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Abstract: Lipid nanoparticles (LNPs) have emerged as a powerful non-viral carrier for drug delivery.
With the prevalence of respiratory diseases, particularly highlighted by the current COVID-19
pandemic, investigations into applying LNPs to deliver inhaled therapeutics directly to the lungs
are underway. The progress in LNP development as well as the recent pre-clinical studies in three
main classes of inhaled encapsulated drugs: small molecules, nucleic acids and proteins/peptides
will be discussed. The advantages of the pulmonary drug delivery system such as reducing systemic
toxicity and enabling higher local drug concentration in the lungs are evaluated together with the
challenges and design considerations for improved formulations. This review provides a perspective
on the future prospects of LNP-mediated delivery of inhaled therapeutics for respiratory diseases.
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1. Introduction

The lungs form a crucial barrier between the body’s internal physiology and the
outside world. As such, this interface is constantly under great stress, defending against
infectious pathogens and foreign particulate matter. Respiratory diseases, both acute and
chronic, are some of the most familiar and widespread human afflictions. Direct drug
delivery via the airway has demonstrated advantageous efficacy for several diseases of the
respiratory tract and lung. With the advancement of nanotechnology, lipid nanoparticles
(LNPs) have emerged as a powerful non-viral carrier for drug delivery. In this review,
we evaluate the current progress in using LNPs to deliver inhaled therapeutics and the
challenges that remain. The technologies of LNP generation, which has been previously
reviewed extensively, will not be our focus here.

1.1. Lung Diseases

The lung is directly exposed to the outside environment through the airways. It
contains two main functional parts, the conducting zone (trachea, bronchi and bronchioles)
and respiratory zone (alveoli). The top five most common lung diseases causing severe
illness and death worldwide include tuberculosis, respiratory infections, lung cancer,
asthma and chronic obstructive pulmonary disease (COPD), which together have a huge
global burden [1]. Asthma is the most common respiratory affliction in children, affecting
262 million people around the world in 2019 and was the cause of 455,000 deaths [2].
Infections are the fourth leading cause of death whereas COPD, an umbrella term for
multiple conditions leading to reduced airflow, is the third and responsible for three million
deaths annually [3,4]. Less common but also severe chronic lung diseases include cystic
fibrosis (CF), lymphangioleiomyomatosis (LAM) and pulmonary arterial hypertension
(PAH). Over the past two years, the COVID-19 pandemic has brought to the forefront
just how quickly and direly lung function can be impaired following an acute respiratory
infection. The pandemic has also highlighted the bidirectional relationship between acute
and chronic lung conditions [1,4,5]. For example, many recovered COVID-19 patients will
have to contend with long-term respiratory side effects including pneumonia and acute
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respiratory distress syndrome (ARDS) [6,7]. The pathophysiology of ARDS includes lower
airway inflammation, depleted lymphocytes, alveolar oedema, severe breathing difficulties
and lasting pulmonary scarring [6–9]. Concurrently, pre-existing chronic lung diseases
such as COPD increase susceptibility to a COVID-19 infection and the likelihood of severe
disease [7]. Together with the 370 million COVID-19 cases and over 5.6 million deaths
globally as of 30 January 2022, the pandemic has emphasized the importance of effective
therapeutic treatments for lung diseases [10].

Bronchodilators are frequently employed to address pathologically narrowed air-
ways [2]. Long-acting and short-acting β2-adrenergic agonists (LABAs and SABAs) activate
β2-adrenergic receptors to induce relaxation in the airway smooth muscle tissue where
these receptors are highly expressed [11,12]. The other major class of bronchodilators
are long-acting and short-acting muscarinic antagonists (LAMAs and SAMAs) that block
the activation of muscarinic acetylcholine receptors on airway smooth muscle cells, pre-
venting their contraction [12,13]. In recent clinical applications, long-acting LABAs and
LAMAs have been preferred [11,14]. Concurrently, novel corticosteroids such as fluticasone
propionate in Advair® (GlaxoSmithKline, Brentford, Middlesex, United Kingdom) and
ciclesonide in Alvesco® (Covis Pharma, Luxembourg) aid in reducing airway inflamma-
tion [2,14]. Although inhaled corticosteroids (ICS) are a mainstay asthma treatment, there
has been conflicting evidence regarding their usefulness in COPD treatment due to the
increased risk of bacterial and fungal respiratory infections [15–17]. The current evidence
suggests that ICS use in combination with LABAs is beneficial in certain patient subgroups
where pre-existing severe COPD exacerbations warrant more aggressive treatment [16–19].
Accurate patient history and assessment of COPD progression are instrumental to guide
disease management. Patients are also frequently prescribed antibiotics to counter bacteria
proliferation in the airway mucus [19]. Pulmonary delivery by single- or multiple-drug-
loaded inhaler devices is the standard-of-care for asthma and COPD [18]. This increases
local drug delivery while limiting systemic drug concentrations [20].

Despite the successful use of the pulmonary route for drug delivery, it remains a
challenge to overcome the physiological barriers and robust clearance mechanisms in the
respiratory system. The mucus gel layer and clearance by the beating of cilium in the
airways limit lung retention times of naked drugs [14,21]. Larger drug doses or more
frequent dosing regimens are thus necessary to achieve the desired therapeutic effect,
which not only increases side effects but also reduces long-term patient adherence [22].
This has prompted the development of drug encapsulation technologies to increase drug
stability and retention at the airway target sites [23].

1.2. Nanotechnology, Nanomedicine and Lipid Nanoparticles

The advent of nanotechnology enabled the engineering of materials and particles at the
nanometre scale [24,25]. This has been pivotal for advancing drug delivery for the treatment
of human diseases [25,26]. Drug development transformed as therapeutics were no longer
limited by their solubility and stability within biological fluids for successful in vivo absorp-
tion and distribution [27]. Drug nanocarriers could be customised to provide protective and
functional improvements to drug stability and pharmacokinetics [27]. Among the earliest
and most promising drug nanocarriers are lipid nanoparticles (LNPs) [24,28]. LNPs are
small, artificial, spherical assemblies of physiologically compatible lipids, making them the
least toxic class of nanocarriers [29,30]. Consequently, they have been the subject of intense
research in intravenous, intramuscular, oral, and pulmonary drug delivery [23,31–33].

LNPs comprise of therapeutic agents placed inside the lipid coatings typically made
of phospholipids, cholesterol, polyethylene glycol (PEG)-conjugated lipids and ionisable
cationic lipids with varying arrangements [34,35]. Ionisable cationic lipids provide the
positive charge needed to electrostatically interact with negatively charged payloads and
cellular membranes for uptake and payload release [27,34,35]. They possess a lower surface
charge than constitutively charged cationic lipids and are neutral at physiological pH,
which reduces toxicity, immune system activation and clearance [27,33,34,36].
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The earliest class of LNPs developed were liposomes. Liposomes were introduced to
clinical use in the 1980s as the bases for topical ointments, lotions and creams following
their application in cosmetics [27,37]. The lipid components in a liposome are arranged such
that a concentric lipid bilayer structure made of amphipathic phospholipids surrounds
an aqueous interior, enabling both hydrophobic and hydrophilic therapeutic payloads
to be embedded (Figure 1A,B) [28,30,35,36,38]. Dipalmitoylphosphatidylcholine (DPPC),
distearoylphosphatidylcholine (DSPC) and distearoylphosphaethanolamine (DSPE) are
phospholipids commonly used in synthetic liposomes that form the bilayer structures with
cholesterol [28,30,39,40].
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LNPs were further explored with the reduction in their size and increase in the variety
of structures, chemistries and applications [27]. For example, liposomes have since spurred
the development of two other categories of LNPs: solid lipid nanoparticles (SLNs) and
nanostructured lipid carriers (NLCs) [35]. SLNs and NLCs feature a lipid shell surrounding
a hydrophobic core instead of an aqueous one, able to carry hydrophobic therapeutics
(Figure 1E,F) [30,41]. SLNs possess solid hydrophobic cores that can contain additional
components such as glycerides, esters and waxes (Figure 1E) [28,30,41]. NLCs have been
called the second generation SLN [36]. The hydrophobic cores of NLCs are of an imperfect
crystal or amorphous structure, containing a mix of solid and liquid lipids that reduces
the mobility of incorporated drugs, thereby enhancing drug loading and controlled drug
release capacities (Figure 1F) [28,30,36]. LNPs typically have an aerodynamic diameter
between 100 and 300 nm but smaller (<100 nm) or larger particles (up to 1000 nm) can also
be obtained [23,28,36,41]. For example, SLNs can range from 50 nm to 1000 nm, whereas
NLCs typically have diameters between 100 and 500 nm [30]. Liposome diameters can
range from 250 nm all the way up to 2.5 µm [29]. The structural diversity of LNPs has
fuelled the possibilities for their therapeutic applications. This review will thus assess the
potential of using LNPs as a pulmonary drug delivery method.
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2. History and Development of LNP Therapeutics

The first LNP drug approved by the U.S. Food and Drug Administration (FDA) was
the liposome-encapsulated doxorubicin, Doxil® (Johnson & Johnson, New Brunswick, NJ,
USA) in 1995, for the treatment of ovarian cancer, metastatic breast cancer, AIDS-associated
Kaposi’s sarcoma and multiple myeloma [30,36,38,42,43]. The intravenously administered
liposomal formulation consists of hydrogenated soya phosphatidylcholine, cholesterol and
PEG-modified DSPE [28,35,44,45]. Doxil® achieved accumulation within tumours and had
greater anti-tumour efficacy and reduced cardiotoxicity compared with free doxorubicin
due to the enhanced permeability and retention (EPR) effect in tumours [35,36,42]. EPR
is a phenomenon where molecules of certain sizes (typically liposomes, nanoparticles
and macromolecular drugs) tend to accumulate in tumour tissue much more efficiently
than they do in normal tissues due to the higher vascular permeability of tumour blood
vessels [42,46]. Since then, the accumulative research on LNP lipid component diversity,
targeted LNPs with ligand-modified surfaces (Figure 1C), PEG-conjugated immune-evasive
LNPs (Figure 1D) and stimuli-responsive LNPs has enabled the development of effective
LNP drug carrier systems for the treatment of more diseases [28].

Whereas next-generation SLN and NLC formulations constitute the fastest growing
area of LNP therapeutic research owing to their aforementioned improved drug carrier
characteristics, liposomes currently still form the majority of FDA-approved drugs follow-
ing Doxil® [28]. To name a few: liposomal amphotericin B for Aspergillosis infections
(AmBisome®, Gilead Sciences, Foster City, CA, USA); liposomal verteporfin for macular
degeneration (Visudyne®, Novartis AG, Basel, Switzerland); and liposomal bupivacaine as
a non-opioid local nerve block (Exparel®, Pacira BioSciences, Tampa, FL, USA) [33,35,38,42].
Liposomes have also been applied in nucleic acid delivery where they first demonstrated
their promise in siRNA-mediated liver gene silencing in non-human primates [33,47]. Sub-
sequently, Alnylam Pharmaceuticals’ liposomal siRNA drug ONPATTRO® (Cambridge,
MA, United States) for hereditary transthyretin-mediated amyloidosis was approved by the
FDA in 2018 [34,36]. Research was also conducted on non-hepatic targets of LNP-nucleic
acid therapy such as neurons, immune cells, osteoclasts and osteoblasts [27,48–52]. Rungta
et al. reported silencing of the GluN1 subunit of the neuronal N-methyl-D-aspartate
receptor after delivering GluN1 siRNA in LNPs to mice via intracranial injection [48].
GAPDH and CD45 in macrophages and dendritic cells were also silenced by gene-specific
siRNA delivered within LNPs via mouse tail vein injections [49]. With the ability to tar-
get immune cells, LNP-mRNA vaccines against cancer and infectious diseases were also
being developed [52]. Moderna first tested mRNA vaccines against H10N8 and H7N9
influenza strains delivered in LNPs and found them to be well tolerated and immunogenic
in randomized, placebo-controlled, double-blind, Phase 1 clinical trials (NCT03076385 and
NCT03345043) [51]. These successes paved the way for Moderna and Pfizer–BioNTech
gaining FDA-approval for their liposomal COVID-19 mRNA vaccines delivered via intra-
muscular injections [35,53].

As systemically administered LNP drugs progressed, so did inhaled LNPs targeting
lung conditions. Evidence supporting the safety and efficacy of inhaled LNP-encapsulated
drugs emerged in the 1990s [23,54–61]. Interest in them has been growing on account
of the bio-similarity of lipid membranes. Lipid coatings aid nanoparticles for cellular
uptake, penetrating pulmonary barriers and overcoming the clearance mechanisms, thereby
boosting inhaled drug retention times in the airways [21,62]. Additional abilities such as
protecting drugs from degradation and prolonging drug release time from the nanoparticles,
make LNPs a forerunner delivery system for a wide variety of drugs [21,62]. LNPs have
demonstrated the ability to carry small molecule drugs, nucleic acids and protein/peptide
therapeutics into the deep lung tissue with good dispersion, retention time and cytotoxic
activity against target cells [18,41,63–65]. Using LNP to deliver chemotherapy drugs to
resident lung tumours, bronchodilators and mucolytics for the treatment of obstructive
pulmonary diseases as well as antibiotics and gene therapy drugs have been the major
areas of research in recent years [18,41,63–67]. The antibiotic amikacin showed greatly
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enhanced antibiotic exposure in the lungs when delivered in inhalable liposomes over
intravenously administered free amikacin [68]. An inhaled liposomal amikacin formula
has since been FDA-approved in 2018 to treat Mycobacterium avium complex infections
(Arikayce®, Insmed Inc., Bridgewater, NJ, USA) [69,70]. It is a common nontuberculous
mycobacterium infection following chronic lung conditions like COPD, asthma, CF and
bronchitis [68–70]. The combination of nanomedicine and inhalation therapy thus offers
much promise for improving chronic lung disease management and patient outcomes [23].

3. Developments in Inhaled LNP Therapeutics for Respiratory Diseases
3.1. Small Molecule Drugs

The majority of the currently administered drugs to manage chronic lung diseases like
COPD and asthma are aerosolized small molecule drugs such as β2-adrenergic agonists,
antimuscarinic agents and ICS [2,14]. However, robust lung clearance mechanisms limit
the retention time and therapeutic window of naked drugs [14,21,22]. Encapsulation
within LNPs can improve the local concentration and retention times of COPD and asthma
drugs in the lungs [62]. Small molecule drugs tend to be hydrophobic and thus are
poorly water soluble [71,72]. Anticancer drug candidates are frequent members of this
category [64,72–74]. Encapsulating hydrophobic drugs within LNPs, particularly SLNs
and NLCs, can help to improve drug solubility and bioavailability [30,39]. In this regard,
studies in recent years have experimented with employing LNP encapsulation to improve
the pulmonary delivery of anti-inflammatory agents, antibiotics and anti-cancer drugs to
treat a variety of respiratory diseases.

The worldwide prevalence of air pollution and exposure to harmful gases pose a
risk of exacerbating the symptoms of lung diseases [1]. If not managed, smoke-induced
inflammation can lead to further deterioration of lung function [1]. In 2019, a group
studied the effects of inhaled SLNs carrying the antioxidant carvacrol in mouse models of
smoke-induced lung damage [75]. This damage model is characterized by the release of pro-
inflammatory cytokines, damaged alveoli, shortness of breath and the presence of laryngeal
exudate [75]. Mice that received the SLN drugs via nebulization delivery experienced
improved local delivery and enhanced anti-inflammatory function of carvacrol, resulting
in reduced pulmonary emphysema, exudate and oxidative damage in their lungs [75].

Many lung diseases involve chronic inflammation, which presents thick mucus that
promotes bacterial proliferation and infections [19]. The prospect of delivering LNP-
packaged antibiotics locally to the lungs was cemented with the approval of Arikayce®

(Insmed Inc.) to treat nontuberculous mycobacteria infections [68–70]. LNPs were also
employed to deliver antibiotics targeting Mycobacterium tuberculosis residing within alveolar
macrophages [66,76,77]. In a 2019 study, rats inhaled fluorescently-labelled nanoliposomes
carrying the fluoroquinolone antibiotic moxifloxacin using a dry powder inhaler [76].
In vivo deep rat lung tissue deposition of this drug was confirmed, coupled with observed
in vitro anti-tubercular activity and in vitro murine alveolar macrophage drug uptake [76].
Moreover, variations to the nanoliposome design were tested and it was found that charged
and mannosylated nanoliposomes had enhanced uptake and antibacterial activity [76].
The following year, the antibiotic, rifampicin, was loaded into mannosylated SLNs and
administered to mice as an intratracheal powder aerosol [66]. It was similarly found that
mannosylation of the LNPs enhanced antibiotic uptake in alveolar macrophages obtained
from mouse lung tissue sections, supporting the 2019 finding [66,76]. Furthermore, poor
systemic distribution of the SLNs to mouse extra-pulmonary organs was observed, sug-
gesting a possible reduction in systemic toxicity and improved lung retention of inhaled
drugs [66]. Another study demonstrated the encapsulation of the slightly water-soluble
wide-spectrum antibiotic ofloxacin in SLNs [78]. In dialysis membrane experiments where
solvent ofloxacin concentration was determined at intervals, the SLN-formulated ofloxacin
exhibited sustained release of encapsulated ofloxacin for 24 hours [78]. SLN–ofloxacin also
decreased the minimum inhibitory concentration against airway-infecting Pseudomonas
aeruginosa bacteria that often plagues CF patients by 6.1- to 16.1-fold [78]. When adminis-
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tered to mice as a dry powder through nose-only inhalation, ofloxacin reached therapeutic
concentrations in the mouse lung interstitial fluid while staying below the toxic levels [78].

Treating CF requires improving the ion channel activity of the CF transmembrane
conductance regulator (CFTR) protein and reducing lesions [79]. Drugs such as lumacaftor
and ivacaftor accomplish this by correcting a deletion mutation in CFTR and increasing
the frequency of CFTR taking on an open conformation, respectively [79]. Garbuzenko
et al. in 2019 found that delivering these two hydrophobic drugs within a nebulized NLC
formulation restored the activity of CFTR and reduced the volume of fibrotic tissue present
in the treated mouse lungs, thereby treating CF effectively in the murine model [79].

Anticancer drugs have also been packaged within LNPs to enhance local delivery to the
tumour site while limiting systemic exposure to cytotoxic chemotherapy drugs [64,73,74,80].
The in vitro efficacy of lipid-encapsulated anticancer drugs was demonstrated on cultured
A549 human lung cancer cells [81]. Loading gefitinib, an epidermal growth factor receptor
tyrosine kinase inhibitor, within SLNs resulted in better cellular uptake of the drug and sub-
sequently a greater cytotoxic effect [81]. Recent rat and mouse studies further support the
use of LNPs to deliver chemotherapeutics directly to the tumour site in the lungs [73,74,80].
Paclitaxel, triptolide and silibinin encapsulated within either aerosolized liposomes or
SLNs were endotracheally administered to rat and mouse models of non-small cell lung
cancer (NSCLC) [73,74,80]. They exhibited enhanced drug bioavailability in the lungs
and greater anticancer efficacy while reducing systemic distribution to non-target organs
compared with their naked drug counterparts or intravenously administered LNP formu-
lations [73,74,80]. Pulmonary delivery of chemotherapeutics, as opposed to intravenous
administration, was shown to reduce the dependence on tumour vascularization, which
can often be poor in lung tumours, and limit drug concentrations at the target site [74].
Innovation in LNP surface chemistry also contributed to their superior efficacy [73,74].
Targeting moieties, such as antibodies against carbonic anhydrase IX, expressed aberrantly
on lung cancer cells, and CPP33 peptide, with the ability to penetrate human NSCLC
cell membranes, was investigated [73]. Modifying triptolide-loaded liposomes with both
surface ligands further enhanced tissue penetration, drug uptake and cytotoxic activity in
3D spheroids of human A549 lung cancer cells and mice orthotopic tumour models [73].
Nevertheless, penetrating the pathological mucus can be challenging and impose limits on
the benefits of inhaled nanomedicine [74]. Rosière et al. showed that this could potentially
be overcome by conjugating chitosan residues to the liposomal surface [74]. Chitosan is a
biocompatible carbohydrate polymer that gets protonated in acidic formulations, becoming
positively charged and boosting LNP penetration through negatively charged mucins in
the airway mucosal layer [74]. This could translate into prolonged residence in the lungs
by overcoming mucociliary clearance mechanisms [14,21].

The treatment of other chronic lung diseases such as LAM and PAH could also benefit
from the development of inhaled LNP technology [1,82–86]. LAM is a lung disease where
the overly active mammalian target of rapamycin (mTOR) pathway causes the pathological
uncontrolled proliferation of airway smooth-muscle-like cells [83]. This disease is currently
treated with orally delivered free rapamycin in order to inhibit mTOR [83]. A 2020 study
showed that encapsulating rapamycin in SLNs offered more efficient transport of the drug
across Calu-3 bronchial epithelial cells in in vitro air–liquid interface experiments [83]. The
nanoparticles additionally caused reduced proliferation of tuberous sclerosis complex-2
negative LAM-like cells at lower rapamycin doses than the free drug [83]. This could
help increase bioavailability and minimize the side effects induced by higher doses of oral
rapamycin. PAH, characterized by elevated blood pressure in the pulmonary arteries, is
largely treated with vasodilators to reduce the blood pressure [84]. In 2018, three studies
investigated the prospect of encapsulating vasodilators treprostinil and sildenafil within
LNPs for local pulmonary delivery via nebulized inhalation delivery [82,84,86]. These
studies observed that LNP encapsulation enabled sustained drug release in the lungs and
reduced systemic exposure over the course of treatment in rat in vivo experiments [82,84,86].
The increase in right ventricular pulse pressure was also inhibited in dogs and rats, with a 60-
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fold reduction in plasma treprostinil concentration at 50% inhibition of vasoconstriction [82].
Interestingly, loading the prodrug form of treprostinil into the LNPs further aided the
sustained vasodilation effects as additional time was needed for its dissociation from
the LNP and conversion into active treprostinil by target cell enzymes [82,84]. Such a
mechanism can prevent the pulmonary tissue from being exposed to a spike of vasodilators
and thus reduce excessive vasodilation that can often lead to side effects such as alveolar
bleeding [84,86]. Moreover, this has the potential to reduce the required dosing frequency if
translated to human disease treatment, making regimen adherence more convenient [82,84].

Tuberculosis (TB) remains a major public health concern, it is caused by lung infection
of Mycobacterium tuberculosis (Mtb). As Mtb resides inside the alveolar macrophages,
native antibiotic drugs have difficulty crossing the plasma membrane barrier and reaching
the macrophage intracellular region, thus reducing the efficacy of TB treatment. Hence,
anti-TB drugs need to be efficiently delivered to the intracellular regions of macrophages.
Inhaled LNP packaged anti-TB drugs offer an excellent avenue to improve drug availability
within macrophages. Both passive targeting of alveolar macrophages utilizing receptor-
independent uptake pathways and active targeting by incorporating a macrophage-specific
cell surface receptor have been explored. This area has been recently reviewed in detail
and we will not cover it here [87].

The abundance of evidence demonstrates improved drug performance, more favourable
pharmacokinetic and biodistribution profiles as well as enhanced tolerance of side effects.
Thus, LNPs as a pulmonary drug delivery system offer many advantages for the treatment
of chronic and acute lung diseases. With the plethora of small molecule drugs used in clinics
today, many can be adapted for LNP encapsulation, either in their active or prodrug forms.

3.2. Nucleic Acids Drugs

Nucleic acid therapeutics have also been on the rise in recent years with improvements
in delivery formulations [88,89]. The ability to provide the patient’s target cells with
the genetic information to produce a desired protein, or to knockdown the expression
of a harmful protein can bypass the need to formulate a drug around the individual
protein’s chemistry [88]. There are, however, a few hurdles that negatively charged nucleic
acids such as mRNA, siRNA and antisense oligonucleotides must overcome to function
as drugs effectively. These challenges include the need for these drugs to be protected
from nuclease degradation on their journey to target cells, to interact with negatively
charged cell membranes during endocytosis and subsequently escape the endosome to
reach the cytosol or the nucleus [34,52,90]. LNPs provide an ideal encapsulation system
to overcome these challenges [28,33,34,90]. The ionizable cationic lipid components of
LNPs are conducive for membrane interaction and endosomal escape [27,34,35]. The first
siRNA drug, ONPATTRO® (Alnylam Pharmaceuticals Inc.), which was approved by FDA
in 2018 for treating hereditary transthyretin-mediated amyloidosis, contains the ionizable
lipid MC3 in its LNP formulation [34–36,91]. This helped to spur the development of
more lipid candidates for newer LNP–nucleic acid therapeutics [34,52]. The intramuscular
COVID-19 mRNA vaccines produced by Pfizer–BioNTech and Moderna employ liposomes
formulated with the ionizable lipids ALC-0315 and SM-102, respectively [28,40,92–94]. The
progressively acidic environment of the endosome facilitates their protonation and fusion
with the negatively charged endosome membrane, releasing the nucleic acid payload into
the cytoplasm [34,35]. The success of the liposomal mRNA COVID-19 vaccines in the
current pandemic has advocated for the safety and efficacy of LNP delivery technology in
nucleic acid therapeutics [35,95].

A 2020 study demonstrated that LNP-mediated pulmonary delivery of mRNA was
capable of lung specificity while protecting the mRNA payload [90]. mRNA encoding
the firefly luciferase reporter enzyme was encapsulated in LNPs and administered in-
tratracheally to mice using the Aerogen® Solo nebuliser (Galway, Ireland). Luciferase
expression was detected in the mouse lungs six hours after instillation whereas negligible
expression was elicited in the heart, liver and kidneys [90]. In comparison, naked luciferase
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mRNA failed to be delivered effectively to the lung tissue and no protein expression was
achieved [90]. This result supported the use of inhaled LNPs to protect and deliver mRNA
to the lungs to generate desired protein expression.

The use of inhaled LNPs to deliver nucleic acid drugs in treating respiratory diseases
has been reported [96,97]. Mice were exposed to the nebulized vapour of LNP-encapsulated
mRNA encoding for an anti-haemagglutinin neutralizing antibody via nose-only inhala-
tion [97]. Exposed mice were protected against an H1N1 influenza A viral infection com-
pared with the control mice [97]. This showcased LNPs’ ability to facilitate pulmonary
mRNA delivery, uptake of mRNA and downstream protein expression to induce a therapeu-
tic effect in vivo. In 2018, Robinson and co-workers investigated a similar system to treat
chronic inflammatory lung diseases like CF [63]. Their approach focused on restoring the
expression of the faulty CFTR protein in mice after spontaneously inhaling a LNP–mRNA
formulation via nasal instillation [63]. When CFTR-knockout mice inhaled LNPs carrying
CFTR mRNA, they observed CFTR activity and chloride secretion function restored up
to 55% [63]. This could translate to an alleviation of the thick mucus and a reduction in
lung bacterial infections in human CF patients. The mRNA therapeutics firm Translate Bio
developed LNPs to carry CFTR mRNA (MRT5005) into the lungs of human patients [34].
Translate Bio’s MRT5005 is currently in a Phase 1/2 first-in-human trial (NCT03375047) to
ascertain the safety of nebulized doses of MRT5005, making this the first inhaled mRNA
therapeutic to be trialled [34,98]. More recently, an inhalation delivered aerosolized LNP-
encapsulated mRNA encoding for the protein DNAI1 demonstrated effective delivery
of DNAI1 mRNA into the lower airways and the effective enhancement of ciliary beat
frequency in an inducible Dnaic1 knockout mouse model for primary ciliary dyskinesia
(PCD) [99]. PCD is a respiratory disease caused by dysfunction of the cilia with currently
no approved treatments. DNAI1 is one of the more frequently mutated genes involved in
cilia function. This study suggested the potential for an mRNA therapeutic to correct cilia
function in patients with PCD due to DNAI1 mutations.

Treating CF could also be mediated by inhaled LNP–siRNA as demonstrated by
Tagalakis and colleagues [100]. The epithelial sodium channel (ENaC) often becomes over-
expressed and hyperactive following the loss of functional CFTR protein [100]. Receptor-
targeted cationic liposomes carrying siRNA against the essential alpha subunit of ENaC
were administered to mice via oropharyngeal instillation. A single dose caused a 30%
reduction in ENaC expression and this increased to 50% following a triple dose, where
the silencing effect persisted for a week post dose [100]. Most recently, cationic liposomes
were again shown to effectively deliver siRNA to mouse lungs via intratracheal injec-
tion to silence sushi repeat-containing protein X-linked 2 (Srpx2) [101]. Srpx2 is crucial
to the progression of scarring in idiopathic pulmonary fibrosis, and a reduction in its
expression can protect the lungs against further fibrosis [101]. LNPs thus offer a way
to protect naked nucleic acids from degradation, improve their stability, hasten translo-
cation across mucus and enhance local lung concentration of the therapeutic. All this
while limiting systemic exposure and without eliciting immune responses, making this a
promising modality to therapeutically alter protein expression levels for chronic respiratory
diseases [34,90,96,97,100].

3.3. Protein and Peptide Drugs

In addition to small molecules and nucleic acid drugs, various protein/peptide-based
drugs are also being developed. These include antibodies, enzymes, hormone mimics,
growth factors, vaccines, neurotransmitters and ion channel ligands for analgesic, cardio-
vascular, oncology, metabolic and respiratory applications [102]. Protein/peptide drugs
can inhibit protein–protein interactions and bind to their targets with more specificity than
small molecule drugs [102,103]. Though chemically similar, amino acid chains smaller
than 5 kDa or shorter than 40–50 amino acids are typically classified as peptides whereas
larger chains are considered proteins [102,103]. This size difference confers upon them
different properties. For example, smaller peptide drugs are cheaper to produce, exhibit
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greater tissue penetration and are less immunogenic but have a smaller surface for target
interaction than larger protein drugs [102,103]. Protein and peptide therapeutics often
face significant risks of degradation and low intestinal absorption when administered
orally [41,104]. Hence, most are administered through intravenous infusions or intra-
muscular injections but repeated treatments are required and the procedure is invasive
and inconvenient [41]. Some inhaled non-encapsulated protein and peptide drugs in-
clude monoclonal antibodies, granulocyte-macrophage colony-stimulating factor protein
for pulmonary alveolar proteinosis, neutrophil elastase inhibitor Alpha-1-antitrypsin, de-
oxyribonuclease I (Pulmozyme®, Genentech Inc., South San Francisco, CA, USA) and
ENaC inhibitor SPLUNC1-derived peptide for CF [103,105–107]. However, the presence of
proteases in the airways can threaten the structural integrity of inhaled protein therapeu-
tics [14,108].

Pulmonary delivery combined with LNP encapsulation can mitigate these down-
sides [102,103]. LNP encapsulation is the most advanced formulation in clinical devel-
opment for pulmonary delivery and can further improve the performance of inhaled
peptide-based drugs. However, there has been a smaller volume of research pertaining
to inhaled protein and peptide drugs packaged within LNP delivery systems compared
with small molecule drugs and nucleic acid payloads [104,105,109]. In the existing liter-
ature, more investigations have been conducted on inhaled LNP-encapsulated peptide
drugs intended for subsequent systemic circulation following pulmonary delivery [110].
Examples include systemic delivery of peptide hormones insulin and calcitonin, as well
as the derivatized peptide exendin-4 [110–112]. Insulin in particular has been the subject
of inhalation therapy research for some time [41]. When SLNs carrying insulin were ad-
ministered to rats via nose-only inhalation of an aerosol cloud or through intratracheal
instillation, they produced good distribution throughout the lung alveoli and a sustained
hypoglycaemic effect [41,113,114]. Although the two approved inhaled insulin drugs for
systemic delivery, Exubera® (Pfizer Inc., New York, NY, USA) and Afrezza® (Mannkind
Corporation, Westlake Village, CA, USA), did not perform well commercially, there is
potential for other inhaled LNP–proteins/peptides targeting lung diseases [115].

Inhaled liposomal vasoactive intestinal peptide (VIP) is an example of an LNP-
packaged peptide drug targeted towards pulmonary disease treatment. VIP is a 28-amino
acid-long peptide first identified from the small intestine. Its receptors are present in the
airway smooth muscle tissue as well as in basal portions of the lung mucosa [116,117]. VIP
has been observed to possess bronchodilator and vasodilator effects, pointing to its possible
utility in asthma and PAH treatment [116,117]. A study probed the effects of encapsulating
and nebulizing VIP within liposome carriers [116]. Following nebulization from the Micro
Drop Master Jet® (MPV Truma, Putzbrunn, Germany), VIP-loaded liposomes displayed
significantly enhanced artery relaxation compared with free VIP in ex vivo experiments
on excised rat pulmonary arteries [116]. Despite the low number of research examples on
inhaled protein therapeutics in the current literature, we anticipate that the research interest
in inhaled proteins and peptides may soon be accelerated by the showcased efficacy in
LNP encapsulation technology. A summary of inhaled therapeutics for respiratory diseases
that have been investigated in animal models is presented in Figure 2.
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respiratory distress syndrome; COPD: chronic obstructive pulmonary disease; CF: Cystic fibrosis;
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NSCLC: non-small cell lung carcinoma; PAH: pulmonary arterial hypertension; PCD: primary ciliary
dyskinesia; SLN: solid lipid nanoparticles; NLC: nanostructured lipid carriers; VIP: vasoactive
intestinal peptide.

4. Advantages of Inhaled LNP Therapeutics
4.1. Diverse Drug Compounds Delivered

The diversity in possible LNP chemistry and structure allows a versatile carrier system.
For instance, liposomes are composed of an amphiphatic lipid membrane and an aqueous
core, whereas SLNs and NLCs possess a hydrophobic lipid core containing glycerides,
esters and waxes [30,39]. Both hydrophilic and hydrophobic therapeutics can be loaded,
possibly in combination, with the available LNPs [62]. This is especially important for
many newly developed small molecule drugs as their targets are increasingly embed-
ded within hydrophobic environments such as cell membranes. This makes the drugs
more likely to be hydrophobic themselves [21,71,72,79]. Chemotherapeutics are especially
likely to be hydrophobic, which limits systemic bioavailability when administered as free
drugs [21,64,72]. The nanometre sizing of LNPs also confers upon them a high surface area
to volume ratio [21,23]. This additionally promotes the dissolving of LNPs into the aqueous
extracellular environment of the respiratory tract [21,23]. Charged payloads such as nucleic
acids can also be delivered by liposomes, where the ionisable cationic lipid component
promotes membrane interaction and endosomal escape [27,34,35]. LNPs could therefore
greatly contribute to many areas of lung disease treatment as they provide a modality to
improve the delivery of both established and new drugs to the lungs.

4.2. Protection from Degradation and Improved Drug Stability

Administering naked, unprotected drugs makes them susceptible to degradation and
packaging them within drug carrier systems such as LNPs for inhalation therapy would
mitigate these losses [21,34,39,90]. By exploiting the pulmonary route, drug loss to gastroin-
testinal degradation and first-pass metabolism in the liver can be avoided [20,62,118]. How-
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ever, the pulmonary tract is also host to many xenobiotic metabolizing enzymes that can
alter the integrity and pharmacokinetics of inhaled therapeutics [108,119]. These include
cytochrome P450 (CYP) oxidoreductases, hydrolases, glutathione S-transferases, UDP-
glucuronosyltransferases, sulfotransferases, N-acetyltransferases and proteases [14,108].
Members of the CYP superfamily of enzymes are expressed in the bronchiolar epithelium
as well as in the alveolar cells and alveolar macrophages [108]. The nasal epithelium
also possesses metabolic activity due to NADPH-CYP expression [108]. They are key to
the metabolism and fate of inhaled small molecule drugs, having implications for drug
efficacy. For example, CYP3A4 and CYP3A5 are the predominant forms of CYP3A ex-
pressed in human lungs, responsible for metabolising the inhaled β2-adrenergic agonist
salmeterol and ICS fluticasone propionate [108,119–122]. Pulmonary protease and pepti-
dase activity pose a challenge to delivering naked protein/peptide drugs via inhalation,
with protease inhibitors demonstrating a positive effect on drug bioavailability [14,108].
Additionally, administering drugs via the pulmonary route also demands that the drugs
survive the shear forces exerted upon them during the aerosolization process [103,105].
Protecting inhaled therapeutics within nanoparticle shells such as LNPs serves to delay
degradation, increase the bioavailability of intact compounds, and improve pharmacoki-
netic profiles [14,62,108,123,124].

4.3. Enhanced Drug Retention and Reduced Systemic Toxicity

On top of surviving in vivo degradation, therapeutic delivery via the airways using
LNPs as the delivery platform continues to showcase benefits. Larger fractions of the
administered dose can reach the lungs and expose the diseased tissue to higher concen-
trations of the needed therapeutic [20,125]. It was demonstrated that an inhaled dose
of 100–200 µg of salbutamol was equivalent to a 20-fold higher oral dose of 2–4 mg [20].
Moreover, LNP encapsulation increased pulmonary drug retention times [21,62,124]. The
processes of airway cellular uptake via endocytosis or dissociation of the therapeutic com-
pound from LNP carriers further contribute to the delayed and controlled release of the
active therapeutic [21,62,67,82,84,86,124]. Drug activity can therefore be sustained for a
longer duration between doses. A similar therapeutic effect can be achieved with a lower
administered dose, sparing the patient from unnecessarily high doses and the subsequent
systemic toxicity [20,82,84,90,100].

4.4. Reduced Immunogenicity

The use of bio-similar phospholipids, cationic or ionizable lipids and cholesterol
in LNP formulations reduces the likelihood of inducing an immune response [27,62,96].
They are physiologically compatible as the main phospholipid components used in LNPs
(e.g., DPPC and DSPC) are naturally occurring in human lung surfactant fluid [126,127].
LNPs shield the payload from the immune system recognizing it as foreign and reduce
phagocytic clearance by alveolar macrophages [62,103]. Patients can gain a more rapid
clinical response and lower dosing frequency with less severe side effects. This would help
maintain patient compliance and achieve better outcomes [20,21,124,128].

In the case of the PEGylated lipid component of LNP formulations, there have been
reports demonstrating it can trigger an immune response [28]. Anti-PEG IgG and IgM
antibodies have been observed in the blood samples of both individuals previously treated
with PEGylated therapeutics and individuals with no prior exposure to such therapeu-
tics [129–131]. This has been associated with the occurrence of accelerated blood clearance
and hypersensitivity reactions of circulating PEGylated drug carriers such as liposomes
and SLNs [130,132]. Potential antigens circulating in the blood are also more likely to be
captured by secondary lymphoid organs and be presented to the adaptive immune system
for further memory formation against them, rendering repeat treatments of PEGylated
LNPs less effective [133]. In contrast, the respiratory tract is a mucosal surface that har-
bours reduced IgG and IgM antibodies, as well as being protected largely by the innate
immune system instead [134–139]. Inhaling LNP drugs offers a strategy to reduce their
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propensity to trigger an immune reaction compared with administering unprotected drugs
or administering them systemically.

5. Challenges of Inhaled LNP Therapeutics and Design Considerations
5.1. Overcoming Physiological Barriers in the Lungs
5.1.1. Airway Structure

Although the large surface area in the airways offers a promising target for drug
delivery and absorption, the structure of the respiratory tract is heterogeneous and can
impact drug delivery [140]. The airways are divided into two main zones: the upper
conducting zone and the lower respiratory zone [39,140]. The upper conducting airways
encompass the nose, oral cavity, pharynx, larynx, trachea and its first few bifurcations
into bronchi and bronchioles [14,39]. The lower respiratory zone comprises the terminal
bronchioles leading to the alveolar ducts as well as the alveoli, sites of gaseous exchange
residing deep in the lung tissue [14,39]. There are many opportunities for inhaled droplets
to be impacted in the airways before reaching the deeper lung tissue [14]. Resident cells
lining the different zones differ and contribute to differences in drug uptake. The ciliated,
mucus-secreting epithelial cells of the upper conducting zones pose a greater barrier to
drug uptake than the thinner epithelium cell layer lining the bronchioles and alveoli in the
lower respiratory zone [39]. Hence, the impact of airway structure on particle deposition is
an important factor in inhaled LNP design for the effective delivery of therapeutics to the
target site.

5.1.2. Airway Clearance Mechanisms

Inhaled particles also must overcome clearance mechanisms utilized by the lungs to
protect its mucosal layer from pollutants, dirt and pathogens. These can be categorized
into physical and immunological clearance mechanisms or barriers [14,39,140].

The physical barrier is located on the airway surface layer in the bronchial region [14,21].
It is composed of a luminal mucus gel layer and a periciliary liquid layer where ciliated cells
beat hair-like cilia structures [14,21]. The coordinated cilia movement forms the mucociliary
escalator that moves mucus-trapped particles from the conducting airways upwards to the
nasopharynx and oropharynx [14,140,141]. Subsequently, potential pathogens or beneficial
therapeutics may be expelled via coughing or ingestion into the gastrointestinal tract for
potential destruction [140,141]. The properties of pathological mucus in diseased lungs
also often pose an increased challenge. Pathological mucus is more dehydrated, more
viscous, and thus contains a higher concentration of glycosylated mucin proteins [21,140].
Glycosylated mucin proteins contain numerous sialic acid and sulphur residues, giving
the network a strong negative charge [141]. The resulting mesh of proteins clusters tighter
together and forms narrower pores in pathological mucus, making it harder for LNP
therapeutics to penetrate [21].

Immunological clearance mechanisms refer to the lung-resident cells of the innate
immune system that survey the tissue for foreign particles [14,62,134,135]. The main innate
immune cells of the lung are the alveolar macrophages residing in the airways of the
alveoli [62,135]. Nanoparticle therapeutics would encounter the alveolar macrophages
after bypassing the physical barriers of the upper conducting airways [62]. Alveolar
macrophages are professional phagocytes that internalize foreign particulates and digest
them within lysozyme-filled vesicles, transporting them to the lower entrance of the
mucociliary escalator or to the lymph system for clearance [14,39,62]. In most cases of
inhaled LNP delivery to treat lung diseases, the aim would be to avoid alveolar macrophage
uptake as much as possible. However, the macrophages themselves can be the target cells
in certain applications, exemplified by the treatment of Mycobacterium tuberculosis bacteria
residing within the macrophages [62,66,76]. Therefore, the nature of the disease is also
important in determining the desired interaction with pulmonary physiological barriers
during drug development.
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5.2. Design Considerations for LNP Aerosols for Airway Delivery
5.2.1. Formulating the Appropriate Particle Size

Different respiratory diseases impact different positions of the airway. For example,
asthma mainly affects the upper airways whereas COPD mainly affects the distal alveoli.
To successfully deliver a drug to the desired location, particle size is a most important
parameter that can determine the region of the airways in which LNP deposition occurs
and the success rate of bypassing the physiological barriers and clearance mechanisms.

Inhaled matter deposition in the airway is influenced by multiple mechanisms with
the aerodynamic diameter (AD) of an inhaled droplet or particle largely determining
the deposition pattern [18,62,140,142]. Larger particles with an AD larger than 5 µm are
likely to undergo inertial impaction in the upper and large airways [18,62,140]. This
often causes particles to settle in the oropharyngeal region, being at risk of entering the
gastrointestinal tract instead of the airways [18,103]. If the particle AD is between 1 and
5 µm, gravitation sedimentation occurs leading to deposition in the lower airways, in
the terminating bronchioles and alveoli for deep lung tissue penetration [18,62,103,140].
Finally, particles in the nanoscale with AD below 1 µm can access the alveoli deep in
the lungs and are subjected to random diffusion via Brownian motion [39,140] (Figure 3).
Such diffusion confers both advantages and drawbacks. On one hand, these ultrafine
particles can diffuse across not only the lower alveolar region but also the conducting
tracheobronchial region [39]. This promotes widespread distribution of LNP-encapsulated
payloads throughout the lungs and would be particularly beneficial for spatially distant
target cells such as lung tumour growths dispersed throughout the lung tissue [74]. On the
other hand, particles this small are liable to be exhaled out of the airway prior to deposition,
especially if the patient does not sufficiently practice breath-holding upon dosing from the
inhaler device [18,62,103,140,143].

Biomedicines 2022, 10, x FOR PEER REVIEW 14 of 26 
 

Figure 3. Schematic summary of AD-dependent deposition and distribution mechanisms of inhaled 
LNP aggregates in the airways. The mechanisms are inertial impaction, gravitation sedimentation 
and Brownian diffusion. Subsequent cellular uptake of individual LNPs and drug payloads by 
dissociation, endocytosis and membrane fusion facilitate therapeutic action (PEGylated and 
targeted liposome depicted). AD: aerodynamic diameter. Created with BioRender.com. 

5.2.2. Increasing Mucus Adhesion and Penetration 
It is also paramount to develop strategies to overcome the luminal mucus gel layer 

and the mucociliary escalator clearance mechanisms [14,21,140,141]. Airway mucus is 
largely comprised of mucin proteins containing a high concentration of conjugated 
carbohydrate chains [141]. The presence of numerous sialic acid and sulphur residues 
within these chains makes the mucin proteins strongly negatively charged, repelling 
similarly charged particles [141]. Increasing adherence and penetration through the 
airway mucus would reduce clearance and potentially increase lung retention times. In 
addition to the cationic lipid component of LNPs, multiple surface chemistry 
modifications have been investigated [27,34,35]. 

Chitosan is one such polymer that confers mucoadhesive properties [62,74]. It is a 
polysaccharide composed of D-glucosamine and N-acetylglucosamine residues linked via 
β-1, 4-glycosidic bonds with multiple amine groups attached [74]. This chemical structure 
makes it biocompatible, non-toxic and biodegradable [62,74]. The multiple amine groups 
contribute to the positive charge of chitosan in the approximately neutral pH of airway 
mucus [74,141]. Electrostatic interactions with the negatively charged mucins give 
chitosan-coated particles the ability to adhere to the airway mucosal surfaces [74,144]. 
Chitosan-coated particles are also less likely to be carried in the mucociliary escalator 
[74,144]. Additionally, chitosan can negotiate itself between the tight junctions of airway 

Figure 3. Schematic summary of AD-dependent deposition and distribution mechanisms of inhaled
LNP aggregates in the airways. The mechanisms are inertial impaction, gravitation sedimentation
and Brownian diffusion. Subsequent cellular uptake of individual LNPs and drug payloads by
dissociation, endocytosis and membrane fusion facilitate therapeutic action (PEGylated and targeted
liposome depicted). AD: aerodynamic diameter. Created with BioRender.com.



Biomedicines 2022, 10, 2179 14 of 25

A distribution of micro-scale LNP aggregates with an AD between 0.5 and 5 µm has
been described to distribute throughout the bronchial–alveolar region via gravitation sedi-
mentation and Brownian motion [18,39,62,140]. Subsequently, the moisture of the airway
surface layer would encourage the dissolving of the carrier matrix, releasing smaller indi-
vidual LNPs [18,143]. An AD range of 100 to 300 nm is typical for individual LNPs [23,41].
The details of each respiratory disease and therapeutic compound in each application
need to be explored to determine the optimal size of the LNPs. For example, treating
tuberculosis requires antibiotic delivery into the bacteria-infected alveolar macrophages
residing deep in the alveoli. Slightly larger particles (200 to 300 nm) would encourage
alveolar macrophage uptake and induce the desired anti-bacterial therapeutic effect [66,76].
In contrast, diseases with non-macrophage target may require individual LNPs with ADs
smaller than 200 nm to avoid macrophage uptake and immunological clearance away from
their desired target [62]. Careful study and design of individual LNP particles as well as
aggregates is important to a successful formulation.

5.2.2. Increasing Mucus Adhesion and Penetration

It is also paramount to develop strategies to overcome the luminal mucus gel layer
and the mucociliary escalator clearance mechanisms [14,21,140,141]. Airway mucus is
largely comprised of mucin proteins containing a high concentration of conjugated carbo-
hydrate chains [141]. The presence of numerous sialic acid and sulphur residues within
these chains makes the mucin proteins strongly negatively charged, repelling similarly
charged particles [141]. Increasing adherence and penetration through the airway mucus
would reduce clearance and potentially increase lung retention times. In addition to the
cationic lipid component of LNPs, multiple surface chemistry modifications have been
investigated [27,34,35].

Chitosan is one such polymer that confers mucoadhesive properties [62,74]. It is a
polysaccharide composed of D-glucosamine and N-acetylglucosamine residues linked via
β-1, 4-glycosidic bonds with multiple amine groups attached [74]. This chemical structure
makes it biocompatible, non-toxic and biodegradable [62,74]. The multiple amine groups
contribute to the positive charge of chitosan in the approximately neutral pH of airway
mucus [74,141]. Electrostatic interactions with the negatively charged mucins give chitosan-
coated particles the ability to adhere to the airway mucosal surfaces [74,144]. Chitosan-
coated particles are also less likely to be carried in the mucociliary escalator [74,144].
Additionally, chitosan can negotiate itself between the tight junctions of airway surface
epithelial cells, promoting drug uptake and bioavailability in the lungs [144,145]. There are
also a variety of chitosan derivatives that can be utilized, depending on the specific chem-
istry of each LNP formulation and its demands, such as trimethyl chitosan, carboxymethyl
chitosan and PEGylated chitosan [74]. Such variety can improve the versatility and breadth
of the therapeutics that can be delivered by inhaled LNPs.

PEGylation of LNPs is another surface modification that enhances airway mucus pen-
etration (Figure 1D). The polymer of ethylene glycol is hydrophilic yet neutrally charged
and was utilized to mimic the capsid coatings of mucus-penetrating viruses without the
risk of pathogen-mediated immunogenicity [39,141,146]. De Leo and colleagues performed
in vitro experiments demonstrating the greater penetration ability of PEGylated liposomes
in pathological sputum obtained from COPD patients [147]. This quality aids nanoparticles
in evading mucociliary as well as immunological clearance by alveolar macrophages in
the lungs [28,39,141,146]. Furthermore, PEGylation was shown to increase the solubility
of hydrophobic therapeutics and stabilize coated liposomes [39,97,146]. In 2016, Luo et al.
demonstrated that conjugating PEG to the anticancer drug paclitaxel led to a 3.33-fold
increase in the percentage of retained drugs in mouse lungs 48 h after intratracheal ad-
ministration over the free drug [146]. Therefore, when PEG is conjugated to the surface of
nanomedicines, the drug’s pharmacodynamics is often improved [39,141,146,147]. Despite
this, a measured application of PEGylation conjugation is required. Some teams observed
that if the PEG coat density is too high, cellular uptake of the coated therapeutics can be
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compromised due to reduced contact with target cell membranes [39,141]. More investiga-
tions are needed to gauge the ideal coating parameters for each LNP formulation. However,
the approval of PEG as an excipient for inhaled treatments suggests that PEGylation is a
beneficial addition to the design of LNPs [39].

Additional coating molecules that penetrate airway mucus include poloxamers, pep-
tides, poly(2-oxazoline) and N-(2-hydroxypropyl) methacrylamide [141,148,149]. Polox-
amers are amphiphatic polymers of polyoxypropylene and polyoxyethylene that were
shown to increase the diffusion rate of coated SLNs across artificial sputum media in vitro
compared with uncoated SLNs [149]. Another study confirmed that poloxamer showed no
cytotoxicity in cultured human alveolar epithelial cells, making it suitable for pulmonary
applications [150]. A team in 2020 demonstrated that short bacteriophage heptapeptides
screened from a phage display library also had the ability to improve particle transport
across ex vivo CF mucus [148]. Taken together, altering the surface of LNPs can help
them overcome clearance mechanisms, reside longer within the airways, and release their
payloads over a more sustained duration, therefore increasing local drug concentration
and the therapeutic effect [39,62,65,67,74,141,146]. These advancements help expand the
design options in formulating more optimal inhaled LNPs for treating respiratory diseases
in the future.

5.3. Selection of Inhaler Devices and Improving Their Compatibility

In addition to the efficacy of the drug formulations themselves, potential LNP drugs
must also be compatible with the currently available inhaler devices in order to meaning-
fully translate to clinical use [151]. There is a range of devices currently available such as
dry powder inhalers (DPIs) for dry powder formulations, and pressurized
metered-dose inhalers (pMDIs), soft mist inhalers (SMIs) and nebulizers for liquid
formulations [14,18,39,103,151]. They all possess individual advantages and disadvan-
tages. pMDIs and DPIs have been widely used to deliver SABAs, LABAs and LAMAs for
the treatment of obstructive lung diseases such as COPD and asthma [18,151].

Being compact and portable, pMDIs are also able to deliver a wide range of drugs in
solution using propellants, even to intubated patients [18]. The drawbacks of pMDIs include
the need for the patient to possess adequate hand–breath coordination, where inconsistency
in technique can affect dosing and therapeutic outcomes [18,151]. Furthermore, the liquid
conditions in pMDIs and nebulizers increase the tendency of premature protein drug
degradation while the shear forces exerted during nebulization can disrupt certain liposome
bilayer structures [62,103,105,152]. However, Zhang et al. described the retention of
firefly luciferase reporter expression before and after nebulization of LNPs carrying the
corresponding mRNA [90]. Additionally, the increasingly popular next-generation LNPs
(SLNs and NLCs) may possess improved stability and tolerance against shear forces [86].
These allow liquid formulations and their accompanying inhaler devices to remain relevant
in the future development of inhaled LNP drugs.

As the decision on which inhaler device is suitable for which patient, disease or medica-
tion is a multifactorial one, various studies have been conducted with the aim of increasing
flexibility available to patients and healthcare providers. A study investigated a novel co-
suspension delivery platform to enable the delivery of multiple LNP drugs simultaneously
via pMDIs [18,151,153]. Micronized drug crystals and spray-dried porous phospholipid
particles were suspended in hydrofluoroalkane propellant [153]. Both in vitro and in vivo
experiments displayed this technology’s ability to maintain drug stability while provid-
ing consistent drug delivery and lung deposition in healthy human volunteers [18,151].
Moreover, this held true under changes in flow rate and usage patterns [18,151]. Patients
suffering from multiple respiratory diseases would benefit from reliable dosing of multiple
medications from a single pMDI device [18,153]. Since the pMDI is the most popular
inhaler device, further improvements on suspension technology would therefore have a
great impact on respiratory disease treatment and management.
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In contrast, patient hand–breath coordination is not required to dispense the intended
dose from a DPI. Propellants are also not required in the DPI-loaded drugs. Hence, there is
no need to consider the drug’s compatibility with the propellants in the formulation [151].
Liposomal drug stability has also improved with the use of dry powder formulations in
DPIs, contributing to their increasing popularity [14,39,103,154]. However, patients have to
generate a sufficiently forceful intake of breath to effectively receive the prescribed drug
dose [14]. This can prove challenging for certain patient populations including young chil-
dren, the elderly and those with severe progression of obstructive lung diseases [14,19,151].
DPIs may thus be more suitable for administering maintenance therapy to patients with
a manageable disease stage and adequate lung function. Patients with more limited in-
halation ability may need to opt for alternative devices or first be treated with other rescue
therapeutics [14].

Dry powder LNP drugs have also been advancing in recent years to develop more
therapeutics compatible with DPIs [110,155]. Liposomal drugs in dry powder form not
only reproduce drug activity but show improved drug stability during storage over their
nebulized liquid and solid equivalents [62,103,105,154,156,157]. Secretory leukocyte pro-
tease inhibitor indicated for inflammatory lung diseases was encapsulated in liposomes,
lyophilized and then micronized to produce an inhalable dry powder containing micropar-
ticles containing LNPs suitable for pulmonary delivery [154]. Doing so also reduced drug
inactivation by cathepsin L in vitro over an aqueous formula [154]. The antioxidant n-
acetylcysteine (NAC), when embedded within liposomes in dry powder form, displayed
greater in vitro antioxidant activity in rat lung homogenates over non-dry powder liposo-
mal NAC and free NAC formulations [157]. The antibiotic ciprofloxacin used in non-CF
bronchiectasis and COPD-derived infections caused by Pseudomonas aeruginosa was sim-
ilarly formulated into dry powder liposomes [156]. It demonstrated its suitability for
inhalation delivery and sustained drug release in in vitro aerosol and release assays [156].
With liposomes forming the majority of currently researched LNP variants, progress in dry
powder liposomal formulations is expected to fuel drug development.

Diversification in excipient compounds can also greatly aid in the future development
of stable inhaled LNP therapeutics. The scarcity of FDA-approved excipients for inhalation
therapeutics is currently limiting drug development [103]. Liquid formulations often
employ buffers and surfactants as excipients (for nebulizers, pMDIs and SMIs) whereas dry
powder formulations frequently utilize sugars, polyols and amino acids (for DPIs) [103].
Increased toxicological testing of excipients would be beneficial. Additionally, toxicology
tests aimed at the pulmonary administration route need to cover particle morphology,
size distribution, surface chemistry and agglomeration tendency, which goes beyond
classical toxicology tests focused on drug dose and composition [26]. Steiner et al. recently
incorporated three orally-approved excipients: Kolliphor RH40Poloxamer 188 and Tween
80, into drug-loaded SLNs in vitro [150]. These particles demonstrated low toxicity and
suitability for pulmonary applications in cultured human alveolar epithelial cells and
macrophages [150]. Recent innovations in lactose monohydrate, the popular sugar-based
carrier material in dry powder medications, were made as well. Flower-shaped lactose was
developed to be loaded alongside curcumin-SLN powder [158]. It demonstrated a higher
level of safety among in vitro cultured human lung epithelial cells than original lactose
monohydrate, potentially making it the next efficacious excipient carrier for pulmonary
delivery [158].

Production methods have also advanced with a recent study on a promising thin-film
freeze-drying process for preparing inhaled dry powder SLN siRNAs [155]. Although
spray-drying, lyophilization and new methods of freeze-drying are presently exciting op-
portunities for drug development, they can still be challenging to execute and scale up [156].
With the wide range of drug classes compatible with dry powder LNP formulations, further
improvements to the preparation technology would greatly benefit the treatment of lung
diseases. A summary of the advantages and challenges of LNPs for inhaled drug delivery
is shown in Table 1.
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Table 1. Advantages and challenges of LNPs for inhaled therapeutics.

Advantages Challenges

1 Diverse drugs delivered Airway clearance mechanisms
2 Improved drug stability Airway structural barrier
3 Enhanced local drug retention Premature particle deposition
4 Reduced systemic toxicity Limited formulation excipients
5 Reduced immunogenicity Inhaler selection and compatibility

6. Inhalation LNP Drugs Approved and in Clinical Trials

Table 2 summarizes the inhalation LNP drugs currently approved by the FDA or in clin-
ical trials. Curosurf® (Chiesi Farmaceutici S.p.A., Parma, Italy) is a liposome-encapsulated
surfactant protein B and C (SP-B and SP-C) used for the treatment of respiratory distress syn-
drome in premature infants that was approved by the FDA in 1999. However, it is delivered
by endotracheopulmonary instillation, not really an inhaled drug in strict terms [159–161].
In 2013, TOBI® Podhaler® (Novartis, Basel, Switzerland), a dry powder inhalation form
of the antibiotic, tobramycin, developed by Novartis using its PulmoSphere® technology
(Novartis, Basel, Switzerland), was approved by FDA for persons with CF and chronic
Pseudomonas aeruginosa lung infections [162,163]. In TOBI® Podhaler®, the drug tobramycin
is delivered as spherical porous particles around 1–5 µm in size with a mainly phospholipid
surface via a DPI. Hence, strictly speaking, TOBI® Podhaler is not a true LNP drug due to
its relatively large particle size. Nevertheless, the development of TOBI® Podhaler marked
a significant milestone in the advancement of inhalation drug delivery.

Table 2. Inhaled or pulmonary delivered LNP drugs approved and in clinical trials.

Drug Commercial
Name LNP Type Disease Status

SP-B and SP-C Curosurf® Liposome

Respiratory distress
syndrome in
premature
infants

Approved 1999
[159,160].

Tobramycin TOBI®

Podhaler® LNP

Chronic pulmonary
Pseudomonas
aeruginosa
(Pa) infection
in CF patients.

Approved 2013
[162,163].

Amikacin Arikayce® Liposome
Mycobacterium
avium complex lung
disease

Approved 2018
[164].

Ciprofloxacin
Apulmiq
(Linhaliq/
Pulmaquin)

Liposome

Chronic lung
infections with
pseudomonas
aeruginosa with
non-cystic fibrosis
bronchiectasis

Two phase III
clinical trials
completed in
2016.
Discontinued
[165,166].

Ciprofloxacin
Ciprofloxacin
DPI/
BAYQ3939

Lipid
micro-
particle

Non-cystic fibrosis
bronchiectasis

Two phase III
clinical trials
completed in
2016. Not yet
approved
[167–169].

CFTR mRNA MRT5005 LNP CF
Phase I/II
clinical trial
[34,98].

Note: Arikayce is the only true inhalation LNP drug approved by FDA so far. CF: cystic fibrosis; CFTR: cystic
fibrosis transmembrane receptor; LNP: lipid nanoparticle; SP-B and SP-C: surfactant-B and -C.
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In 2018, the FDA approved the first true inhalation LNP drug ARIKAYCE (amikacin
liposome inhalation suspension). ARIKAYCE is an inhaled LNP encapsulated antibiotic for
the treatment of non-tuberculous mycobacterial lung infections caused by Mycobacterium
avium complex (MAC) in adults. ARIKAYCE is delivered via a nebulizer as part of a com-
bination antibacterial drug regimen for adult patients who have limited or no alternative
treatment options. As it is approved under the accelerated approval program with limited
clinical safety and effectiveness data, ARIKAYCE is currently approved only for patients
who do not achieve negative sputum cultures after a minimum of 6 consecutive months of
a multidrug background regimen therapy [164]. In 2021, a frontline clinical trial program
for ARIKAYCE was initiated to fulfil the FDA’s post-marketing requirement in order to
gain full approval in the U.S. and to support a supplemental new drug application (sNDA)
for its use as a frontline treatment for patients with MAC lung disease [70].

For drugs that have gone through or are currently in clinical trials, two concurrent
phase III international clinical trials have been conducted with inhaled Pulmaquin (later
named Apulmiq or Linhaliq in Europe). Apulmiq is a dual-release formulation composed
of a mixture of liposome encapsulated and unencapsulated antibiotic ciprofloxacin (ARD-
3150). Two phase III clinical trials were conducted for chronic lung infections with Pseu-
domonas aeruginosa in patients with non-CF bronchiectasis [165,166] (ORBIT-3 NCT01515007
and ORBIT-4 NCT02104245, Aradigm Corporation). In both studies, Apulmiq was safe and
well tolerated. Although the ORBIT-4 trial led to a significantly longer median time to first
pulmonary exacerbation compared with a placebo, ORBIT-3 or the pooled analysis of both
trials did not give statistically significant results [165]. However, when combining data
from both studies and only examining pulmonary exacerbations that were moderate or
severe (i.e., those that required interventions with antibiotics or hospitalization), the median
time to first pulmonary exacerbation in the Apulmiq group was significantly reduced. A
subsequent post hoc analysis of the two identical trials revealed that inhaled ARD-3150
resulted in significant improvements in respiratory symptoms during the on-treatment
periods that were lost during off-treatment periods [166]. Nevertheless, Apulmiq was
rejected by the FDA, which requested the company to conduct a further better-controlled
phase III clinical trial. In December 2020, Savara Pharmaceuticals discontinued the work
on Apulmiq.

Dry aerosol inhalation delivery formulation of ciprofloxacin using the PulmoSphere®

technology (Ciprofloxacin DPI/BAYQ3939, Bayer/Novartis) has also gone through two
phase III clinical trials for non-CF bronchiectasis [167–169]. Although the 14-day treatment
cycle of the RESPIRE 1 trial showed significant improvements in prolonging the time to first
exacerbation and reduced frequency of exacerbations compared with placebo, the 28-day
treatment cycle in the same trial did not generate statistically significant improvements in
the same primary endpoints. Meanwhile, a similarly designed RESPIRE 2 trial involving
patients in different countries did not show statistically significant results. This dry powder
aerosol delivery significantly improved the efficiency of drug deposition and ease of use
compared with an earlier version using nebulizer delivered liquid formulation of the
same drug. However, like TOBI® Podhaler®, Ciprofloxacin DPI/BAYQ3939 also uses lipid
microparticles, not true LNPs.

LNP-encapsulated CFTR mRNA (MRT5005) has also been developed and is currently
in Phase I/II clinical trials by Translate Bio [34,98].

Altogether, inhaled LNP drug development is still in its early stages. Nevertheless,
the many preclinical studies described in Sections 2 and 3, with very promising results,
clearly indicate the strong interest and great potential of this type of drug.

7. Conclusions

LNPs have come a long way from the first liposomes serving as fatty bases for topical
creams and ointments. They have since been applied in systemic, then inhalation drug
delivery, complemented by the development of newer particle types such as SLNs and
NLCs. The pre-clinical studies in recent years have demonstrated the ability of LNPs to
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deliver various drugs, from chemotherapeutics, vasodilators, antibiotics, mRNA, siRNA
and mucolytics, locally to the lungs for the treatment of pulmonary diseases such as lung
cancer, obstructive lung diseases and microbial infections. Furthermore, LNPs achieved this
while improving drug stability, reducing systemic toxicity and enabling higher local drug
concentration in the lungs. This has been supported by the approval of inhaled LNP thera-
peutics such as Arikayce® for treating Mycobacterium avium complex infections common
in COPD, asthma, CF and bronchitis patients. Nevertheless, more thorough investigations
are required to optimize LNP composition, particle size, formulation production methods,
inhaler device compatibility and the safety profiles of more excipients. These efforts would
help overcome the challenges of pulmonary delivery such as physiological barriers and
the complex drug–patient interactions of different diseases. In conclusion, inhaled LNP
therapeutics have great potential to play important roles in improving disease management
and easing the global burden of various pulmonary diseases.
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