydroxyalkenals, as the LPO index, was measured spectrophotometrically. The incubation of tissue homogenates with sorafenib resulted in a concentration-dependent increase in LPO (statistically significant for concentrations of 1mM and 100 µM in the thyroid and the liver, and of 1 mM, 100 µM, and 10 µM in the kidney). The incubation of thyroid homogenates with lenvatinib did not change LPO level. In case of the liver and the kidney, lenvatinib increased LPO but only in its highest concentration of 1 mM. Melatonin and IPA reduced completely (to the level of control) sorafenib- and lenvatinib-induced LPO in all examined tissues regardless of the drug concentration. In conclusion, sorafenib comparing to lenvatinib is a stronger damaging agent of membrane lipids in noncancerous tissues of the thyroid, the liver, and the kidney. The antioxidants melatonin and IPA can be considered to be used in co-treatment with sorafenib and lenvatinib to prevent their undesirable toxicity occurring via oxidative stress. Full article
(This article belongs to the Special Issue State-of-the-Art Endocrinology and Metabolism Research in Poland)
Show Figures

Figure 1

21 pages, 3483 KiB  
Article
osr1 Maintains Renal Progenitors and Regulates Podocyte Development by Promoting wnt2ba via the Antagonism of hand2
by Bridgette E. Drummond, Brooke E. Chambers, Hannah M. Wesselman, Shannon Gibson, Liana Arceri, Marisa N. Ulrich, Gary F. Gerlach, Paul T. Kroeger, Ignaty Leshchiner, Wolfram Goessling and Rebecca A. Wingert
Biomedicines 2022, 10(11), 2868; https://doi.org/10.3390/biomedicines10112868 - 09 Nov 2022
Cited by 10 | Viewed by 2143
Abstract
Knowledge about the genetic pathways that control nephron development is essential for better understanding the basis of congenital malformations of the kidney. The transcription factors Osr1 and Hand2 are known to exert antagonistic influences to balance kidney specification. Here, we performed a forward [...] Read more.
Knowledge about the genetic pathways that control nephron development is essential for better understanding the basis of congenital malformations of the kidney. The transcription factors Osr1 and Hand2 are known to exert antagonistic influences to balance kidney specification. Here, we performed a forward genetic screen to identify nephrogenesis regulators, where whole genome sequencing identified an osr1 lesion in the novel oceanside (ocn) mutant. The characterization of the mutant revealed that osr1 is needed to specify not renal progenitors but rather their maintenance. Additionally, osr1 promotes the expression of wnt2ba in the intermediate mesoderm (IM) and later the podocyte lineage. wnt2ba deficiency reduced podocytes, where overexpression of wnt2ba was sufficient to rescue podocytes and osr1 deficiency. Antagonism between osr1 and hand2 mediates podocyte development specifically by controlling wnt2ba expression. These studies reveal new insights about the roles of Osr1 in promoting renal progenitor survival and lineage choice. Full article
(This article belongs to the Special Issue Zebrafish Models for Development and Disease 3.0)
Show Figures

Figure 1

16 pages, 3475 KiB  
Article
Clinical Outcomes of 3D-Printed Bioresorbable Scaffolds for Bone Tissue Engineering—A Pilot Study on 126 Patients for Burrhole Covers in Subdural Hematoma
by Emma M. S. Toh, Ashiley A. Thenpandiyan, Aaron S. C. Foo, John J. Y. Zhang, Mervyn J. R. Lim, Chun Peng Goh, Nivedh Dinesh, Srujana V. Vedicherla, Ming Yang, Kejia Teo, Tseng Tsai Yeo and Vincent D. W. Nga
Biomedicines 2022, 10(11), 2702; https://doi.org/10.3390/biomedicines10112702 - 26 Oct 2022
Cited by 7 | Viewed by 2385
Abstract
Burrhole craniostomy is commonly performed for subdural hematoma (SDH) evacuation, but residual scalp depressions are often cosmetically suboptimal for patients. OsteoplugTM, a bioresorbable polycaprolactone burrhole cover, was introduced by the National University Hospital, Singapore, in 2006 to cover these defects, allowing [...] Read more.
Burrhole craniostomy is commonly performed for subdural hematoma (SDH) evacuation, but residual scalp depressions are often cosmetically suboptimal for patients. OsteoplugTM, a bioresorbable polycaprolactone burrhole cover, was introduced by the National University Hospital, Singapore, in 2006 to cover these defects, allowing osseous integration and vascular ingrowth. However, the cosmetic and safety outcomes of OsteoplugTM-C—the latest (2017) iteration, with a chamfered hole for subdural drains—remain unexplored. Data were collected from a single institution from April 2017 to March 2021. Patient-reported aesthetic outcomes (Aesthetic Numeric Analog (ANA)) and quality of life (EQ-5D-3L including Visual Analog Scale (VAS)) were assessed via telephone interviews. Clinical outcomes included SDH recurrence, postoperative infections, and drain complications. OsteoplugTM-C patients had significantly higher satisfaction and quality of life compared to those without a burrhole cover (ANA: 9 [7, 9] vs. 7 [5, 8], p = 0.019; VAS: 85 [75, 90] vs. 70 [50, 80], p = 0.021), and the absence of a burrhole cover was associated with poorer aesthetic outcomes after multivariable adjustment (adjusted OR: 4.55, 95% CI: 1.09–22.68, p = 0.047). No significant differences in other clinical outcomes were observed between OsteoplugTM-C, OsteoplugTM, or no burrhole cover. Our pilot study supports OsteoplugTM-C and its material polycaprolactone as suitable adjuncts to burrhole craniostomy, improving cosmetic outcomes while achieving comparable safety outcomes. Full article
(This article belongs to the Special Issue Scaffolds for Bone Tissue Engineering)
Show Figures

Figure 1

8 pages, 220 KiB  
Article
Predictive Risk Factors Associated with Severe Radiation-Induced Mucositis in Nasopharyngeal or Oropharyngeal Cancer Patients: A Retrospective Study
by Yumiko Kawashita, Sakiko Soutome, Masahiro Umeda and Toshiyuki Saito
Biomedicines 2022, 10(10), 2661; https://doi.org/10.3390/biomedicines10102661 - 21 Oct 2022
Cited by 5 | Viewed by 1806
Abstract
Radiation-induced mucositis in head and neck cancer patients generates difficulties in eating and swallowing, and may influence treatment tolerance, compliance, and quality of life. However, predictive factors have not been studied in detail. Thus, the aim of this study was to describe the [...] Read more.
Radiation-induced mucositis in head and neck cancer patients generates difficulties in eating and swallowing, and may influence treatment tolerance, compliance, and quality of life. However, predictive factors have not been studied in detail. Thus, the aim of this study was to describe the association between pre-radiotherapy clinical factors and the incidence of severe radiation-induced mucositis in nasopharyngeal or oropharyngeal cancer patients. This retrospective study included all patients with definitive radiotherapy or chemoradiotherapy for nasopharyngeal or oropharyngeal cancer between July 2011 and June 2021 in a single center. The eligibility criteria included patients who received oral management during radiotherapy. Exclusion criteria was patients who received postoperative radiotherapy. The data were acquired from the medical records of patients. One hundred patients were included in this retrospective study. Grade 3 radiation-induced mucositis occurred in 47 patients (47%). Lymphocyte count was significantly associated with grade 3 mucositis (OR = 0.40; 95% CI = 0.19–0.86; p = 0.018). It is suggested that pre-radiation lower lymphocyte counts are a predictive risk factor for severe mucositis in patients who undergo definitive radiotherapy or chemoradiotherapy for nasopharyngeal or oropharyngeal cancer Full article
17 pages, 1031 KiB  
Article
Bronchial Asthma as a Cardiovascular Risk Factor: A Prospective Observational Study
by Marcela Kreslová, Olga Kirchnerová, Daniel Rajdl, Vendula Sudová, Jiří Blažek, Aneta Sýkorová, Petr Jehlička, Ladislav Trefil, Jan Schwarz, Renata Pomahačová and Josef Sýkora
Biomedicines 2022, 10(10), 2614; https://doi.org/10.3390/biomedicines10102614 - 18 Oct 2022
Cited by 5 | Viewed by 7185
Abstract
Introduction: Asthma as a chronic inflammatory disorder has been suggested as a risk factor for endothelial dysfunction (ED), but studies on the association between asthma and cardiovascular disease (CVD) risk are limited. Background: We assessed associations of ED with the severity of asthma, [...] Read more.
Introduction: Asthma as a chronic inflammatory disorder has been suggested as a risk factor for endothelial dysfunction (ED), but studies on the association between asthma and cardiovascular disease (CVD) risk are limited. Background: We assessed associations of ED with the severity of asthma, eosinophilic inflammation, lung function, and asthma control. Methods: 52 young asthmatics (median age of 25.22 years) and 45 healthy individuals were included. Demographic, clinical, and laboratory findings were recorded. We evaluated microvascular responsiveness by recording the reactive hyperemia index (RHI) indicating post-occlusive peripheral endothelium-dependent changes in vascular tone using the Itamar Medical EndoPAT2000. VCAM-1, ADMA, high-sensitive CRP (hsCRP), and E-selectin were measured. Results: Asthmatics had considerably lower RHI values (p < 0.001) with a dynamic decreasing trend by asthma severity and higher hsCRP levels (p < 0.001). A substantial increase in hsCRP and E-selectin with asthma severity (p < 0.05) was also observed. We confirmed a higher body mass index (BMI) in asthmatics (p < 0.001), especially in women and in severe asthma. Conclusions: We demonstrated the progression of CVD in asthmatics and the association of the ongoing deterioration of ED with the inflammatory severity, suggesting that the increased risk of CVD in young asthmatics is dependent on disease severity. The underlying mechanisms of risk factors for CVD and disease control require further study. Full article
Show Figures

Figure 1

20 pages, 1052 KiB  
Review
Role of Extracellular Vesicles in Thyroid Physiology and Diseases: Implications for Diagnosis and Treatment
by Ophélie Delcorte, Jonathan Degosserie and Christophe E. Pierreux
Biomedicines 2022, 10(10), 2585; https://doi.org/10.3390/biomedicines10102585 - 15 Oct 2022
Cited by 4 | Viewed by 4757
Abstract
Extracellular vesicles are spherical subcellular structures delimited by a lipid bilayer and released by most cells in the human body. They are loaded with a myriad of molecules (i.e., nucleic acids and proteins) depending on their cell of origin and provide the ability [...] Read more.
Extracellular vesicles are spherical subcellular structures delimited by a lipid bilayer and released by most cells in the human body. They are loaded with a myriad of molecules (i.e., nucleic acids and proteins) depending on their cell of origin and provide the ability to transmit a message to surrounding or distant target cells. In several organs, including the thyroid, abundant recent literature reports that extracellular vesicles are responsible for intercellular communication in physiological and pathological processes, and that their utilization as a potential biomarker of pathological states (i.e., cancer, autoimmune diseases) or as therapeutic delivery vehicles promise clinical options. In this review, we present the current knowledge and understanding regarding the role of extracellular vesicles in developing thyroid diseases and diagnosis. Full article
(This article belongs to the Special Issue Mechanisms and Novel Therapeutic Approaches for Thyroid Diseases)
Show Figures

Figure 1

12 pages, 3112 KiB  
Article
Prognostic Significance of STING Immunoexpression in Relation to HPV16 Infection in Patients with Squamous Cell Carcinomas of Oral Cavity and Oropharynx
by Beata Biesaga, Ryszard Smolarczyk, Anna Mucha-Małecka, Justyna Czapla, Janusz Ryś and Krzysztof Małecki
Biomedicines 2022, 10(10), 2538; https://doi.org/10.3390/biomedicines10102538 - 12 Oct 2022
Cited by 3 | Viewed by 1981
Abstract
Infection with HPV16 in cancers of the oral cavity (OCSCC) and oropharynx (OPSCC) is, today, an important etiological and prognostic factor. Patients with HPV-positive OPSCC have a better prognosis than uninfected patients. However, in over 40% of these patients, cancer progression is noticed. [...] Read more.
Infection with HPV16 in cancers of the oral cavity (OCSCC) and oropharynx (OPSCC) is, today, an important etiological and prognostic factor. Patients with HPV-positive OPSCC have a better prognosis than uninfected patients. However, in over 40% of these patients, cancer progression is noticed. Their identification is particularly important due to the ongoing clinical trials regarding the possibility of de-escalation of anticancer treatment in patients with HPV-positive OPSCC. Some studies suggest that there is possibility to differentiate prognosis of HPV16-positive patients by STING (Stimulator of Interferon Genes) immunoexpression. The aim of the present study was to analyze the influence of STING immunoexpression on overall (OS) and disease-free survival (DFS) of patients with HPV16-positive and -negative OCSCC and OPSCC. The study was performed in a group of 87 patients with OCSCC and OPSCC for which in our earlier study active HPV16 infection was assessed by P16 expression followed by HPV DNA detection. To analyze STING immunoexpression in tumor area (THS) and in adjacent stromal tissues (SHS) H score (HS) was applied. In the subgroup with HPV16, active infection patients with tumors with THS had significantly better DFS (p = 0.047) than those without THS. In this subgroup, TSH did not significantly influence OS, and SHS did not significantly correlate with OS and DFS. In the subgroup of patients without active HPV16 infection, THS and SHS also did not significantly influence patients’ survival. Presented results indicated prognostic potential of tumor STING immunoexpression in patients with active HPV16 infection in cancers of oral cavity and oropharynx. Full article
(This article belongs to the Special Issue State-of-the-Art Cancer Biology and Therapeutics in Poland)
Show Figures

Figure 1

9 pages, 1194 KiB  
Article
Adalimumab Originator vs. Biosimilar in Hidradenitis Suppurativa: A Multicentric Retrospective Study
by Martina Burlando, Gabriella Fabbrocini, Claudio Marasca, Paolo Dapavo, Andrea Chiricozzi, Dalma Malvaso, Valentina Dini, Anna Campanati, Annamaria Offidani, Annunziata Dattola, Raffaele Dante Caposiena Caro, Luca Bianchi, Marina Venturini, Paolo Gisondi, Claudio Guarneri, Giovanna Malara, Caterina Trifirò, Piergiorigio Malagoli, Maria Concetta Fargnoli, Stefano Piaserico, Luca Carmisciano, Riccardo Castelli and Aurora Parodiadd Show full author list remove Hide full author list
Biomedicines 2022, 10(10), 2522; https://doi.org/10.3390/biomedicines10102522 - 09 Oct 2022
Cited by 6 | Viewed by 2560
Abstract
This study aimed to compare adalimumab originator vs. biosimilar in HS patients, and to evaluate the effect of a switch to a biosimilar, or a switch back to the originator, in terms of treatment ineffectiveness. Patients with a diagnosis of HS were enrolled [...] Read more.
This study aimed to compare adalimumab originator vs. biosimilar in HS patients, and to evaluate the effect of a switch to a biosimilar, or a switch back to the originator, in terms of treatment ineffectiveness. Patients with a diagnosis of HS were enrolled from 14 Italian sites. Treatment ineffectiveness was measured using Hurley score. The major analyses were 1) comparison between the two treatment groups (non-switcher analysis), and 2) the cross-over trend of Hurley score between treatment switchers (switcher analysis). Cox and Poisson regression models were used to compare the treatment ineffectiveness between groups. A total of 326 patients were divided into four groups: 171 (52.5%) taking originator; 61 (18.7%) patients taking biosimilar; 66 (20.2%) switchers; 28 (8.6%) switchers from originator to biosimilar and switched. A greater loss of efficacy was observed in the group allocated to the biosimilar than the originator group. The switcher analysis showed an effectiveness loss in the biosimilar compared to the originator. These results seem to indicate that a switch from one drug to the other may lead to a greater risk of inefficacy. A return to the previous treatment also does not ensure efficaciousness. Full article
Show Figures

Figure 1

31 pages, 1015 KiB  
Review
Immune Checkpoint Inhibitors and Other Immune Therapies in Breast Cancer: A New Paradigm for Prolonged Adjuvant Immunotherapy
by Andrea Nicolini, Paola Ferrari and Angelo Carpi
Biomedicines 2022, 10(10), 2511; https://doi.org/10.3390/biomedicines10102511 - 08 Oct 2022
Cited by 10 | Viewed by 4569
Abstract
Background: Breast cancer is the most common form of cancer in women worldwide. Advances in the early diagnosis and treatment of cancer in the last decade have progressively decreased the cancer mortality rate, and in recent years, immunotherapy has emerged as a relevant [...] Read more.
Background: Breast cancer is the most common form of cancer in women worldwide. Advances in the early diagnosis and treatment of cancer in the last decade have progressively decreased the cancer mortality rate, and in recent years, immunotherapy has emerged as a relevant tool against cancer. HER2+ and triple-negative breast cancers (TNBCs) are considered more immunogenic and suitable for this kind of treatment due to the higher rate of tumor-infiltrating lymphocytes (TILs) and programmed death ligand 1 (PD-L1) expression. In TNBC, genetic aberrations further favor immunogenicity due to more neo-antigens in cancer cells. Methods: This review summarizes the principal ongoing conventional and investigational immunotherapies in breast cancer. Particularly, immune checkpoint inhibitors (ICIs) and their use alone or combined with DNA damage repair inhibitors (DDRis) are described. Then, the issue on immunotherapy with monoclonal antibodies against HER-2 family receptors is updated. Other investigational immunotherapies include a new schedule based on the interferon beta-interleukin-2 sequence that was given in ER+ metastatic breast cancer patients concomitant with anti-estrogen therapy, which surprisingly showed promising results. Results: Based on the scientific literature and our own findings, the current evaluation of tumor immunogenicity and the conventional model of adjuvant chemotherapy (CT) are questioned. Conclusions: A novel strategy based on additional prolonged adjuvant immunotherapy combined with hormone therapy or alternated with CT is proposed. Full article
(This article belongs to the Special Issue Immune Checkpoints and Autoimmunity)
Show Figures

Figure 1

32 pages, 1786 KiB  
Review
The Complex Roles of Adipokines in Polycystic Ovary Syndrome and Endometriosis
by Susanne Schüler-Toprak, Olaf Ortmann, Christa Buechler and Oliver Treeck
Biomedicines 2022, 10(10), 2503; https://doi.org/10.3390/biomedicines10102503 - 07 Oct 2022
Cited by 17 | Viewed by 3794
Abstract
Polycystic ovary syndrome (PCOS) and endometriosis are frequent diseases of the female reproductive tract causing high morbidity as they can significantly affect fertility and quality of life. Adipokines are pleiotropic signaling molecules secreted by white or brown adipose tissues with a central role [...] Read more.
Polycystic ovary syndrome (PCOS) and endometriosis are frequent diseases of the female reproductive tract causing high morbidity as they can significantly affect fertility and quality of life. Adipokines are pleiotropic signaling molecules secreted by white or brown adipose tissues with a central role in energy metabolism. More recently, their involvement in PCOS and endometriosis has been demonstrated. In this review article, we provide an update on the role of adipokines in both diseases and summarize previous findings. We also address the results of multi-omics approaches in adipokine research to examine the role of single nucleotide polymorphisms (SNPs) in genes coding for adipokines and their receptors, the secretome of adipocytes and to identify epigenetic alterations of adipokine genes that might be conferred from mother to child. Finally, we address novel data on the role of brown adipose tissue (BAT), which seems to have notable effects on PCOS. For this review, original research articles on adipokine actions in PCOS and endometriosis are considered, which are listed in the PubMed database. Full article
(This article belongs to the Special Issue 10th Anniversary of Biomedicines—Recent Advances on Adipokines)
Show Figures

Figure 1

13 pages, 977 KiB  
Review
Vericiguat in Heart Failure: Characteristics, Scientific Evidence and Potential Clinical Applications
by Francesca Vannuccini, Alessandro Campora, Maria Barilli and Alberto Palazzuoli
Biomedicines 2022, 10(10), 2471; https://doi.org/10.3390/biomedicines10102471 - 03 Oct 2022
Cited by 12 | Viewed by 7063
Abstract
Despite recent advances in heart failure (HF) management, the risk of death and hospitalizations remains high in the long term. HF is characterized by endothelial dysfunction, inflammation and increased oxidative stress, due to a reduction in the activity of the nitric oxide (NO)-soluble [...] Read more.
Despite recent advances in heart failure (HF) management, the risk of death and hospitalizations remains high in the long term. HF is characterized by endothelial dysfunction, inflammation and increased oxidative stress, due to a reduction in the activity of the nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) signaling pathway. All these factors contribute to direct damage at the myocardial, vascular and renal level. Vericiguat restores the deficiency in this signaling pathway, through stimulation and activation of sGC, aiming to increase cGMP levels, with a reduction in HF-related oxidative stress and endothelial dysfunction. Two main clinical trials were developed in this setting: the SOCRATES-REDUCED phase II study and the VICTORIA phase III study. They found that vericiguat is safe, well tolerated and effective with an absolute event-rate reduction in patients affected by HF with reduced ejection fraction (HFrEF) and recent cardiac decompensation. In patients with HF with preserved ejection fraction (HfpEF), the SOCRATES-PRESERVED trial demonstrated an improvement in quality of life and health status, but the proven beneficial effects with vericiguat are still limited. Further studies are needed to correctly define the role of this drug in heart failure syndromes. Our paper reviews the potential applications and pharmacological characteristics of vericiguat in HFrEF and HFpEF. Full article
(This article belongs to the Special Issue Advances in Therapy for Heart Failure)
Show Figures

Figure 1

13 pages, 2362 KiB  
Article
Study on Tissue Homogenization Buffer Composition for Brain Mass Spectrometry-Based Proteomics
by Adam Aleksander Karpiński, Julio Cesar Torres Elguera, Anne Sanner, Witold Konopka, Leszek Kaczmarek, Dominic Winter, Anna Konopka and Ewa Bulska
Biomedicines 2022, 10(10), 2466; https://doi.org/10.3390/biomedicines10102466 - 02 Oct 2022
Cited by 2 | Viewed by 3034
Abstract
Mass spectrometry-based proteomics aims to study the proteome both qualitatively and quantitatively. A key step in proteomic analysis is sample preparation, which is crucial for reliable results. We investigated the effect of the composition of the homogenization buffer used to extract proteins from [...] Read more.
Mass spectrometry-based proteomics aims to study the proteome both qualitatively and quantitatively. A key step in proteomic analysis is sample preparation, which is crucial for reliable results. We investigated the effect of the composition of the homogenization buffer used to extract proteins from brain tissue on the yield of protein extraction and the number and type of extracted proteins. Three different types of buffers were compared—detergent-based buffer (DB), chaotropic agent-based buffer (CAB) and buffer without detergent and chaotropic agent (DFB). Based on label-free quantitative protein analysis, detergent buffer was identified as the most suitable for global proteomic profiling of brain tissue. It allows the most efficient extraction of membrane proteins, synaptic and synaptic membrane proteins along with ribosomal, mitochondrial and myelin sheath proteins, which are of particular interest in the field of neurodegenerative disorders research. Full article
(This article belongs to the Special Issue Mass Spectrometry Based Proteomics in Medical Research)
Show Figures

Figure 1

10 pages, 303 KiB  
Article
Plasma and Peritoneal Fluid ZEB Levels in Patients with Endometriosis and Infertility
by Paweł Bartnik, Joanna Kacperczyk-Bartnik, Ksawery Goławski, Janusz Sierdziński, Grzegorz Mańka, Mariusz Kiecka, Michał Lipa, Damian Warzecha, Robert Spaczyński, Piotr Piekarski, Beata Banaszewska, Artur J. Jakimiuk, Tadeusz Issat, Wojciech Rokita, Jakub Młodawski, Maria Szubert, Piotr Sieroszewski, Grzegorz Raba, Kamil Szczupak, Tomasz Kluz, Marek Kluza, Krzysztof Czajkowski, Mirosław Wielgoś, Ewa Koc-Żórawska, Marcin Żórawski and Piotr Laudańskiadd Show full author list remove Hide full author list
Biomedicines 2022, 10(10), 2460; https://doi.org/10.3390/biomedicines10102460 - 01 Oct 2022
Cited by 6 | Viewed by 2084
Abstract
Zinc finger E-box-binding homeobox 1 (ZEB1) and zinc finger E-box-binding homeobox 2 (ZEB2) are transcription factors that regulate epithelial–mesenchymal transformation (EMT). The aim of this study was to compare levels of ZEB1 and ZEB2 in the peritoneal fluid and plasma between patients with [...] Read more.
Zinc finger E-box-binding homeobox 1 (ZEB1) and zinc finger E-box-binding homeobox 2 (ZEB2) are transcription factors that regulate epithelial–mesenchymal transformation (EMT). The aim of this study was to compare levels of ZEB1 and ZEB2 in the peritoneal fluid and plasma between patients with and without endometriosis in order to assess their utility in the diagnostic process. Plasma and peritoneal fluid samples were collected from 50 patients with and 48 without endometriosis during planned surgical procedures in eight clinical centers. Quantitative ZEB1 and ZEB2 levels analyses were performed using a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). No significant differences were observed in ZEB1 levels in any of the subanalyses nor any differences regarding ZEB2 levels between patients with and without endometriosis. Plasma ZEB2 levels were significantly higher among patients with infertility compared to fertile women (16.07 ± 12.70 ng/L vs. 12.07 ± 11.92 ng/L; p < 0.04). Both ZEB1 and ZEB2 do not seem to have a significant value in the initial diagnosis of endometriosis as a single marker. The differences in ZEB2 plasma levels between patients with and without infertility indicate the possibility of EMT dysregulation in the pathogenesis of adverse fertility outcomes. Full article
(This article belongs to the Special Issue Advanced Research in Endometriosis 3.0)
12 pages, 1958 KiB  
Article
The Role of [18F]F-Choline PET/CT in the Initial Management and Outcome Prediction of Prostate Cancer: A Real-World Experience from a Multidisciplinary Approach
by Luca Urso, Giovanni Christian Rocca, Francesca Borgia, Federica Lancia, Antonio Malorgio, Mauro Gagliano, Mauro Zanetto, Licia Uccelli, Corrado Cittanti, Carmelo Ippolito, Laura Evangelista and Mirco Bartolomei
Biomedicines 2022, 10(10), 2463; https://doi.org/10.3390/biomedicines10102463 - 01 Oct 2022
Cited by 6 | Viewed by 1949
Abstract
Initial staging of prostate cancer (PCa) is usually performed with conventional imaging (CI), involving computed tomography (CT) and bone scanning (BS). The aim of this study was to analyze the role of [18F]F-choline positron emission tomography (PET)/CT in the initial management [...] Read more.
Initial staging of prostate cancer (PCa) is usually performed with conventional imaging (CI), involving computed tomography (CT) and bone scanning (BS). The aim of this study was to analyze the role of [18F]F-choline positron emission tomography (PET)/CT in the initial management and outcome prediction of PCa patients by analyzing data from a multidisciplinary approach. We retrospectively analyzed 82 patients who were discussed by the uro-oncology board of the University Hospital of Ferrara for primary staging newly diagnosed PCa (median age 72 (56–86) years; median baseline prostate specific antigen (PSA) equal to 8.73 ng/mL). Patients were divided into three groups based on the imaging performed: group A = only CI; group B = CI + [18F]F-choline PET/CT; group C = only [18F]F-choline PET/CT. All data on imaging findings, therapy decisions and patient outcomes were retrieved from hospital information systems. Moreover, we performed a sub-analysis of semiquantitative parameters extracted from [18F]F-choline PET/CT to search any correlation with patient outcomes. The number of patients included in each group was 35, 35 and 12, respectively. Patients with higher values of initial PSA were subjected to CI + PET/CT (p = 0.005). Moreover, the use of [18F]F-choline PET/CT was more frequent in patients with higher Gleason score (GS) or ISUP grade (p = 0.013). The type of treatment performed (surgery n = 33; radiation therapy n = 22; surveillance n = 6; multimodality therapy n = 6; systemic therapy n = 13; not available n = 2) did not show any relationship with the modality adopted to stage the disease. [18F]F-choline PET/CT induced a change of planned therapy in 5/35 patients in group B (14.3%). Moreover, patients investigated with [18F]F-choline PET/CT alone demonstrated longer biochemical recurrence (BCR)-free survival (30.8 months) in comparison to patients of groups A and B (15.5 and 23.5 months, respectively, p = 0.006), probably due to a more accurate selection of primary treatment. Finally, total lesion choline kinase activity (TLCKA) of the primary lesion, calculated by multiplying metabolic tumor volume and mean standardized uptake value (SUVmean), was able to more effectively discriminate patients who had recurrence after therapy compared to those without (p = 0.03). In our real-world experience [18F]F-choline PET/CT as a tool for the initial management of PCa had a relevant impact in terms of therapy selection and was associated with longer BCR-free survival. Moreover, TLCKA of the primary lesion looks a promising parameter for predicting recurrence after curative therapy. Full article
Show Figures

Figure 1

10 pages, 1288 KiB  
Article
High Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios Are Associated with a Higher Risk of Hemodialysis Vascular Access Failure
by Edoardo Pasqui, Gianmarco de Donato, Elisa Lazzeri, Cecilia Molino, Giuseppe Galzerano, Michele Giubbolini and Giancarlo Palasciano
Biomedicines 2022, 10(9), 2218; https://doi.org/10.3390/biomedicines10092218 - 07 Sep 2022
Cited by 13 | Viewed by 1778
Abstract
Our aim was to determine the predictive role of the preoperative neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in vascular access malfunctioning in patients who had undergone their first native arterio-venous fistula (AVF) for hemodialysis. Methods: This was a single-center retrospective observational study. [...] Read more.
Our aim was to determine the predictive role of the preoperative neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in vascular access malfunctioning in patients who had undergone their first native arterio-venous fistula (AVF) for hemodialysis. Methods: This was a single-center retrospective observational study. All patients who underwent the procedure of the creation of a first native AVF for hemodialysis from January 2019 to December 2020 were considered eligible to be part of this study. Reinterventions for AVF malfunctioning were registered and the population was subdivided into two groups with respect to AVF malfunctioning. ROC curves were obtained to find the appropriate cut-off values for the NLR and PLR. A multivariate analysis was used to identify the independent predictors for an AVF malfunction. Kaplan–Meier curves were used to evaluate the AVF patency rates. A total of 178 patients were enrolled in the study, of them 70% (n = 121) were male. The mean age was 67.5 ± 12 years. Reinterventions for AVF malfunctioning were performed on 102 patients (57.3%). An NLR > 4.21 and a PLR > 208.8 was selected as the cut-off for AVF malfunctioning. The study population was divided into two groups depending on the NLR and PLR values of the individual. For the NLR < 4.21 group, the AVF patency rates were 90.7%, 85.3%, and 84% at the 3-, 6-, and 12-month follow-up, respectively, and 77.5%, 65.8%, and 39.3% at 3, 6, and 12 months for the NLR > 4.21 group, respectively (p < 0.0001). For the PLR < 208.8 group, the patency rates were 85.6%, 76.7%, and 67.7% at the 3-, 6-, and 12-month follow-up. For the PLR > 208.28 group, the patency rates were 80.8%, 71.2%, and 50.7% for the 3-, 6-, and 12-month follow-up, respectively (p = 0.014). The multivariate analysis highlighted that diabetes mellitus, the neutrophil count, the lymphocyte count, and the NLR were independent risk factors for an AVF failure. In our experience, the NLR and PLR are useful markers for the stratification of vascular access failure in hemodialysis patients. The inexpensive nature and ready availability of the values of these biomarkers are two points of strength for everyday clinical practice. Full article
(This article belongs to the Special Issue Neutrophils, Fast and Strong 2.0)
Show Figures

Figure 1

25 pages, 1731 KiB  
Review
Lipid Nanoparticles as Delivery Vehicles for Inhaled Therapeutics
by Ellenmae W. X. Leong and Ruowen Ge
Biomedicines 2022, 10(9), 2179; https://doi.org/10.3390/biomedicines10092179 - 02 Sep 2022
Cited by 35 | Viewed by 6508
Abstract
Lipid nanoparticles (LNPs) have emerged as a powerful non-viral carrier for drug delivery. With the prevalence of respiratory diseases, particularly highlighted by the current COVID-19 pandemic, investigations into applying LNPs to deliver inhaled therapeutics directly to the lungs are underway. The progress in [...] Read more.
Lipid nanoparticles (LNPs) have emerged as a powerful non-viral carrier for drug delivery. With the prevalence of respiratory diseases, particularly highlighted by the current COVID-19 pandemic, investigations into applying LNPs to deliver inhaled therapeutics directly to the lungs are underway. The progress in LNP development as well as the recent pre-clinical studies in three main classes of inhaled encapsulated drugs: small molecules, nucleic acids and proteins/peptides will be discussed. The advantages of the pulmonary drug delivery system such as reducing systemic toxicity and enabling higher local drug concentration in the lungs are evaluated together with the challenges and design considerations for improved formulations. This review provides a perspective on the future prospects of LNP-mediated delivery of inhaled therapeutics for respiratory diseases. Full article
(This article belongs to the Special Issue Advances in Nanomedicine for Disease Treatment and Diagnosis)
Show Figures

Figure 1

16 pages, 1390 KiB  
Review
Lipid-Based Drug Delivery Systems for Diseases Managements
by Douweh Leyla Gbian and Abdelwahab Omri
Biomedicines 2022, 10(9), 2137; https://doi.org/10.3390/biomedicines10092137 - 31 Aug 2022
Cited by 14 | Viewed by 3136
Abstract
Liposomes are tiny lipid-based vesicles composed of one or more lipid bilayers, which facilitate the encapsulation of hydrophilic, lipophilic, and amphiphilic biological active agents. The description of the physicochemical properties, formulation methods, characteristics, mechanisms of action, and large-scale manufacturing of liposomes as delivery [...] Read more.
Liposomes are tiny lipid-based vesicles composed of one or more lipid bilayers, which facilitate the encapsulation of hydrophilic, lipophilic, and amphiphilic biological active agents. The description of the physicochemical properties, formulation methods, characteristics, mechanisms of action, and large-scale manufacturing of liposomes as delivery systems are deeply discussed. The benefits, toxicity, and limitations of the use of liposomes in pharmacotherapeutics including in diagnostics, brain targeting, eye and cancer diseases, and in infections are provided. The experimental approaches that may reduce, or even bypass, the use of liposomal drug drawbacks is described. The application of liposomes in the treatment of numerous diseases is discussed. Full article
(This article belongs to the Special Issue Advances in Nanomedicine for Disease Treatment and Diagnosis)
Show Figures

Figure 1

15 pages, 631 KiB  
Review
Inflammatory Cytokine: An Attractive Target for Cancer Treatment
by Hyang-Mi Lee, Hye-Jin Lee and Ji-Eun Chang
Biomedicines 2022, 10(9), 2116; https://doi.org/10.3390/biomedicines10092116 - 29 Aug 2022
Cited by 20 | Viewed by 2982
Abstract
The relationship between inflammation and cancer has attracted attention for a long time. The inflammatory tumor microenvironment consists of inflammatory cells, chemokines, cytokines, and signaling pathways. Among them, inflammatory cytokines play an especially pivotal role in cancer development, prognosis, and treatment. Interleukins, tumor [...] Read more.
The relationship between inflammation and cancer has attracted attention for a long time. The inflammatory tumor microenvironment consists of inflammatory cells, chemokines, cytokines, and signaling pathways. Among them, inflammatory cytokines play an especially pivotal role in cancer development, prognosis, and treatment. Interleukins, tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), interferons, and vascular endothelial growth factor (VEGF) are the representative inflammatory cytokines in various cancers, which may promote or inhibit cancer progression. The pro-inflammatory cytokines are associated with advanced cancer stages, resistance to immunotherapy, and poor prognoses, such as in objective response and disease control rates, and progression-free and overall survival. In this review, we selected colorectal, pancreatic, breast, gastric, lung, and prostate cancers, which are well-reported for an association between cancer and inflammatory cytokines. The related cytokines and their effects on each cancer’s development and prognosis were summarized. In addition, the treatment strategies targeting inflammatory cytokines in each carcinoma were also described here. By understanding the biological roles of cancer-related inflammatory cytokines, we may modulate the inflammatory tumor microenvironment for potential cancer treatment. Full article
(This article belongs to the Special Issue The Role of Inflammatory Cytokines in Cancer Progression)
Show Figures

Figure 1

33 pages, 2235 KiB  
Review
Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics
by Dixit V. Bhalani, Bhingaradiya Nutan, Avinash Kumar and Arvind K. Singh Chandel
Biomedicines 2022, 10(9), 2055; https://doi.org/10.3390/biomedicines10092055 - 23 Aug 2022
Cited by 101 | Viewed by 14461
Abstract
The low water solubility of pharmacoactive molecules limits their pharmacological potential, but the solubility parameter cannot compromise, and so different approaches are employed to enhance their bioavailability. Pharmaceutically active molecules with low solubility convey a higher risk of failure for drug innovation and [...] Read more.
The low water solubility of pharmacoactive molecules limits their pharmacological potential, but the solubility parameter cannot compromise, and so different approaches are employed to enhance their bioavailability. Pharmaceutically active molecules with low solubility convey a higher risk of failure for drug innovation and development. Pharmacokinetics, pharmacodynamics, and several other parameters, such as drug distribution, protein binding and absorption, are majorly affected by their solubility. Among all pharmaceutical dosage forms, oral dosage forms cover more than 50%, and the drug molecule should be water-soluble. For good therapeutic activity by the drug molecule on the target site, solubility and bioavailability are crucial factors. The pharmaceutical industry’s screening programs identified that around 40% of new chemical entities (NCEs) face various difficulties at the formulation and development stages. These pharmaceuticals demonstrate less solubility and bioavailability. Enhancement of the bioavailability and solubility of drugs is a significant challenge in the area of pharmaceutical formulations. According to the Classification of Biopharmaceutics, Class II and IV drugs (APIs) exhibit poor solubility, lower bioavailability, and less dissolution. Various technologies are discussed in this article to improve the solubility of poorly water-soluble drugs, for example, the complexation of active molecules, the utilization of emulsion formation, micelles, microemulsions, cosolvents, polymeric micelle preparation, particle size reduction technologies, pharmaceutical salts, prodrugs, the solid-state alternation technique, soft gel technology, drug nanocrystals, solid dispersion methods, crystal engineering techniques and nanomorph technology. This review mainly describes several other advanced methodologies for solubility and bioavailability enhancement, such as crystal engineering, micronization, solid dispersions, nano sizing, the use of cyclodextrins, solid lipid nanoparticles, colloidal drug delivery systems and drug conjugates, referring to a number of appropriate research reports. Full article
Show Figures

Graphical abstract

51 pages, 13524 KiB  
Article
Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease
by How-Wing Leung, Gabriel Foo and Antonius VanDongen
Biomedicines 2022, 10(8), 1946; https://doi.org/10.3390/biomedicines10081946 - 11 Aug 2022
Cited by 13 | Viewed by 4732
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal [...] Read more.
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD. Full article
(This article belongs to the Special Issue Alzheimer's Disease—115 Years after Its Discovery)
Show Figures

Figure 1

31 pages, 2309 KiB  
Review
Therapeutic Strategies in Huntington’s Disease: From Genetic Defect to Gene Therapy
by Anamaria Jurcau and Maria Carolina Jurcau
Biomedicines 2022, 10(8), 1895; https://doi.org/10.3390/biomedicines10081895 - 05 Aug 2022
Cited by 13 | Viewed by 4431
Abstract
Despite the identification of an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 1 as the genetic defect causing Huntington’s disease almost 30 years ago, currently approved therapies provide only limited symptomatic relief and do not influence the [...] Read more.
Despite the identification of an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 1 as the genetic defect causing Huntington’s disease almost 30 years ago, currently approved therapies provide only limited symptomatic relief and do not influence the age of onset or disease progression rate. Research has identified various intricate pathogenic cascades which lead to neuronal degeneration, but therapies interfering with these mechanisms have been marked by many failures and remain to be validated. Exciting new opportunities are opened by the emerging techniques which target the mutant protein DNA and RNA, allowing for “gene editing”. Although some issues relating to “off-target” effects or immune-mediated side effects need to be solved, these strategies, combined with stem cell therapies and more traditional approaches targeting specific pathogenic cascades, such as excitotoxicity and bioavailability of neurotrophic factors, could lead to significant improvement of the outcomes of treated Huntington’s disease patients. Full article
Show Figures

Figure 1

16 pages, 1723 KiB  
Article
GLUT3 Promotes Epithelial–Mesenchymal Transition via TGF-β/JNK/ATF2 Signaling Pathway in Colorectal Cancer Cells
by Moon-Young Song, Da-Young Lee, Sun-Mi Yun and Eun-Hee Kim
Biomedicines 2022, 10(8), 1837; https://doi.org/10.3390/biomedicines10081837 - 29 Jul 2022
Cited by 12 | Viewed by 2239
Abstract
Glucose transporter (GLUT) 3, a member of the GLUTs family, is involved in cellular glucose utilization and the first step in glycolysis. GLUT3 is highly expressed in colorectal cancer (CRC) and it leads to poor prognosis to CRC patient outcome. However, the molecular [...] Read more.
Glucose transporter (GLUT) 3, a member of the GLUTs family, is involved in cellular glucose utilization and the first step in glycolysis. GLUT3 is highly expressed in colorectal cancer (CRC) and it leads to poor prognosis to CRC patient outcome. However, the molecular mechanisms of GLUT3 on the epithelial–mesenchymal transition (EMT) process in metastatic CRC is not yet clear. Here, we identified that activation of the c-Jun N-terminal kinase (JNK)/activating transcription factor-2 (ATF2) signaling pathway by transforming growth factor-β (TGF-β) promotes GLUT3-induced EMT in CRC cells. The regulation of GLUT3 expression was significantly associated with EMT-related markers such as E-cadherin, α- smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), vimentin and zinc finger E-box binding homeobox 1 (ZEB1). We also found that GLUT3 accelerated the invasive ability of CRC cells. Mechanistically, TGF-β induced the expression of GLUT3 through the phosphorylation of JNK/ATF2, one of the SMAD-independent pathways. TGF-β induced the expression of GLUT3 by increasing the phosphorylation of JNK, the nuclear translocation of the ATF2 transcription factor, and the binding of ATF2 to the promoter region of GLUT3, which increased EMT in CRC cells. Collectively, our results provide a new comprehensive mechanism that GLUT3 promotes EMT process through the TGF-β/JNK/ATF2 signaling pathway, which could be a potential target for the treatment of metastatic CRC. Full article
Show Figures

Figure 1

12 pages, 1772 KiB  
Article
Bioactive Cell-Derived ECM Scaffold Forms a Unique Cellular Microenvironment for Lung Tissue Engineering
by Ali Doryab and Otmar Schmid
Biomedicines 2022, 10(8), 1791; https://doi.org/10.3390/biomedicines10081791 - 26 Jul 2022
Cited by 8 | Viewed by 2039
Abstract
Chronic lung diseases are one of the leading causes of death worldwide. Lung transplantation is currently the only causal therapeutic for lung diseases, which is restricted to end-stage disease and limited by low access to donor lungs. Lung tissue engineering (LTE) is a [...] Read more.
Chronic lung diseases are one of the leading causes of death worldwide. Lung transplantation is currently the only causal therapeutic for lung diseases, which is restricted to end-stage disease and limited by low access to donor lungs. Lung tissue engineering (LTE) is a promising approach to regenerating a replacement for at least a part of the damaged lung tissue. Currently, lung regeneration is limited to a simplified local level (e.g., alveolar–capillary barrier) due to the sophisticated and complex structure and physiology of the lung. Here, we introduce an extracellular matrix (ECM)-integrated scaffold using a cellularization–decellularization–recellularization technique. This ECM-integrated scaffold was developed on our artificial co-polymeric BETA (biphasic elastic thin for air–liquid interface cell culture conditions) scaffold, which were initially populated with human lung fibroblasts (IMR90 cell line), as the main generator of ECM proteins. Due to the interconnected porous structure of the thin (<5 µm) BETA scaffold, the cells can grow on and infiltrate into the scaffold and deposit their own ECM. After a mild decellularization procedure, the ECM proteins remained on the scaffold, which now closely mimicked the cellular microenvironment of pulmonary cells more realistically than the plain artificial scaffolds. We assessed several decellularization methods and found that 20 mM NH4OH and 0.1% Triton X100 with subsequent DNase treatment completely removed the fibroblasts (from the first cellularization) and maintains collagen I and IV as the key ECM proteins on the scaffold. We also showed the repopulation of the primary fibroblast from human (without chronic lung disease (non-CLD) donors) and human bronchial epithelial (16HBE14o) cells on the ECM-integrated BETA scaffold. With this technique, we developed a biomimetic scaffold that can mimic both the physico-mechanical properties and the native microenvironment of the lung ECM. The results indicate the potential of the presented bioactive scaffold for LTE application. Full article
(This article belongs to the Special Issue Human Extracellular Matrix in Homeostasis and Pathology)
Show Figures

Figure 1

19 pages, 1888 KiB  
Review
Obesity and Endothelial Function
by Masato Kajikawa and Yukihito Higashi
Biomedicines 2022, 10(7), 1745; https://doi.org/10.3390/biomedicines10071745 - 19 Jul 2022
Cited by 18 | Viewed by 3698
Abstract
Obesity is a major public health problem and is related to increasing rates of cardiovascular morbidity and mortality. Over 1.9 billion adults are overweight or obese worldwide and the prevalence of obesity is increasing. Obesity influences endothelial function through obesity-related complications such as [...] Read more.
Obesity is a major public health problem and is related to increasing rates of cardiovascular morbidity and mortality. Over 1.9 billion adults are overweight or obese worldwide and the prevalence of obesity is increasing. Obesity influences endothelial function through obesity-related complications such as hypertension, dyslipidemia, diabetes, metabolic syndrome, and obstructive sleep apnea syndrome. The excess fat accumulation in obesity causes adipocyte dysfunction and induces oxidative stress, insulin resistance, and inflammation leading to endothelial dysfunction. Several anthropometric indices and imaging modalities that are used to evaluate obesity have demonstrated an association between obesity and endothelial function. In the past few decades, there has been great focus on the mechanisms underlying endothelial dysfunction caused by obesity for the prevention and treatment of cardiovascular events. This review focuses on pathophysiological mechanisms of obesity-induced endothelial dysfunction and therapeutic targets of obesity. Full article
Show Figures

Figure 1

28 pages, 6072 KiB  
Article
Diminazene Aceturate Reduces Angiotensin II Constriction and Interacts with the Spike Protein of Severe Acute Respiratory Syndrome Coronavirus 2
by John M. Matsoukas, Laura Kate Gadanec, Anthony Zulli, Vasso Apostolopoulos, Konstantinos Kelaidonis, Irene Ligielli, Kalliopi Moschovou, Nikitas Georgiou, Panagiotis Plotas, Christos T. Chasapis, Graham Moore, Harry Ridgway and Thomas Mavromoustakos
Biomedicines 2022, 10(7), 1731; https://doi.org/10.3390/biomedicines10071731 - 18 Jul 2022
Cited by 8 | Viewed by 2781
Abstract
Diminazene aceturate (DIZE) is a putative angiotensin-converting enzyme 2 (ACE2) activator and angiotensin type 1 receptor antagonist (AT1R). Its simple chemical structure possesses a negatively charged triazene segment that is homologous to the tetrazole of angiotensin receptor blockers (ARB), which explains [...] Read more.
Diminazene aceturate (DIZE) is a putative angiotensin-converting enzyme 2 (ACE2) activator and angiotensin type 1 receptor antagonist (AT1R). Its simple chemical structure possesses a negatively charged triazene segment that is homologous to the tetrazole of angiotensin receptor blockers (ARB), which explains its AT1R antagonistic activity. Additionally, the activation of ACE2 by DIZE converts the toxic octapeptide angiotensin II (AngII) to the heptapeptides angiotensin 1–7 and alamandine, which promote vasodilation and maintains homeostatic balance. Due to DIZE’s protective cardiovascular and pulmonary effects and its ability to target ACE2 (the predominant receptor utilized by severe acute respiratory syndrome coronavirus 2 to enter host cells), it is a promising treatment for coronavirus 2019 (COVID-19). To determine DIZE’s ability to inhibit AngII constriction, in vitro isometric tension analysis was conducted on rabbit iliac arteries incubated with DIZE or candesartan and constricted with cumulative doses of AngII. In silico docking and ligand interaction studies were performed to investigate potential interactions between DIZE and other ARBs with AT1R and the spike protein/ACE2 complex. DIZE, similar to the other ARBs investigated, was able to abolish vasoconstriction in response to AngII and exhibited a binding affinity for the spike protein/ACE2 complex (PDB 6LZ6). These results support the potential of DIZE as a treatment for COVID-19. Full article
(This article belongs to the Special Issue Cardiovascular Diseases and COVID-19)
Show Figures

Graphical abstract

10 pages, 817 KiB  
Article
Urine Oxidative Stress Biomarkers as Novel Biomarkers in Interstitial Cystitis/Bladder Pain Syndrome
by Yuan-Hong Jiang, Jia-Fong Jhang, Han-Chen Ho, Dan-Yun Chiou and Hann-Chorng Kuo
Biomedicines 2022, 10(7), 1701; https://doi.org/10.3390/biomedicines10071701 - 14 Jul 2022
Cited by 14 | Viewed by 1799
Abstract
Both hypoxia and chronic suburothelial inflammation are important pathophysiological findings in patients with interstitial cystitis/bladder pain syndrome (IC/BPS). This study investigated the roles of urine oxidative stress biomarkers and inflammatory cytokines in patients with IC/BPS. Urine samples were collected from 159 IC/BPS patients [...] Read more.
Both hypoxia and chronic suburothelial inflammation are important pathophysiological findings in patients with interstitial cystitis/bladder pain syndrome (IC/BPS). This study investigated the roles of urine oxidative stress biomarkers and inflammatory cytokines in patients with IC/BPS. Urine samples were collected from 159 IC/BPS patients and 28 controls. The targeted analytes included oxidative stress biomarkers (8-OHdG, 8-isoprostane, and total antioxidant capacity) and inflammatory cytokines (MCP-1, RANTES, CXCL10, Eotaxin, MIP-1β, and IL-8). IC/BPS patients were classified into four clinical subgroups, based on the glomerulation grade and the maximal bladder capacity under anesthesia. Patients with IC/BPS had urine oxidative stress biomarkers and inflammatory cytokines profiles that were distinct from those of the controls and among each subgroup. Both 8-OHdG and 8-isoprostane showed a high diagnostic ability to distinguish type 2 IC/BPS patients (as classified by the European Society for the Study of Interstitial Cystitis) from controls. Additionally, they both showed positive and negative correlations with the glomerulation grade and the maximal bladder capacity under anesthesia, respectively. Limitations included intra-individual variation and sex influence. Urine oxidative stress biomarkers might have a role in diagnosing IC/BPS and differentiating its clinical subtypes. In addition to inflammatory cytokines, urine oxidative stress biomarkers have the potential to be novel biomarkers in patients with IC/BPS. Full article
Show Figures

Figure 1

18 pages, 1175 KiB  
Review
Micro- and Nanosized Carriers for Nose-to-Brain Drug Delivery in Neurodegenerative Disorders
by Radka Boyuklieva and Bissera Pilicheva
Biomedicines 2022, 10(7), 1706; https://doi.org/10.3390/biomedicines10071706 - 14 Jul 2022
Cited by 19 | Viewed by 3438
Abstract
Neurodegenerative disorders (NDs) have become a serious health problem worldwide due to the rapid increase in the number of people that are affected and the constantly aging population. Among all NDs, Alzheimer’s and Parkinson’s disease are the most common, and many efforts have [...] Read more.
Neurodegenerative disorders (NDs) have become a serious health problem worldwide due to the rapid increase in the number of people that are affected and the constantly aging population. Among all NDs, Alzheimer’s and Parkinson’s disease are the most common, and many efforts have been made in the development of effective and reliable therapeutic strategies. The intranasal route of drug administration offers numerous advantages, such as bypassing the blood–brain barrier and providing a direct entrance to the brain through the olfactory and trigeminal neurons. The present review summarizes the available information on recent advances in micro- and nanoscale nose-to-brain drug-delivery systems as a novel strategy for the treatment of Alzheimer’s and Parkinson’s disease. Specifically, polymer- and lipid-base micro- and nanoparticles have been studied as a feasible approach to increase the brain bioavailability of certain drugs. Furthermore, nanocomposites are discussed as a suitable formulation for administration into the nasal cavity. Full article
(This article belongs to the Special Issue Targeted Drug Delivery to Brain)
Show Figures

Figure 1

16 pages, 2149 KiB  
Review
Naringin and Naringenin: Their Mechanisms of Action and the Potential Anticancer Activities
by Jolita Stabrauskiene, Dalia M. Kopustinskiene, Robertas Lazauskas and Jurga Bernatoniene
Biomedicines 2022, 10(7), 1686; https://doi.org/10.3390/biomedicines10071686 - 13 Jul 2022
Cited by 65 | Viewed by 8485
Abstract
Naringin and naringenin are the main bioactive polyphenols in citrus fruits, the consumption of which is beneficial for human health and has been practiced since ancient times. Numerous studies have reported these substances’ antioxidant and antiandrogenic properties, as well as their ability to [...] Read more.
Naringin and naringenin are the main bioactive polyphenols in citrus fruits, the consumption of which is beneficial for human health and has been practiced since ancient times. Numerous studies have reported these substances’ antioxidant and antiandrogenic properties, as well as their ability to protect from inflammation and cancer, in various in vitro and in vivo experimental models in animals and humans. Naringin and naringenin can suppress cancer development in various body parts, alleviating the conditions of cancer patients by acting as effective alternative supplementary remedies. Their anticancer activities are pleiotropic, and they can modulate different cellular signaling pathways, suppress cytokine and growth factor production and arrest the cell cycle. In this narrative review, we discuss the effects of naringin and naringenin on inflammation, apoptosis, proliferation, angiogenesis, metastasis and invasion processes and their potential to become innovative and safe anticancer drugs. Full article
(This article belongs to the Special Issue Anticancer Activity and Metabolic Pathways of Natural Products)
Show Figures

Figure 1

19 pages, 3474 KiB  
Article
Therapeutic miR-506-3p Replacement in Pancreatic Carcinoma Leads to Multiple Effects including Autophagy, Apoptosis, Senescence, and Mitochondrial Alterations In Vitro and In Vivo
by Hannes Borchardt, Alexander Kogel, Hermann Kalwa, Ulrike Weirauch and Achim Aigner
Biomedicines 2022, 10(7), 1692; https://doi.org/10.3390/biomedicines10071692 - 13 Jul 2022
Cited by 7 | Viewed by 1910
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality. Considering its very poor prognosis, novel treatment options are urgently needed. MicroRNAs (miRNAs) are involved in the regulation of various physiological and pathological processes. In tumors, aberrant downregulation of given miRNAs may [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality. Considering its very poor prognosis, novel treatment options are urgently needed. MicroRNAs (miRNAs) are involved in the regulation of various physiological and pathological processes. In tumors, aberrant downregulation of given miRNAs may result in pathological overexpression of oncogenes, rendering miRNA replacement as a promising therapeutic strategy. In different tumor entities, miRNA-506-3p (miR506-3p) has been ambivalently described as tumor suppressing or oncogenic. In PDAC, miR-506 is mainly considered as a tumor-suppressing miRNA. In this study, we extensively analyze the cellular and molecular effects of miRNA-506-3p replacement in different PDAC cell lines. Beyond profound antiproliferation and induction of cell death and autophagy, we describe new cellular miR506-3p effects, i.e., induction of senescence and reactive oxygen species (ROS), as well as alterations in mitochondrial potential and structure, and identify multiple underlying molecular effects. In a preclinical therapy study, PDAC xenograft-bearing mice were treated with nanoparticle-formulated miRNA-506 mimics. Profound tumor inhibition upon systemic miRNA-506 administration was associated with multiple cellular and molecular effects. This demonstrates miRNA replacement as a potential therapeutic option for PDAC patients. Due to its broad mechanisms of action on multiple relevant target genes, miR506-3p is identified as a particularly powerful tumor-inhibitory miRNA. Full article
(This article belongs to the Special Issue MicroRNA in Solid Tumor and Hematological Diseases 2.0)
Show Figures

Figure 1

16 pages, 2565 KiB  
Article
Distinct Subtyping of Successful Weaning from Acute Kidney Injury Requiring Renal Replacement Therapy by Consensus Clustering in Critically Ill Patients
by Heng-Chih Pan, Chiao-Yin Sun, Thomas Tao-Min Huang, Chun-Te Huang, Chun-Hao Tsao, Chien-Heng Lai, Yung-Ming Chen and Vin-Cent Wu
Biomedicines 2022, 10(7), 1628; https://doi.org/10.3390/biomedicines10071628 - 07 Jul 2022
Cited by 3 | Viewed by 1521
Abstract
Background: Clinical decisions regarding the appropriate timing of weaning off renal replacement therapy (RRT) in critically ill patients are complex and multifactorial. The aim of the current study was to identify which critical patients with acute kidney injury (AKI) may be more likely [...] Read more.
Background: Clinical decisions regarding the appropriate timing of weaning off renal replacement therapy (RRT) in critically ill patients are complex and multifactorial. The aim of the current study was to identify which critical patients with acute kidney injury (AKI) may be more likely to be successfully weaned off RRT using consensus cluster analysis. Methods: In this study, critically ill patients who received RRT at three multicenter referral hospitals at several timepoints from August 2016 to July 2018 were enrolled. An unsupervised consensus clustering algorithm was used to identify distinct phenotypes. The outcomes of interest were the ability to wean off RTT and 90-day mortality. Results: A total of 124 patients with AKI requiring RRT (AKI-RRT) were enrolled. The 90-day mortality rate was 30.7% (38/124), and 49.2% (61/124) of the patients were successfully weaned off RRT for over 90 days. The consensus clustering algorithm identified three clusters from a total of 45 features. The three clusters had distinct features and could be separated according to the combination of urinary neutrophil gelatinase-associated lipocalin to creatinine ratio (uNGAL/Cr), Sequential Organ Failure Assessment (SOFA) score, and estimated glomerular filtration rate at the time of weaning off RRT. uNGAL/Cr (hazard ratio [HR] 2.43, 95% confidence interval [CI]: 1.36–4.33) and clustering phenotype (cluster 1 vs. 3, HR 2.7, 95% CI: 1.11–6.57; cluster 2 vs. 3, HR 44.5, 95% CI: 11.92–166.39) could predict 90-day mortality or re-dialysis. Conclusions: Almost half of the critical patients with AKI-RRT could wean off dialysis for over 90 days. Urinary NGAL/Cr and distinct clustering phenotypes could predict 90-day mortality or re-dialysis. Full article
Show Figures

Graphical abstract

15 pages, 3498 KiB  
Article
Solubility-Aware Protein Binding Peptide Design Using AlphaFold
by Takatsugu Kosugi and Masahito Ohue
Biomedicines 2022, 10(7), 1626; https://doi.org/10.3390/biomedicines10071626 - 07 Jul 2022
Cited by 8 | Viewed by 4816
Abstract
New protein–protein interactions (PPIs) are identified, but PPIs have different physicochemical properties compared with conventional targets, making it difficult to use small molecules. Peptides offer a new modality to target PPIs, but designing appropriate peptide sequences by computation is challenging. Recently, AlphaFold and [...] Read more.
New protein–protein interactions (PPIs) are identified, but PPIs have different physicochemical properties compared with conventional targets, making it difficult to use small molecules. Peptides offer a new modality to target PPIs, but designing appropriate peptide sequences by computation is challenging. Recently, AlphaFold and RoseTTAFold have made it possible to predict protein structures from amino acid sequences with ultra-high accuracy, enabling de novo protein design. We designed peptides likely to have PPI as the target protein using the “binder hallucination” protocol of AfDesign, a de novo protein design method using AlphaFold. However, the solubility of the peptides tended to be low. Therefore, we designed a solubility loss function using solubility indices for amino acids and developed a solubility-aware AfDesign binder hallucination protocol. The peptide solubility in sequences designed using the new protocol increased with the weight of the solubility loss function; moreover, they captured the characteristics of the solubility indices. Moreover, the new protocol sequences tended to have higher affinity than random or single residue substitution sequences when evaluated by docking binding affinity. Our approach shows that it is possible to design peptide sequences that can bind to the interface of PPI while controlling solubility. Full article
(This article belongs to the Special Issue Peptide-Based Drug Development)
Show Figures

Figure 1

14 pages, 3477 KiB  
Article
Tuning the Degradation Rate of Alginate-Based Bioinks for Bioprinting Functional Cartilage Tissue
by Xavier Barceló, Kian F. Eichholz, Orquidea Garcia and Daniel J. Kelly
Biomedicines 2022, 10(7), 1621; https://doi.org/10.3390/biomedicines10071621 - 07 Jul 2022
Cited by 19 | Viewed by 2966
Abstract
Negative foreign body responses following the in vivo implantation of bioprinted implants motivate the development of novel bioinks which can rapidly degrade with the formation of functional tissue, whilst still maintaining desired shapes post-printing. Here, we investigated the oxidation of alginate as a [...] Read more.
Negative foreign body responses following the in vivo implantation of bioprinted implants motivate the development of novel bioinks which can rapidly degrade with the formation of functional tissue, whilst still maintaining desired shapes post-printing. Here, we investigated the oxidation of alginate as a means to modify the degradation rate of alginate-based bioinks for cartilage tissue engineering applications. Raw and partially oxidized alginate (OA) were combined at different ratios (Alginate:OA at 100:0; 75:25; 50:50; 25:75; 0:100) to provide finer control over the rate of bioink degradation. These alginate blends were then combined with a temporary viscosity modifier (gelatin) to produce a range of degradable bioinks with rheological properties suitable for extrusion bioprinting. The rate of degradation was found to be highly dependent on the OA content of the bioink. Despite this high mass loss, the initially printed geometry was maintained throughout a 4 week in vitro culture period for all bioink blends except the 0:100 group. All bioink blends also supported robust chondrogenic differentiation of mesenchymal stem/stromal cells (MSCs), resulting in the development of a hyaline-like tissue that was rich in type II collagen and negative for calcific deposits. Such tuneable inks offer numerous benefits to the field of 3D bioprinting, from providing space in a controllable manner for new extracellular matrix deposition, to alleviating concerns associated with a foreign body response to printed material inks in vivo. Full article
(This article belongs to the Special Issue Biomedical Properties of Hydrogels)
Show Figures

Figure 1

19 pages, 1133 KiB  
Review
Activation of the Mitochondrial Unfolded Protein Response: A New Therapeutic Target?
by Juan M. Suárez-Rivero, Carmen J. Pastor-Maldonado, Suleva Povea-Cabello, Mónica Álvarez-Córdoba, Irene Villalón-García, Marta Talaverón-Rey, Alejandra Suárez-Carrillo, Manuel Munuera-Cabeza, Diana Reche-López, Paula Cilleros-Holgado, Rocío Piñero-Pérez and José A. Sánchez-Alcázar
Biomedicines 2022, 10(7), 1611; https://doi.org/10.3390/biomedicines10071611 - 06 Jul 2022
Cited by 17 | Viewed by 4140
Abstract
Mitochondrial dysfunction is a key hub that is common to many diseases. Mitochondria’s role in energy production, calcium homeostasis, and ROS balance makes them essential for cell survival and fitness. However, there are no effective treatments for most mitochondrial and related diseases to [...] Read more.
Mitochondrial dysfunction is a key hub that is common to many diseases. Mitochondria’s role in energy production, calcium homeostasis, and ROS balance makes them essential for cell survival and fitness. However, there are no effective treatments for most mitochondrial and related diseases to this day. Therefore, new therapeutic approaches, such as activation of the mitochondrial unfolded protein response (UPRmt), are being examined. UPRmt englobes several compensation processes related to proteostasis and antioxidant mechanisms. UPRmt activation, through an hormetic response, promotes cell homeostasis and improves lifespan and disease conditions in biological models of neurodegenerative diseases, cardiopathies, and mitochondrial diseases. Although UPRmt activation is a promising therapeutic option for many conditions, its overactivation could lead to non-desired side effects, such as increased heteroplasmy of mitochondrial DNA mutations or cancer progression in oncologic patients. In this review, we present the most recent UPRmt activation therapeutic strategies, UPRmt’s role in diseases, and its possible negative consequences in particular pathological conditions. Full article
(This article belongs to the Special Issue Mitochondria and Brain Disease 2.0)
Show Figures

Figure 1

19 pages, 2206 KiB  
Review
Brain Cancer Chemotherapy through a Delivery System across the Blood-Brain Barrier into the Brain Based on Receptor-Mediated Transcytosis Using Monoclonal Antibody Conjugates
by Toshihiko Tashima
Biomedicines 2022, 10(7), 1597; https://doi.org/10.3390/biomedicines10071597 - 05 Jul 2022
Cited by 13 | Viewed by 4267
Abstract
Advances in pharmacotherapy have brought extraordinary benefits to humanity. However, unmet medical needs in patients remain, particularly in the treatment of central nervous system (CNS) diseases and cancers. CNS drug delivery into the brain across the endothelium is difficult due to the blood-brain [...] Read more.
Advances in pharmacotherapy have brought extraordinary benefits to humanity. However, unmet medical needs in patients remain, particularly in the treatment of central nervous system (CNS) diseases and cancers. CNS drug delivery into the brain across the endothelium is difficult due to the blood-brain barrier (BBB), which is composed mainly of tight junctions and efflux transporters, such as multiple drug resistance 1 (MDR1) (P-glycoprotein). On the other hand, the development of anti-cancer drugs is a challenging task due to their frequent off-target side effects and the complicated mechanisms of cancer pathogenesis and progression. Brain cancer treatment options are surgery, radiation therapy, and chemotherapy. It is difficult to remove all tumor cells, even by surgical removal after a craniotomy. Accordingly, innovative brain cancer drugs are needed. Currently, antibody (Ab) drugs that show high therapeutic effects are often used clinically. Furthermore, antibody-drug conjugates (ADCs), such as trastuzumab deruxtecan, an anti-HER2 (human epidermal receptor 2) ADC with low-molecular cancer drugs through the suitable linker, have been developed. In the case of trastuzumab deruxtecan, it is internalized into cancer cells across the membrane via receptor-mediated endocytosis. Moreover, it is reported that drug delivery into the brain across the BBB was carried out via receptor-mediated transcytosis (RMT), using anti-receptor Abs as a vector against the transferrin receptor (TfR) or insulin receptor (InsR). Thus, anti-TfR ADCs with cancer drugs are promising brain cancer agents due to their precise distribution and low side effects. In this review, I introduce the implementations and potential of brain cancer drug delivery into the brain across the BBB, based on RMT using ADCs. Full article
Show Figures

Figure 1

19 pages, 4954 KiB  
Article
N-3 PUFA Ameliorates the Gut Microbiota, Bile Acid Profiles, and Neuropsychiatric Behaviours in a Rat Model of Geriatric Depression
by Te-Hsuan Tung, Yang-Ching Chen, Ya-Tin Lin and Shih-Yi Huang
Biomedicines 2022, 10(7), 1594; https://doi.org/10.3390/biomedicines10071594 - 04 Jul 2022
Cited by 8 | Viewed by 2494
Abstract
The brain−gut−microbiome (BGM) axis affects host bioinformation. N-3 polyunsaturated fatty acids (PUFAs) alleviate cognitive impairment and depression in older adults. This study investigated altered microbiota−bile acid signalling as a potential mechanism linking fish oil-induced gut changes in microbiota to alleviate psychological symptoms. Sprague [...] Read more.
The brain−gut−microbiome (BGM) axis affects host bioinformation. N-3 polyunsaturated fatty acids (PUFAs) alleviate cognitive impairment and depression in older adults. This study investigated altered microbiota−bile acid signalling as a potential mechanism linking fish oil-induced gut changes in microbiota to alleviate psychological symptoms. Sprague Dawley rats were fed a fish oil diet and administered D-galactose combined with chronic unpredictable mild stress (CUMS) to simulate geriatric depression. The cognitive function, psychological symptoms, microbiota compositions, and faecal bile acid profiles of the rats were assessed thereafter. A correlation analysis was conducted to determine whether the fish oil-induced alteration of the rats’ microbiota and bile acid profiles affected the rats’ behaviour. D-galactose and CUMS resulted in lower concentrations of Firmicutes, significantly altered bile acid profiles, and abnormal neurobehaviours. Fish oil intake alleviated the rats’ emotional symptoms and increased the abundance of Bacteroidetes, Prevotellaceae, Marinifilaceae, and Bacteroidesuniformis. It also elevated the concentrations of primary bile acids and taurine-conjugated bile acids in the rats’ faeces. The rats’ taurine-conjugated bile acid levels were significantly correlated with their behavioural outcomes. In short, fish oil intake may alleviate psychological symptoms by altering the microbial metabolites involved in the BGM axis, especially in the conjugation of bile acids. Full article
(This article belongs to the Special Issue The Lipid Metabolism in Health and Diseases)
Show Figures

Figure 1

20 pages, 1358 KiB  
Article
Novel Phenotyping for Acute Heart Failure—Unsupervised Machine Learning-Based Approach
by Szymon Urban, Mikołaj Błaziak, Maksym Jura, Gracjan Iwanek, Agata Zdanowicz, Mateusz Guzik, Artur Borkowski, Piotr Gajewski, Jan Biegus, Agnieszka Siennicka, Maciej Pondel, Petr Berka, Piotr Ponikowski and Robert Zymliński
Biomedicines 2022, 10(7), 1514; https://doi.org/10.3390/biomedicines10071514 - 27 Jun 2022
Cited by 8 | Viewed by 3360
Abstract
Acute heart failure (AHF) is a life-threatening, heterogeneous disease requiring urgent diagnosis and treatment. The clinical severity and medical procedures differ according to a complex interplay between the deterioration cause, underlying cardiac substrate, and comorbidities. This study aimed to analyze the natural phenotypic [...] Read more.
Acute heart failure (AHF) is a life-threatening, heterogeneous disease requiring urgent diagnosis and treatment. The clinical severity and medical procedures differ according to a complex interplay between the deterioration cause, underlying cardiac substrate, and comorbidities. This study aimed to analyze the natural phenotypic heterogeneity of the AHF population and evaluate the possibilities offered by clustering (unsupervised machine-learning technique) in a medical data assessment. We evaluated data from 381 AHF patients. Sixty-three clinical and biochemical features were assessed at the admission of the patients and were included in the analysis after the preprocessing. The K-medoids algorithm was implemented to create the clusters, and optimization, based on the Davies-Bouldin index, was used. The clustering was performed while blinded to the outcome. The outcome associations were evaluated using the Kaplan-Meier curves and Cox proportional-hazards regressions. The algorithm distinguished six clusters that differed significantly in 58 variables concerning i.e., etiology, clinical status, comorbidities, laboratory parameters and lifestyle factors. The clusters differed in terms of the one-year mortality (p = 0.002). Using the clustering techniques, we extracted six phenotypes from AHF patients with distinct clinical characteristics and outcomes. Our results can be valuable for future trial constructions and customized treatment. Full article
(This article belongs to the Special Issue Advances in Therapy for Heart Failure)
Show Figures

Figure 1

15 pages, 4918 KiB  
Article
Discovering the Effects of Fisetin on NF-κB/NLRP-3/NRF-2 Molecular Pathways in a Mouse Model of Vascular Dementia Induced by Repeated Bilateral Carotid Occlusion
by Marika Cordaro, Ramona D’Amico, Roberta Fusco, Alessio Filippo Peritore, Tiziana Genovese, Livia Interdonato, Gianluca Franco, Alessia Arangia, Enrico Gugliandolo, Rosalia Crupi, Rosalba Siracusa, Rosanna Di Paola, Salvatore Cuzzocrea and Daniela Impellizzeri
Biomedicines 2022, 10(6), 1448; https://doi.org/10.3390/biomedicines10061448 - 19 Jun 2022
Cited by 15 | Viewed by 3230
Abstract
Vascular dementia (VaD) is the second leading cause of dementia. The majority of VaD patients have cognitive abnormalities, which are caused by cerebral hypoperfusion-induced ischemia, endothelial dysfunction, oxidative stress, and neuroinflammation. Natural products are receiving increasing attention for the treatment of neuroinflammatory diseases. [...] Read more.
Vascular dementia (VaD) is the second leading cause of dementia. The majority of VaD patients have cognitive abnormalities, which are caused by cerebral hypoperfusion-induced ischemia, endothelial dysfunction, oxidative stress, and neuroinflammation. Natural products are receiving increasing attention for the treatment of neuroinflammatory diseases. The aim of this study was to investigate the molecular pathways underlying the protective effects of fisetin, a flavonoid present in many fruits and vegetables, in a mouse model of VaD induced by repeated ischemia-reperfusion (IR) of the total bilateral carotid artery. Here, we found that VaD caused brain injury, lipid peroxidation, and neuronal death in the hippocampus, as well as astrocyte and microglial activation, and reduced BDNF neurotrophic factor expression together with behavioral alterations. In addition, VaD induced the activation of inflammasome components (NLRP-3, ASC, and caspase 1), and their downstream products (IL-1β and IL-18) release and promote activation of apoptotic cell death. Fisetin attenuated histological injury, malondialdehyde levels, inflammasome pathway activation, apoptosis, as well as increased BDNF expression, reduced astrocyte, microglial activation, and cognitive deficits. In conclusion, the protective effects of fisetin could be due to the inhibition of the ROS-induced activation of NF-κB/NLRP3 inflammasome together with the activation of antioxidant Nrf2/HO-1, suggesting a possible crosstalk between these molecular pathways. Full article
(This article belongs to the Special Issue Molecular Pathology and Biomarkers of Neurodegenerative Diseases)
Show Figures

Figure 1

18 pages, 3616 KiB  
Article
Isoliquiritigenin Inhibits Gastric Cancer Stemness, Modulates Tumor Microenvironment, and Suppresses Tumor Growth through Glucose-Regulated Protein 78 Downregulation
by Chien-Hsing Lee, Hsin-Yi Tsai, Chun-Lin Chen, Jen-Lung Chen, Chao-Chun Lu, Yi-Ping Fang, Deng-Chyang Wu, Yaw-Bin Huang and Ming-Wei Lin
Biomedicines 2022, 10(6), 1350; https://doi.org/10.3390/biomedicines10061350 - 08 Jun 2022
Cited by 17 | Viewed by 2985
Abstract
Chemotherapy is the treatment of choice for gastric cancer; however, the currently available therapeutic drugs for treatment have limited efficacy. Cancer stemness and the tumor microenvironment may play crucial roles in tumor growth and chemoresistance. Glucose-regulated protein 78 (GRP78) is an endoplasmic reticulum [...] Read more.
Chemotherapy is the treatment of choice for gastric cancer; however, the currently available therapeutic drugs for treatment have limited efficacy. Cancer stemness and the tumor microenvironment may play crucial roles in tumor growth and chemoresistance. Glucose-regulated protein 78 (GRP78) is an endoplasmic reticulum chaperone facilitating protein folding and cell homeostasis during stress and may participate in chemoresistance. Isoliquiritigenin (ISL) is a bioactive flavonoid found in licorice. In this study, we demonstrated the role of GRP78 in gastric cancer stemness and evaluated GRP78-mediated stemness inhibition, tumor microenvironment regulation, and chemosensitivity promotion by ISL. ISL not only suppressed GRP78-mediated gastric cancer stem cell–like characteristics, stemness-related protein expression, and cancer-associated fibroblast activation but also gastric tumor growth in xenograft animal studies. The findings indicated that ISL is a promising candidate for clinical use in combination chemotherapy. Full article
(This article belongs to the Special Issue Tumor Microenvironment Regulation and Anti-cancer Natural Products)
Show Figures

Figure 1

20 pages, 1986 KiB  
Article
Metabolic Profile and Pathological Alterations in the Muscle of Patients with Early-Stage Amyotrophic Lateral Sclerosis
by Débora Lanznaster, Clément Bruno, Jérôme Bourgeais, Patrick Emond, Ilyess Zemmoura, Antoine Lefèvre, Pascal Reynier, Sébastien Eymieux, Emmanuelle Blanchard, Patrick Vourc'h, Christian R. Andres, Salah Eddine Bakkouche, Olivier Herault, Luc Favard, Philippe Corcia and Hélène Blasco
Biomedicines 2022, 10(6), 1307; https://doi.org/10.3390/biomedicines10061307 - 02 Jun 2022
Cited by 7 | Viewed by 4631
Abstract
Diverse biomarkers and pathological alterations have been found in muscle of patients with Amyotrophic lateral sclerosis (ALS), but the relation between such alterations and dysfunction in energetic metabolism remains to be investigated. We established the metabolome of muscle and serum of ALS patients [...] Read more.
Diverse biomarkers and pathological alterations have been found in muscle of patients with Amyotrophic lateral sclerosis (ALS), but the relation between such alterations and dysfunction in energetic metabolism remains to be investigated. We established the metabolome of muscle and serum of ALS patients and correlated these findings with the clinical status and pathological alterations observed in the muscle. We obtained data from 20 controls and 17 ALS patients (disease duration: 9.4 ± 6.8 months). Multivariate metabolomics analysis identified a distinct serum metabolome for ALS compared to controls (p-CV-ANOVA < 0.035) and revealed an excellent discriminant profile for muscle metabolome (p-CV-ANOVA < 0.0012). Citramalate was discriminant for both muscle and serum. High lauroylcarnitine levels in muscle were associated with low Forced Vital Capacity. Transcriptomics analysis of key antioxidant enzymes showed an upregulation of SOD3 (p = 0.0017) and GLRX2(1) (p = 0.0022) in ALS muscle. Analysis of mitochondrial enzymatic activity in muscle revealed higher complex II/CS (p = 0.04) and lower LDH (p = 0.03) activity in ALS than in controls. Our study showed, for the first time, a global dysfunction in the muscle of early-stage ALS patients. Furthermore, we identified novel metabolites to be employed as biomarkers for diagnosis and prognosis of ALS patients. Full article
Show Figures

Figure 1

Back to TopTop