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Abstract: The immediate early gene Arc is a master regulator of synaptic function and a critical
determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin
and closely associates with histone markers for active enhancers and transcription in cultured rat
hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently
been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by
pharmacological network activation was prevented using a short hairpin RNA, the expression profile
was altered for over 1900 genes, which included genes associated with synaptic function, neuronal
plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent
genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced
in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc
can control expression in the absence of activated signalling pathways. Taken together, these data
establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that
it plays a significant role in the pathophysiology of AD.
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1. Introduction

The neuronal immediate early gene, Arc (activity-regulated cytoskeletal associated)
protein) [1,2] plays a critical role in memory consolidation [3–6]. Arc expression is rapidly
and transiently induced by novel behavioural and sensory experiences [7–11], while its
mRNA is enriched in dendrites and targeted to recently activated synapses, where it is
locally translated [12,13]. Arc protein resides in excitatory synapses, where it controls
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor endocytosis [14],
allowing it to act as a master regulator of synaptic function and plasticity [15,16] that
implements homeostatic synaptic scaling at the neuronal network level [17–21]. While the
synaptic role of Arc has been well documented, the observed failure to convert early to
late long-term potentiation (LTP) in Arc knockout mice cannot be explained by an AMPA
receptor endocytosis deficit [4]. This suggests that Arc may have additional functions.

Interestingly, Arc protein can also be localised in the nucleus, where it binds to a
beta-spectrin IV isoform and associates with promyelocytic leukemia (PML) bodies [22–25],
sites of epigenetic regulation of gene transcription [26,27]. Nuclear Arc has been reported
to regulate transcription of the GluA1 AMPA receptor [28].

Recently, another nuclear function for Arc has been demonstrated: Arc interacts
with the histone acetyl transferase Tip60 [29], a subunit of a chromatin-modifying com-
plex [30–32]. Arc expression level correlates with the acetylation status of one of Tip60′s
substrates: lysine 12 of histone 4 (H4K12) [29], a memory-associated histone mark that
declines with age [33]. Interestingly, H4K12 acetylation is up-regulated in monocytes of
Alzheimer’s disease (AD) patients [34].

These newly discovered nuclear functions may point to an epigenetic role for Arc in
memory consolidation. We have therefore investigated Arc’s interaction with chromatin

Biomedicines 2022, 10, 1946. https://doi.org/10.3390/biomedicines10081946 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10081946
https://doi.org/10.3390/biomedicines10081946
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://doi.org/10.3390/biomedicines10081946
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10081946?type=check_update&version=1


Biomedicines 2022, 10, 1946 2 of 51

and its association with histone marks in cultured hippocampal and cortical neurons. Flu-
orescent microscopy experiments demonstrated a highly dynamic interaction between
chromatin and Arc, as well as a tight association between Arc and histone marks for active
enhancers and active transcription. RNA-Sequencing (RNA-Seq) experiments in which
activity-dependent Arc expression was prevented using a short hairpin RNA (shRNA)
showed that Arc regulates the transcription of over nineteen hundred genes controlling
memory, cognition, synaptic function, neuronal plasticity, intrinsic excitability, and intra-
cellular signalling. Interestingly, Arc also controls the expression of susceptibility genes
for Alzheimer’s disease, as well as many genes implicated in the pathophysiology of this
disorder. A gene ontology (GO) analysis identified downstream signalling pathways and
diseases associated with the observed changes in mRNA levels, while an ingenuity pathway
analysis (IPA) revealed upstream regulators predicted by the change in gene expression
profile caused by Arc knockdown. Finally, we induced expression of the endogenous
Arc gene in human embryonic kidney 293T (HEK-293T) cells, using CRISPR-Cas9, which
resulted in the increased transcription of many neuronal genes. Taken together, our data
demonstrate that Arc transcriptionally controls neuronal activity-dependent expression of
many genes underlying higher brain functions and may be involved in the development of
Alzheimer’s disease and other neurodegenerative disorders.

2. Materials and Methods
2.1. Animals and Chemicals

All experiments involving the use of animals were performed according to the guide-
lines of the Institutional Animal Care and Use Committee (IACUC). Time-mated E18
Sprague Dawley rats were sacrificed immediately after delivery to the vivarium. All chemi-
cals were purchased from Sigma-Aldrich, St Louis, MO, USA, unless otherwise stated.

2.2. Culturing Hippocampal and Cortical Neurons

Hippocampi and cortices were dissected from E18 embryos of Sprague Dawley rats.
Hippocampi or cortices underwent dissociation based on the protocol from the Papain
Dissociation System (Worthington Biochemical Corporation, Lakewood, CA, USA). Gentle
mechanical trituration was performed to ensure complete dissociation of tissues. Dissoci-
ated cells were plated on poly-D-lysine-coated dishes at a plating density of 1.5 × 105/cm2

in neurobasal medium (Gibco, Grand Island, New York, NY, USA) supplemented with
10% (v/v) foetal-bovine serum (FBS), 1% (v/v), penicillin-streptomycin (P/S, Gibco, Grand
Island, New York, NY, USA) and 2% (v/v) B27 supplement (Gibco, Grand Island, New
York, NY, USA) for 2 h. FBS-containing medium was then removed and replaced with
FBS-free medium, and cells were subsequently cultured with FBS-free to prevent astrocytic
over-growth. Medium was changed on days in vitro (DIV) 5. Subsequently, medium was
changed every three to four days. Experiments were carried out on DIV 18–22.

2.3. Pharmacological LTP Using 4BF

Hippocampal or cortical neuronal cultures were treated with a combination of 100 µM
4-aminopyridine (4AP), 50 µM bicuculline [35,36], and 50 µM forskolin for the times
stated to induce pharmacological LTP and increase Arc expression [23,37,38]. This drug
combination will henceforth be referred to as 4BF.

2.4. Immunofluorescence

For immunofluorescence labelling, cells were fixed with 100% ice-cold methanol at
−20 ◦C for 10 min. Cells were washed three times with 1× phosphate-buffered saline (PBS,
in mM: 137 NaCl, 2.7 KCl, and 12 phosphate buffer) containing 0.1% (v/v) Triton X-100
(PBS-Tx). Depending on the antibodies used, some cells were fixed again with 4% (w/v)
paraformaldehyde (PFA) in 1× PBS containing 4% (w/v) sucrose. Cells were washed three
times in 1× PBS-Tx and blocked in 2% (w/v) bovine serum albumin (BSA) in 1× PBS for 1 h
at room temperature (rtp). Depending on the species the secondary antibodies were raised
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in, 10% (v/v) serum of the corresponding species was added to the blocking buffer. Cells
were probed with primary antibodies as indicated for the experiments: (i) anti-Arc (1:300,
Santa Cruz, Dallas, TX, USA, sc-17839), (ii) anti-Arc (1:300, Synaptic Systems, Goettingen,
Lower Saxony Land, Germany, 156 003), (iii) anti-MAP2 (1:300, Millipore, Temecula, CA,
USA, AB5622), (iv) anti-H3K27Ac (1:300, Wako, Osaka, Japan, 306-34849) and (v) anti-
H3K9Ac-S10P (1:300, Abcam, Cambridge, United Kingdom, ab12181) in antibody dilution
buffer (1× PBS containing 1% (w/v) bovine serum albumin (BSA), 5% (v/v) serum and
0.05% (v/v) Triton X-100) for 1 h at rtp. Cells were washed three times in 1× PBS-Tx. Cells
were then probed with 1:1000 anti-mouse secondary antibodies coupled with Alexa-Fluor
647, Alexa -Fluor 568, or Alexa-Fluor 488 (Molecular Probes, Eugene, OR, USA) for 1 h at rtp.
Cells were washed three times, followed by staining of DNA with 50 µM 4′,6-diamidino-2-
phenylindole (DAPI) for 20 min at rtp. Cells were mounted in FluorSave (Calbiochem, San
Diego, CA, USA). For immunofluorescence staining for Stochastic Optical Reconstruction
Microscopy (STORM) imaging, cells were fixed with 3% paraformaldehyde and quenched
with 0.1% sodium borohydride (NaBH4) [24]. Blocking, primary, and secondary antibody
staining were carried out as above. A post-fixation was carried out after secondary antibody
binding [24].

2.5. Inhibition of Arc Expression by an shRNA

Four Arc shRNA plasmids (SureSilencing, Qiagen, Valencia, CA, USA) were trans-
fected into neuronal cultures using Lipofectamine 2000 (Qiagen, Carlsbard, CA, USA).
Pharmacological LTP was induced in neuronal cell cultures using a 4 h treatment with 4BF.
Cells were fixed and stained for Arc protein. Immunofluorescence images were obtained
using widefield microscopy. The effectiveness of inhibition of Arc expression was based
on the co-occurrence of expression of the plasmids and the absence of Arc immunoflu-
orescence. The most effective shRNA plasmid was chosen, and adeno-associated virus
AAV9 constructs harbouring an Arc shRNA and a scrambled version of this shRNA were
synthesised using the annealed oligo cloning method. The oligos for the Arc shRNA were:
(i) 5′-GAT CCG GAG GAG ATC ATT CAG T-3′, (ii) 5′-ATG TCT TCC TGT CAA CAT ACT
GAA TGA TCT CCT CCT TTT TG-3′, (iii) 5′-AAT TCA AAA AGG AGG AGA TCA TTC
AGT-3′ and (iv) 5′-ATG TTG ACA GGA AGA CAT ACT GAA TGA TCT CCT CCG-3′. The
oligos for Arc scrambled shRNA were (i) 5′-GAT CCG GTA ATT TCG GAG GAT C-3′, (ii)
5′-AAG TCT TCC TGT CAA CTT GAT CCT CCG AAA TTA CCT TTT TG-3′, (iii) 5′-AAT
TCA AAA AGG TAA TTT CGG AGG ATC-3′ and (iv) 5′-AAG TTG ACA GGA AGA CTT
GAT CCT CCG AAA TTA CCG-3′. The ends of the annealed oligos harbour overhangs of
the restriction sites for BamH1 and EcoR1. Oligos for the Arc shRNA were annealed in
buffer A (mM) 100 NaCl and 50 HEPES, pH 7.4, while oligos for Arc-scrambled shRNA
were annealed in buffer B (mM) 10 Tris, pH 7.5–8.0, 50 NaCl and 1 EDTA at an equimolar
concentration by heating to a temperature of 95 ◦C for 5 min, then cooling it down to
room temperature (rtp). The most optimal buffer was chosen for this annealing step. The
annealed oligos were ligated using T4 ligase (New England Biolabs, Ipswich, MA, USA)
into the BamH1/EcoR1-cut vector pENN.AAV.U6.shRLuc.CMV.eGFP.SV40, generously pro-
vided by the University of Pennsylvania, Vector Core. Ligated products were transformed
into Stbl3 competent cells (Thermo Fisher Scientific, Waltham, MA, USA). Successful con-
structs were identified by restriction enzyme digestion and verified by sequencing. AAV9
viruses harbouring the transgenes (concentrations at 1 × 1013–1 × 1014 GC/mL range)
were synthesised by the University of Pennsylvania, Vector Core. Arc expression was
prevented by treating neuronal cultures with 3 × 106 multiplicity of infection (MOI) AAV9
Arc shRNA virus on DIV14. The induction of Arc expression by pharmacological LTP (see
below) was performed between DIV19 and- DIV22.

2.6. Transfection of Neuronal Cultures

The Arc-eYFP construct was generated as described in [22]. Neuronal cultures (DIV16)
were transfected with Arc-eYFP and H2B-mCherry (Addgene, Cambridge, MA, USA, 20972)
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with Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
protocol with some adjustment. Arc-eYFP:H2B-mCherry DNA was added to Lipofectamine
at a ratio of 1:1. The Lipofectamine:DNA complex was incubated at rtp for 20 min before
being added to the cells. The complex was added dropwise such that it was evenly
distributed on the cell culture. Culture medium was added after 20 min and experiments
were performed on DIV19.

2.7. Widefield Microscopy

Fluorescence images were obtained using widefield microscopy as detailed in [24].
Images obtained were analysed using NIS Elements AR version 4.1 (Nikon) to perform
background subtraction. Out-of-focus fluorescence was removed using 3D deconvolution
(AutoQuant, Media Cybernetics, Rockville, MD, USA). The Region-Of-Interest (ROI) analy-
sis tool was used to mark nuclei based on DAPI intensity. The corresponding mean Arc
intensity of each nucleus was also measured using the automated measurement module.
The averages of the mean Arc intensity for all neurons from non-4BF stimulated controls
were obtained for each set of experiments. This would be used as a cut-off threshold
between Arc-positive and Arc-negative neurons for each set of experiments since Arc
expression was only observed upon stimulation [39,40]. This “cut-off” obtained from the
non-4BF of each experiment can better account for the varying intensities, especially the
less-induced and lower-intensity Arc in 4BF-treated cells. Nuclei images were cropped
individually and analysed using a custom MATLAB (Math-Works, Natick, MA, USA)
program. Size and intensity thresholds were applied to identify and quantitate puncta
in each nucleus. Batch processing using the same size and intensity threshold was per-
formed. The mean size of the puncta and the number of puncta were recorded. ROI ID for
each nucleus was used to correlate the mean Arc intensity with the mean area or number
of puncta. Statistical analysis was performed using GraphPad Prism Version 6.01. (San
Diego, CA, USA) Statistical data shown are mean ± S.E.M. (standard error of the mean)
across experiments.

2.8. Spinning Disc Confocal Microscopy

Fluorescence images and time-lapse movies were obtained using a motorised Ti-E
inverted microscope (Nikon) with a 60× oil Plan-Apo objective (1.49 NA) and a 100X
Apo-TIRF objective (1.49 NA). Spinning disk confocal microscopy was achieved using
the CSU- W1 Nipkow spinning disk confocal unit (Yokogawa Electric, Tokyo, Japan).
An sCMOS camera (Zyla, Andor, Darmstadt, Hesse, Germany) was used to capture the
confocal images. Laser lines used were 488 nm (100 mW) for GFP, 515 nm (100 mW)
for eYFP, and 561 nm (150 mW) for mCherry (Cube lasers, Coherent, Santa Clara, CA,
USA). Fast excitation/emission switching was obtained using a dichroic beam splitter
(Di01-T405/488/568/647-13 × 15 × 0.5, Semrock, Rochester, New York, NY, USA) and
filter wheels controlled by a MAC6000DC (Ludl, Hawthorne, New York, NY, USA). The
Perfect Focus System (Nikon, Tokyo, Japan) was applied to ensure minimal focus drift
during image acquisition. Z stacks were obtained using step sizes recommended for the
objectives used, which were processed using 3D blind deconvolution (AutoQuant, Albany,
New York, NY, USA) to remove out-of-focus fluorescence.

2.9. Stochastic Optical Reconstruction Microscopy (STORM)

Dual-colour STORM image sequences were obtained using a Zeiss ELYRA PS.1 plat-
form (Oberkochen, Baden-Wurttemberg, Germany). Endogenous Arc and the dual histone
marker H3K9Ac-S10P were labelled with primary antibodies and visualised using Alexa
488 and Alexa 647 secondary antibodies. Time-lapse movies of 10,000 frames were obtained
of neuronal nuclei expressing Arc capturing the blinking of individual Alexa 488 and
647 molecules brought into the dark state by intense laser illumination. Fitting of a 2D
Gaussian function to each blinking dot allowed their XY localisation to be determined
with high precision (typically 30 nm). Super resolution images were generated from the
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localisations by superimposing a 2D Gaussian (green for 488 nm, red for 647 nm) for each
localised position. Molecule localisation and image rendering were performed by the Zen
software blue and black edition, Zeiss, Oberkochen, Baden-Wurttemberg, Germany.

2.10. Cell lysate Preparation and Western Blotting

Following 4BF stimulation, neuronal cultures were washed gently with 1× PBS. Cells
were gently scraped off and harvested in an Eppendorf tube. Cells were spun down at
10,000× g for 5 min at 4 ◦C to obtain the cell pellet. Total protein was isolated using an RNA-
protein extraction kit (Macherey-Nagel, Düren, North Rhine–Westphalia, Germany), as
specified by the manufacturer. A BCA kit (Pierce, Rockford, IL, USA) was used to measure
the concentration of proteins. A total of 30 µg of each protein sample was denatured
and reduced by boiling at 95 ◦C for 5 min in 10% (v/v) 2-mercaptoethanol-containing
Laemmli sample buffer (Bio-Rad, Hercules, CA, USA). Samples were resolved by SDS-
PAGE with a pre-cast Tris-glycine gel (Bio-Rad, Hercules, CA, USA) and transferred onto
PVDF membranes using the Trans-Blot Turbo Transfer System (Bio-Rad, Hercules, CA,
USA) as indicated by the manufacturer. Membranes were blocked for 1 h at rtp with
5% (w/v) non-fat milk block (Bio-Rad, Hercules, CA, USA) in 1× Tris buffered saline
(TBS) (in mM) (140 NaCl, 3 KCl, 25 Tris base) (First Base, Singapore) containing 0.1% (v/v)
Tween-20 (TBST), followed by primary antibody incubation for 1 h (anti-Arc, 1:1000, Santa
Cruz, Dallas, TX, USA, sc-17839) in 1× TBST at rtp. Membranes were washed three times,
each for 5 min in 1× TBST at rtp. Secondary antibody binding was performed using the
corresponding HRP-conjugated secondary (1:10,000, Invitrogen, Carlsbad, CA, USA) for 1 h
in 1× TBST at rtp. Protein bands were detected with chemiluminescence substrate (Pierce,
Rockford, IL, USA) visualised with a Gel Doc XRS imaging system (Bio-RAD, Hercules,
CA, USA) or developed on scientific imaging film (Kodak, Rochester, New York, NY, USA).

2.11. RNA Sample Preparation, Library Construction, RNA-Seq

4BF-treated neuronal cells were washed, scraped, and spun down as above. RNA sam-
ples were obtained from the cell pellet using the RNA-protein extraction kit as specified by
the manufacturer (Macherey-Nagel, Düren, North Rhine–Westphalia). Library construction
and RNA sequencing were performed by the Duke-NUS Genome Biology Facility. An
amount of 2.2 µg of RNA was used for library construction. Prior to library construction,
the quality of the RNA was analysed with an Agilent 2100 Bioanalyzer (Palo Alto, CA,
USA). Following poly-A enrichment, recovered RNA was processed using the Illumina
TruSeq stranded mRNA kit (San Diego, CA, USA) to generate the adaptor-ligated libraries.
A total of 9 samples were analysed. These samples came from 3 different sets of experiments
(n = 3). Each set contained samples treated with (i) 8 h 4BF, (ii) Arc shRNA + 8 h 4BF and
(iii) Arc scrambled shRNA + 8 h 4BF. Prior to RNA- sequencing, the samples were also on
analysed with 0 h 4BF on the RT-PCR to ensure Arc induction. Six samples were sequenced
per lane on the HiSeq 3000 using 150 pair-end reads. For the HEK293T cells, RNA was
obtained similarly. Three samples were analysed, with two Arc-induced samples and one
control sample. The samples were processed as described above and sequenced on 1 lane
on the HiSeq 3000.

2.12. Computational Analyses of RNA-Seq Data

FASTQ files obtained from the RNA-sequencing were mapped to the rat genome using
Partek Flow (version 7.0.18.1210) (Partek Inc., St. Louis, MO, USA). Adapter sequences
were trimmed. Contaminant reads contributed from rDNA, tRNA and mtDNA were
filtered out using Bowtie2 (version 2.2.5) (within Partek Flow, Partek Inc., St. Louis, MO,
USA). Filtered, trimmed reads of high quality (Phred score > 30) were then mapped onto
the Rattus norvegicus genome (rn6) for the rat samples or the Homo sapiens genome (hg38)
for the HEK293T samples with Star (version 2.5.3a) (within Partek Flow, Partek Inc., St.
Louis, MO, USA) [41]. Post alignment QA/QC was performed to determine if alignment
had good average coverage and if reads were uniquely aligned. The unique paired reads
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were used for gene expression quantification. Reads were assigned to genes using the
expectation/maximisation (E/M) algorithm in Partek Flow [42] based on the annotation
model rn6 (Ensembl transcripts release 93) for the rat samples and the annotation model
hg38 (Ensembl transcripts release 94) for the HEK293 samples. To ensure only informative
genes were included in the downstream analysis, noise (maximum feature counts ≤ 30)
was filtered out. Read counts between samples were normalised with the Upper Quantile
method [43]. As genes with very low expression might be inadequately represented and
incorrectly identified as differentially expressed, a constant of 1 was added to normalised
counts for rectification. Statistical analysis was performed using the gene-specific analysis
(GSA) module in Partek Flow to identify differential gene expression. p-value and fold
changes of differentially expressed genes were calculated based on the lognormal with
shrinkage distribution. Genes with an average coverage of less than 3 were also filtered
out prior to statistical analysis. Differential gene expression with a cut- off value of false
discovery rate (FDR) step-up < 0.05 [44] and an absolute fold change ≥ 2 was considered
for further gene ontology analysis in Partek Flow, which is based on the GO Consortium
(version 2018_08_01) [45,46]. Setting up cut-off at FDR step-up < 0.05 ensures statistically
significant differential gene expressions were tapped with an absolute fold change of 2 to
focus on those with a higher magnitude of change [47]. Coherent biological data could then
be more meaningfully interpreted through gene ontology analysis [45,46]. GO analysis
was also performed on the transcriptional regulators/factors that were observed to be
altered upon Arc knockdown using DAVID (version 6.8) [48,49]. The EASE score obtained
from the DAVID analysis is a modified Fisher Exact p-value to indicate gene enrichment in
the annotation terms. Functional analysis on the statistically significant differential gene
expression (FDR step-up < 0.05; absolute fold change ≥ 2) was performed by Ingenuity
Pathway Analysis (IPA) (version 01.13, Qiagen, Redwood City, CA, USA). Pathways and
their associated downstream effects, diseases, regulator networks and upstream regulators
were identified by IPA. Predictions on the possible activation and inhibition of pathways,
downstream effects and upstream regulators were inferred from the degree of consistency
in the expression of the target genes compared to the fold changes in the differentially
expressed gene list. This activation or inhibition status was expressed as a z-score, with
z ≥ 2 indicating activation and z ≤ 2 indicating inhibition. Inferences made were based on
at least one publication or from canonical information stored in the Ingenuity Knowledge
Base. Fisher’s exact test was used to calculate the p-value for all analyses in IPA.

2.13. Plasmid Construction for Arc Expression in HEK293T Cells

The following plasmids were used: pSBbi-Hyg (Addgene #60524) and pSBbi-Pur
(Addgene #60523), which were a gift from Eric Kowarz. pCMV(CAT)T7-SB100 (Addgene
#34879) was a gift from Zsuzsanna Izsvak. sgRNA(MS2) cloning backbone plasmid, (Ad-
dgene #61424), MS2-P65-HSF1_GFP, (Addgene #61423), and dCAS9-VP64_GFP (Addgene
#61422) were gifts from Feng Zhang. The psBbi-Hyg-dCAS9-VP64 and the pSBbi-MS2-P65-
HSF1-Pur plasmids were constructed by isolating the dCAS9-VP64 and MS2-P65-HSF1
sequences via PCR from the MS2-P65-HSF1_GFP and dCAS9-VP64_GFP plasmids and
annealed into the SfiI-linearised pSBbi-Hyg and pSBbi-Pur plasmids. psBbi-Hyg-dCAS9-
VP64 and pSBbi-MS2-P65-HSF1-Pur were then co-transfected with pCMV(CAT)T7-SB100
into HEK293T using JetPrime (Polyplus-Transfection, Illkirch-Graffenstaden, France) ac-
cording to manufacturer’s instructions. HEK293T cells with successful transposition of
both genes were selected with a combination of 0.75 µg/mL puromycin (Gibco, Grand
Island, New York, NY, USA) and 200 µg/Ml hygromycin B (Nacalai Tesque, Kyoto, Japan)
in DMEM + 10% FBS (Gibco, Grand Island, New York, NY, USA) over several passages
for a month.

2.14. Transfection for Endogenous Arc Overexpression and Purification of mRNA

sgRNA(MS2) back- bone plasmids containing guide RNAs complementary to human
Arc promoters were transfected into the mutated HEK293T cells. A separate control well
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was transfected with sgRNA(MS2) backbone containing LacZ promoter sgRNAs. After 48 h,
mRNA was purified using the NucleoSpin RNA kit (Macherey-Nagel, Düren, North Rhine–
Westphalia, Germany) and submitted for RNA-sequencing to the Duke-NUS Genomics
Core Facility.

The table below lists the guide RNAs used for inducing expression of endogenous Arc
in HEK293T cells:

Promoter SgRNA Sequence

Human Arc (1)
GGGCGCTGGCGGG-
GAGCCTG

Human Arc (2)
CCTCCCGTCCCTT-
GCCGCCC

LacZ (1)
TTCCGGCTCGTATGTT-
GTGT

LacZ (2) GCTTTACACTTTATGCTTCC

3. Results

Arc is a neuronal activity-dependent immediate early gene [1,2], whose expression
is induced by exposure to a novel environment or a new sensory experience [7,8,11].
Knockdown of Arc expression abrogates long-term memory without affecting short-term
memory, indicating a critical role for Arc in memory consolidation [3–6]. Arc protein
localises to dendritic spines, where it regulates AMPA receptor endocytosis [14], and to the
nucleus [22,28,50,51], where its function is less understood. In this study, we have used
cultured hippocampal and cortical neurons to study the role of Arc in the nucleus. Arc
expression can be induced by increasing network activity in neuronal cultures, using a
combination of 4-aminopyridine (4AP), bicuculline, and forskolin (4BF), a form of pharma-
cological LTP [23,24,37,38]. Figure 1 shows that this form of network activation strongly
induces the expression of Arc in a subset of neurons. In this in vitro paradigm, Arc localises
predominantly to the nucleus four hours after network-activity-dependent induction of
its expression.
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Figure 1. Induction of Arc expression in hippocampal neurons by pharmacological network acti-
vation. Hippocampal neurons (DIV19-21) were treated with 4BF, which pharmacologically stimulates
network activity and induces LTP of excitatory synapses. After 4 h of enhanced network activity,
neurons were fixed and stained for Arc (red) and the neuronal marker Map2 (green). Under vehicle
(DMSO) treatment, very little Arc staining could be detected (left panel, vehicle), whereas the increase
in network activity induced strong nuclear Arc expression in approximately half of the neurons:
49 ± 8% (n = 3) (right panel, 4BF) White scale bar is 20 µm.

Memory consolidation requires de novo gene expression [52,53], which is induced
by activation of signalling cascades that originate in the synaptic connections potentiated
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during learning [54–58]. This synapse-to-nucleus signalling results in post-translational
modifications of chromatin, including acetylation, methylation, phosphorylation, and
sumoylation of histones and methylation of DNA [59,60]. Chromatin modification alters
its nanostructure, which controls the accessibility of gene promoters to the transcription
machinery [61,62]. These synaptic activity-induced epigenetic processes can alter gene
expression and have been shown to be critical for learning and memory [63–70]. We
therefore characterised the structure and dynamics of chromatin in cultured hippocampal
neurons, evaluated how pharmacological LTP (4BF treatment) affected chromatin structure,
and compared chromatin properties of neurons expressing Arc protein with control neurons
that do not.

3.1. Chromatin Reorganisation in Arc-Positive Neurons

The induction of Arc protein expression by pharmacological network activation
(Figure 1) is relatively slow and reaches a maximum level between 4 and 8 h. Arc is
only expressed in a subset of neurons. As shown in Figure 2, chromatin organisation is dif-
ferent between neurons that are positive and negative for Arc. Chromatin was visualised by
labelling DNA with the fluorescent dye 4′,6-diamidino-2-phenylindole (DAPI). Whereas
chromatin in Arc-negative neurons is relatively homogenous, the nuclei of Arc-positive
neurons contain many bright puncta, representing chromocenters with densely packed
chromatin, in which genes are likely silenced (Figure 2A,B). The puncta are interspersed
with domains of highly open chromatin, which is more supportive of efficient gene tran-
scription. The number of puncta increased from 11.1 ± 0.8 puncta in Arc- negative nuclei to
15.9 ± 0.8 puncta in Arc-positive nuclei (Figure 2C). However, the mean area of the puncta
was not significantly different between Arc-positive and Arc-negative neurons (Figure 2D).
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3.2. Arc Associates with Dynamic Chromatin 

Figure 2. Chromatin reorganisation in Arc-positive neurons. Arc expression was induced in a
subset of cultured hippocampal neurons by a 4 h treatment with 4BF. Cells were fixed and stained for
Arc (C7 antibody, Santa Cruz). DNA was labelled using DAPI. Z-stacks of DAPI images were obtained
for neuronal nuclei that were positive and negative for Arc expression. Out-of-focus fluorescence
was removed using 3D deconvolution (AutoQuant). (A) Max-projection images of a representative
nucleus from an Arc-negative (top) and Arc- positive neuron (bottom). The white bar indicates a
scale bar of 1 µm. DNA, labelled by DAPI, is shown in white while Arc expression is shown in red.
Yellow arrowheads indicate DNA puncta. Heat maps of the relative DAPI intensity of the nucleus are
shown in the rightmost panels. (B) DAPI heat maps for nuclei of 8 Arc-positive and 8 Arc-negative
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neurons. Relative DAPI intensity is shown by the colour scale on the left, which was the same for
both panels. Whereas chromatin of Arc-negative neurons (right panel) was relatively homogenous
(turquoise, green and yellow), Arc-positive neurons (left panel) were characterised by several areas
of high DAPI intensity (red), indicating condensed heterochromatin (chromocenters)-separating
domains with decondensed euchromatin (blue). (C,D) Puncta were quantified based on their size and
intensity. Arc expression, measured as mean Arc intensity, was used to correlate with the properties of
the puncta, generating the boxplots. Boxplots of number of puncta (C) and area of puncta (D) for Arc-
negative and Arc-positive neurons. Each • represents the (C) number or (D) mean area of puncta in a
nucleus. A total of 167 nuclei were analysed from three sets of independent experiments. (C) Nuclei
of Arc-positive neurons have a significantly higher number of puncta with 11.1 ± 0.8 puncta in
Arc-negative nuclei and 15.9 ± 0.8 puncta in Arc-positive nuclei. **** indicates p-value < 0.0001,
unpaired t test. (D) No significant change in area of puncta was observed: Arc-positive had an area
of 488 ± 25 pixels, while the area of Arc -negative neurons was 431 ± 30 pixels (p = 0.15, unpaired
t test). N.S. indicates not significant.

3.2. Arc Associates with Dynamic Chromatin

The interaction between Arc and chromatin was studied in more detail using time-
lapse fluorescence microscopy of hippocampal neurons expressing Arc and histone 2B
(H2B) tagged with YFP and mCherry, respectively (Figure 3). Arc was induced in 18-day
in vitro (DIV18) hippocampal neurons by a 4 h treatment with 4BF. The time-lapse movies
of Arc-eYFP and H2B-mCherry revealed a highly dynamic chromatin that constantly
reorganises on a time scale of seconds (Movie S1). Arc is concentrated in small puncta
to which the chromatin can be seen to reach out with finger-like structures, which may
represent the dynamic chromatin loops described by others [71–73].
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Figure 3. Arc associates with dynamic chromatin. Time-lapse movies of Arc-eYFP and H2B-
mCherry expressed in hippocampal neurons (18 DIV) were obtained using a spinning disc confocal
microscope (100×, 1.49 NA Apo TIRF objective). Z-stacks (5 images) were acquired for both YFP
and mCherry channels. Three-dimensional blind deconvolution (AutoQuant) was used to remove
out-of-focus fluorescence. The movie is 5 min long, 3.2 s between frames, which was the time required
to acquire Z-stacks from both channels. The image on the left shows a single frame of the movie in
the centre of the Z-stack of a neuronal nucleus (scale bar = 1 µm). Arc (green) is seen to form puncta,
while H2B (red) labels the lattice-like chromatin structure. The panels on the right show six frames
of a zoomed-in section illustrating small chromatin structures transiently interact with the two Arc
puncta (scale bar = 500 nm). White arrowheads indicate points of contact between Arc and chromatin.
The highly dynamic interaction of chromatin with Arc puncta is most clearly seen in the Movie S1.
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3.3. Arc Associates with a Marker of Active Enhancers

Because Arc was shown to associate with the Tip60 substrate H4K12Ac [29], we have
examined interactions of Arc with other histone modifications, by comparing Arc-positive
and Arc-negative neurons following pharmacological network activation. The ‘histone
code’ [74] is complex and still incompletely understood. We have therefore focused on
histone modifications whose function is best studied. In our survey, we have found several
histone modifications for which there was a difference in nuclear organisation between
Arc positive and negative neurons, including H3K9Ac, H3K4me3, and H3K14Ac (data
not shown). Figure 4 illustrates the close association between Arc and H3K27Ac, which
marks active enhancers [75,76]. Arc and H3K27Ac form two separate lattice-like structures
that are closely inter-connected and, in some locations, appear to overlap (yellow areas
in Figure 4).
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Figure 4. Arc associates with H3K27Ac. Hippocampal neurons were treated with 4BF for 4 h, fixed
with methanol and stained for Arc and H3K27Ac, which marks sites containing active enhancers.
Z-stacks of images were acquired of neuronal nuclei using a spinning disc confocal microscope (60×,
1.49 NA objective). Resolution was increased using 3D blind deconvolution (AutoQuant). Scale
bar is 1 µm. The enlarged section shows the close interaction between Arc and H3K27Ac. Note the
elaborate interfaces between Arc (green) and H3K27Ac (red) Scale bar is 500 nm.

3.4. Arc Associates with a Marker for Active Transcription

Another histone mark that showed a strong interaction with Arc was H3K9Ac-S10P,
which requires the concurrent acetylation of lysine 9 of histone H3 (H3K9Ac) and phospho-
rylation of the neighbouring serine 10 (S10P). This dual marker indicates genomic regions
undergoing active transcription [24,77,78]. Figure 5 illustrates the close interaction between
Arc and this histone mark, using Stochastic Optical Reconstruction Microscopy (STORM),
a form of super-resolution microscopy with a resolution of ~30 nm [79]. Both Arc and
H3K9Ac-S10P are enriched at the nuclear periphery, where reorganisation of chromatin
between active and inactive transcriptional states takes place [80,81]. With the increased
resolution of STORM, Arc can be seen to localise to distinct puncta. H3K9Ac-S10P forms
an elaborate meshwork, as expected for chromatin, but also is enriched in puncta-like
domains. Arrowheads in Figure 5A indicate the close apposition between these two sets of
puncta. Close inspection of the interface between the two types of puncta revealed inva-
sions of H3K9Ac-S10P into the Arc puncta (arrows in Figure 5B), resembling the finger-like
chromatin structures seen in live cell imaging (Figure 3, Movie S1).
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Figure 5. Arc associates with H3K9Ac-S10P. Image of a neuronal nucleus obtained using STORM.
Cultured hippocampal neurons were treated with 4BF for 4 h, fixed and stained for Arc and H3K9Ac-
S10P, which marks sites undergoing active transcription. (A) Arrowheads point to close appositions
between Arc and the histone mark (scale bar = 1 µm). (B) Enlarged sections showing the association in
greater detail. Arrows inside the Arc puncta point to what appear to be invasions of H 3K9Acc-S10P
into Arc puncta (scale bar 200 nm). Regions of overlap appear in yellow.

3.5. Arc Regulates Activity-Dependent Gene Transcription

Because Arc was found to associate with histone marks involved in transcription
activation, we wanted to investigate whether network activity-induced Arc expression
alters the gene expression profile of the neurons. Four short hairpin RNAs (shRNAs)
targeting the coding region of Arc were tested for their ability to suppress Arc induction
following four hours of 4BF treatment. We selected the most effective shRNA to gener-
ate an adeno-associated AAV9 virus. Because AAV9 infection itself may alter the gene
expression profile, we also generated a negative control consisting of AAV9 virus encoding
a scrambled version of the Arc shRNA. We performed an RNA-Seq analysis of cortical
neurons expressing either the Arc shRNA or its scrambled control. When 4BF-mediated
Arc expression was prevented using the Arc shRNA (Figure 6A), mRNA levels for more
than 1900 genes were altered (Figure 6B). Many gene families were affected, including
those associated with plasticity (Jun, Fosb, Bdnf, Dlg4, Egr4, Npas4 and Nr4a1), synaptic
proteins (syntaxin Stx12 and synaptotagmin Syt3), and neurotransmitter receptors (NMDA,
AMPA, GABA, glycine, serotonin, and metabotropic glutamate receptors) (Figure 6B). Arc
also regulated the expression of genes controlling intrinsic excitability: 62 genes encoding
ion channels (20 K+, 4 Na+, and 9 Ca2+ channel subunits, 7 transient receptor potential (Trp)
channels, 14 ligand-gated ion channels, 7 regulatory subunits and 1 non-selective cation
channel), and 139 genes encoding transporters/pumps (for glutamate, GABA, serotonin,
ADP, ATP, phosphate, glucose, inositol, alanine, cysteine, glutamine, glycine, proline, Na+,
Ca2+, Cl−, H+ and Zn2+). These results suggest that Arc regulates activity-dependent gene
expression relevant for synaptic function, neuronal plasticity, and intrinsic excitability.

Figure 7 shows the 30 top-ranking genes sorted by absolute fold change (FC) caused by
the shRNA- mediated knockdown of Arc expression. Gene names are shown together with
a description of their function, their fold change, false discovery rate (FDR), and references
to relevant papers. Many of the top-regulated genes are involved in synapse modulation,
neurotransmission, neurogenesis and neurological disorders. Interestingly, 9 out of the top
30 genes have been implicated in the pathophysiology of AD (Fgf1, Slc30a4, Npas4, Cxcl1,
Jdp2, Nts, Mmp10, Orai2 and Tomm34), while an additional 5 genes are linked to amyloid
beta (Aβ) metabolism (Mmp13, Mmp12, Slc2a13, Igf1r and Apba1).
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Figure 6. Arc regulates gene transcription. (A) Western Blot showing the time course of Arc protein
expression in cultured hippocampal neurons following 4BF treatment (time in hours indicated on
top). Lane 7 (8sh) shows that Arc fails to express at 8 hours of 4BF when the cultures are transduced
with an AAV0 virus encoding a short-hairpin RNA (shRNA) targeting the coding region of Arc.
Lane 1 has purified Arc protein. (B) volcano plot of RNA-Seq results comparing mRNA isolated
from neurons after 8 hours of 4BF that were transduced with AAV9 virus encoding either the Arc
shRNA or a scrambled version of this shRNA, done in triplicated. Preventing activity-dependent
Arc expression resulted in the upregulation of 817 genes (red), and down-regulation of 1128 genes
(green). Genest that are below the cut-off (FDR > 0.05) or absolute fold change < 2) are marked in
grey. Some of the highly regulated genes in volved in learning and memory are indicated in the plot.
Genes are colour coded as stated in the legend. Both axes are log scaled.
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Figure 7. Top ranking genes with neuronal functions. APOE: apolipoprotein E; p-tau: phos-
phorylated tau; Aβ: Amyloid beta; PI3K/Akt: phosphatidylinositol 3-kinase/protein kinase
B; CSCR2: C-X-C motif chemokine receptor 2; HDAC3: histone deacetylase 3; AP-1: activa-
tor protein 1; APP: amyloid precursor protein; CSF: cerebrospinal fluid; STIM: stromal interac-
tion molecule; LTP: long term potentiation; GABA: γ-aminobutyric acid; KO: knockout; 5HT:
5-hydroxytryptamine; ER: endoplasmic reticulum; Cav2: neuronal voltage-gated calcium chan-
nels. References: 1–3 [82–84], 4 [85], 5 [86], 6–8 [87–89], 9,10 [90,91], 11–13 [92–94], 14 [95],
15 [96], 9,16 [90,97], 17 [98], 18–20 [99–101], 21,22 [102,103], 23,24 [104,105], 25–27 [106–108],
28 [109], 29,30 [110,111], 31,32 [112,113], 33–36 [114–117], 37,38 [118,119], 39,40 [120,121], 41 [122],
42,43 [123,124], 44,45 [125,126], 46,47 [127,128], 48 [129], 49–51 [130–132], 52,53 [133,134],
54,55 [135,136], 56–58 [137–139] 59–61 [140–142]. FC indicates fold change, shown as-1/FC when <1.

3.6. GO Analysis of Differentially Expressed Genes

A gene ontology (GO) analysis was performed on the RNA-Seq data, which aim to
identify the biological processes and molecular functions altered by the reduction in Arc
expression (Figure 8). Arc knockdown altered many genes involved in the regulation of
nervous system development and neuronal differentiation (Figure 8A). In addition, many
of the genes were enriched in biological processes involved in cognition, regulation of cell
projection organisation and axonogenesis (Figure 8A), processes which could modulate the
structural plasticity involved in neural development, learning and memory [143,144]. While
the top ten regulated genes enriched for the regulation of plasma membrane bounded cell
projection organisation were both up- and down-regulated (Figure 8Cii), genes enriched
for cognition and the regulation of axonogenesis were mostly down-regulated due to
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the absence of Arc (Figure 8Ci,Ciii). Many of the altered genes were also enriched in
molecular functions such as ion channel regulator activity, glutamate receptor binding and
ligand-gated ion channel activity (Figure 8B), including Sgk1 (Figure 8Di), Dlg4, which
encodes PSD-95 (Figure 8Dii), and Grin2c, which encodes the NMDA receptor NR2C
subunit (Figure 8Diii). These molecular functions are well-established to underlie synaptic
plasticity processes crucial for formation of memory [145,146].
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Figure 8. GO analysis of Arc knock-down. (A,B) Gene set enrichment analysis was performed
to investigate the biological processes (A) and molecular functions (B) that the altered genes were
involved in. The enrichment score is plotted against the category names. The enrichment score is the
negative natural logarithm of the enrichment p-value derived from Fisher’s exact test and reflects
the degree to which the gen e sets are overrepresented at the top or bottom of the entire ranked list
of genes. Bars indicate the enrichment score while the line graph indicates the percentage of genes
that are altered under the respective GO term. The top 25 biological processes (A) and molecular
functions (B) are shown. Many of the categories are related to synaptic plasticity (underlined blue
and orange) [20,21]. (C,D) Bar-charts showing genes involved in the stated category from Biological
Processes (Ci–Ciii) and Molecular Functions (Di–Diii) and their respective fold changes. The top 10
regulated genes are shown. Dotted blue line indicates an absolute Fold Change of 2.

3.7. Arc Regulates Expression of Synaptic and Plasticity Genes

The GO results in Figure 8 indicated that the knockdown of Arc affected many genes
involved in synaptic plasticity, as well as genes implicated in processes underlying learning
and memory. We have therefore investigated how Arc knockdown affected genes encoding
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synaptic proteins by manually curating a list of differentially expressed genes whose
protein products are located at the presynaptic or postsynaptic compartment. A total of
232 synaptic genes were differentially expressed. Ephb3, Lrfn2, Lama5, Neurod2, Sema4f,
Caprin2, and Unc5c are involved in the development and growth of axons and dendrites,
while Npas4, Pcdh8, Ephb3, Lrfn2, Bdnf, Atxn1, Cbln2, Cadps2, Caprin2, C1ql1, C1ql3, and
Unc5c, modulate the function of synapses and dendritic spines (Figure 9).
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Figure 9. Synaptic genes whose expression is regulated by Arc. Shown are the top 40 synaptic
genes (out of a total of 323) ranked by absolute fold change. Comments list relevant information
about the function and disease association of the genes. An asterisk (*) indicates genes involved in
neuroplasticity. A hashtag (#) indicates genes involved in cognition, learning and memory. APP:
amyloid precursor protein; CRH: corticotropin-releasing hormone; V-gated: voltage-gated; TARP-
γ4: transmembrane AMPR regulator protein γ4; Aβ: amyloid beta; GPCR: G-protein-coupled
receptor. References: 1,2 [147,148], 3 [149]; 4,5 [114,115], 6 [142], 7 [150], 8 [151], 9 [152], 10 [153],
11,12 [154,155], 13 [156], 14 [157], 15 [158], 16,17 [159,160], 18,19 [161,162], 20 [163], 21 [164], 22 [165],
23 [166], 24 [167], 25,26 [168,169], 27 [170], 28 [171], 29 [172], 30 [173], 31 [174], 32,33 [175,176],
34,35 [177,178], 36,37 [179,180], 38 [181], 39,40 [182,183], 41,42 [184,185], 43,44 [186,187], 45 [188],
46 [189],47 [190], 48–50 [191–193], 51,52 [194,195], 53 [196], 54,55 [197,198], 56–58 [199–201].

Many of these synaptic genes are also involved in neuroplasticity, cognition, learning
and memory, including Syt3, Pcdh8, Pdyn, Lrfn2, Dlg4, Kcna4, Bdnf and Mapki8ip2. Figure 10
lists neuroplasticity genes and genes that are involved in cognition, learning and mem-
ory, whose activity-dependent expression is regulated by Arc. Most of these genes were
downregulated when activity-dependent Arc expression was prevented.
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Figure 10. Neuronal plasticity genes regulated by Arc. Neuronal plasticity genes were manually
curated in addition to reference to GO terminology from the gene ontology consortium. Neuronal
plasticity genes with absolute FC ≥ 2.5 are shown. Genes that are involved in cognition or learning
and memory are marked by orange boxes.

3.8. Arc Knockdown Altered Synaptogenesis, Synaptic Plasticity and Neuroinflammation Pathways

From the GO results and the list of manually curated synaptic genes, we were inter-
ested in investigating the signalling pathways and the possible downstream effects resulting
from Arc knockdown. We have analysed the differentially expressed genes and their respec-
tive fold changes using IPA. Figure 11A shows the top 15 pathways that were altered due to
Arc knockdown. IPA made inferences on the activation or inhibition of the pathways based
on the differential expression observed and canonical information stored in the Ingenuity
Knowledge Base. The degree of activation or inhibition of each identified pathway is
indicated by the z-score. The ratio is calculated as the number of differentially expressed
genes for each pathway divided by the total number of genes involved in that pathway.
Many identified pathways involved cellular signalling cascades, including those mediated
by CDK5, PTEN, integrin and corticotropin-releasing hormone (Figure 11A). Pathways
predicted to be responsible for the observed differential expression profile include opioid
and endocannabinoid signalling, synaptogenesis, synaptic long-term depression (LTD) and
neuroinflammation (Figure 11A,B). Kcnj5, Ptgs2, Grin2c, Cacng4 and Gnaq are members of
at least two of the pathways shown and are synaptic genes or associated with cognition
(Figures 8, 9, 10 and 11A). Except for the neuroinflammation signalling pathway, all these
pathways are associated with synaptic plasticity. Knockdown of Arc-modulated neuro-
transmission, synaptic plasticity, spine formation/maintenance and neurite outgrowth are
processes that are crucial for learning and memory (Figure 11B) [202–204]. Interestingly,
the two hallmarks of AD, the generation, clearance, and accumulation of amyloid beta (Aβ)
and the formation of neurofibrillary tangles (NFTs), are both affected by downregulation of
the neuroinflammation signalling pathway resulting from Arc knockdown (Figure 11B).
These alterations in the generation and clearance of molecular markers and triggers of AD
could indicate a possible role of Arc in the pathophysiology of AD [205].
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classes whose associated genes were significantly altered by Arc knockdown. 

Figure 11. Pathways altered by Arc knockdown. (A) Bar chart showing altered pathways identified
by IPA. The orange line graph indicates the ratio of genes that were involved in the specified pathway.
The grey line indicates threshold at p-value 0.05. The orange and blue bars indicate predicted
activation and inhibition of pathways, respectively (determined by z-score). (B) Top 15 significantly
altered pathways are shown. Pathways with predicted activation or inhibition of downstream effects
are in red, further elaborated in panel C. The top 5 genes altered in the respective pathways are
shown on the right and bottom of the alter ed pathway bar chart. (C) Diagram describing the
predicted effects of the altered pathways. Five pathways are highlighted, and the downstream effects
as predicted by IPA are listed.

3.9. Arc Knockdown Changes the Expression of Alzheimer’s Disease Genes

Considering that the generation, clearance and accumulation of amyloid beta and
neurofibrillary tangles was predicted to be altered due to the knockdown of Arc, we
investigated whether any neurological diseases or psychological disorders were correlated
with the profile of differentially expressed genes mediated by Arc knock-down. Figure 12
summarises the disease annotation and predicted activation state for two disease/disorder
classes whose associated genes were significantly altered by Arc knockdown.
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Because Arc plays a role in the aetiology of AD by modulating its genetic risk factors, 
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genes control amyloid beta formation/accumulation through the regulation of cleavage 
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Figure 12. Arc and neurological disorders. Prevention of activity-dependent expression of Arc
resulted in gene expression profile changes that are associated with neurological diseases and psycho-
logical disorders, including Huntington’s and Alzheimer’s disease, CNS amyloidosis and Tauopathy.

Absence of Arc was predicted to increase damage of the cerebral cortex and its neurons
and cells. In addition, Arc knockdown was also associated with psychological disorders,
including Huntington’s disease, basal ganglia disorder, central nervous system (CNS)
amyloidosis, tauopathy and Alzheimer’s disease. Of note, CNS amyloidosis and tauopathy
are predictors of AD. The activation states of the five psychological disorders were not re-
ported, possibly due to inconsistencies in the literature findings with respect to fold changes
of the differentially expressed genes. However, the p-values for all five disorders were
highly significant, suggesting that the progression of these disorders may be modulated by
Arc function.

We next investigated how Arc knockdown could affect genes that were previously
identified to increase susceptibility to AD. We have manually curated genes that were
found to be genetic risk factors of AD and validated them by referencing the genome-
wide association studies (GWAS) catalogue [206]. Notably, critical genetic risk factors
of AD such as Picalm, Apoe, Slc24a4, and Clu were downregulated upon the knockdown
of Arc [207–211] (Figure 13), indicating that activity-induced Arc expression is linked to
enhanced transcription of these genes. Out of a total of 39 AD susceptibility genes identified,
26 were regulated by Arc (Figure 13).
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Figure 13. Alzheimer’s susceptibility genes affected by Arc knockdown. The expression levels of
26 AD susceptibility genes were affected when activity-dependent Arc expression was prevented by
an shRNA. Green bars indicated that the mRNA level was downregulated, while red bars indicate
upregulation. The blue line indicates an absolute fold change of 1.5.

Because Arc plays a role in the aetiology of AD by modulating its genetic risk fac-
tors, we investigated whether Arc regulates genes that are more broadly involved in the
pathophysiology of AD. Figure 14 lists the results. While some differentially expressed
genes control amyloid beta formation/accumulation through the regulation of cleavage
and stabilisation of amyloid precursor protein (APP) (Mmp13, Slc2a13, Apba1, Casp8, Ptgs2,
Gpr3, Pawr, Timp3, Kcnip3, Plk2, Aplp2, Bace2, Apoe and Apba2), others are involved in
the hyperphosphorylation of tau and formation of neurofibrillary tangles (Npas4, Cxcl1,
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Dryrk2, Tril, Pltp, Plk2 and Selenop). Arc knockdown also altered the expression of genes
that are associated with the neurodegeneration and neurotoxicity observed in AD (Casp8,
Bcl2l11, Alg2, Tac1, Bdnf, Hmox1, Pawr, Ccl2, Selenop and Atf6). Finally, Arc regulated genes
associated with altered cognitive function, a characteristic of AD (Mmp13, Pdyn, Tac1, Bdnf,
Nr4a2, Penk, Pltp and Ccl2). To date, presenilin 1 (Psen1) and glycogen synthase kinase
3 beta (Gsk3b) are the only AD mediators that have been reported to physically associate
and interact with Arc [212–214]. Arc also interacts with endophilin 2/3 and dynamin and
recruits them to early/recycling endosomes to traffic APP and beta secretase 1 (BACE1),
crucial determinants of AD progression [214]. However, the observation that knocking
down Arc resulted in more than 100 differentially expressed genes that are either AD
susceptibility genes or genes implicated in the pathophysiology of AD (Figures 13 and 14)
suggests that Arc could be mediating the expression of these genes via transcriptional
regulation and not simply physical interactions. Arc has previously been reported to reside
in the nucleus [22,28,50,51], and we have shown how Arc physically associates with chro-
matin and with markers of active transcription and enhancers (Figures 3–5). Therefore, we
wanted to investigate how Arc downregulation affects transcription regulation.
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Figure 14. Alzheimer’s genes regulated by Arc. BACE1: β-secretase 1; APP: amyloid precursor
protein; FoxO3a: forkhead box O3; ApoER2: apolipoprotein E receptor 2; PSEN2: presenilin 2; MAPK:
mitogen-activated protein kinase; ER: endoplasmic reticulum. References: 1 [88], 2 [91], 3 [98],
4–5 [100,101], 6–7 [142,215], 8 [216], 9–10 [217,218], 11 [219], 12 [220], 13–15 [221–223], 16–19 [224–227],
20 [158], 21 [228], 22–24 [229–231], 25–26 [232,233], 27–29 [234–236], 30 [114], 31–32 [175,176],
33–34 [237,238], 35–36 [239,240], 37 [241], 38 [242], 39–40 [243,244], 41–42 [245,246], 43 [247], 44 [248],
45–47 [249–251], 48–53 [252–257], 54–55 [258,259], 56–58 [260–262], 59–61 [263–265], 62–65 [266–269],
66–69 [270–273], 70–72 [274–276], 73–74 [277,278], 75 [279], 76 [280], 77–79 [281–283], 80–81 [284,285],
82 [286], 83–84 [287,288], 85 [289], 86 [290], 87 [291].

3.10. Arc Regulates the Expression of Transcription Factors

From our GO analysis and a manual curation based on literature citations, we have
identified 369 transcriptional regulators and transcription factors whose expression is
controlled by Arc. Figure 15 shows the top 40 transcriptional regulators or factors whose
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mRNA levels were altered when activity-dependent Arc expression was prevented. Some
of the transcriptional regulators are involved in neuronal development and differentiation
(Fgf1, Tgfb1i1, Fezf2, Jun, Magel2, Neurod2, Atxn1, Gdf15, Prdm1, Mycn, Nr4a2 and Pou2f2),
while others are involved in the development of neurological or neurodegenerative diseases
(Npas4, Igf1r, Txnip, Lgr4, Cebpd, Pim1, Magel2, Ireb2, Smad7, Sorbs1, Nfil3, Pknox2, Hdac9,
Hmox1, Atxn1, Cbfb, Lrp2, Hipk3 and Nr4a2). Many of the transcriptional regulators/factors
have been implicated in memory formation and plasticity, such as Thbs1, Jun, Tet3, Fosb,
Atxn1 and Cbfb. A GO analysis by DAVID [49] was carried out to identify the biological
processes that these transcription factors could be modulating. Figure 16 shows the top
20 biological processes that were regulated by altered transcription factor expression
and that have neurological relevance. Corroborating the identified functions of the top
40 transcriptional regulators/factors (Figure 15), differentially expressed transcriptional
regulators/factors were observed to be highly enriched in biological processes such as
differentiation of neurons, nervous system development, learning, long-term memory
and aging (Figure 16). Some of the transcriptional regulators were involved in multiple
processes: Npas4, Jun, Bdnf, Nr4a2 and Elavl4 modulate learning, long-term memory, aging,
neuron differentiation and nervous system development (Figure 16).
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Figure 15. Arc controls genes involved in transcriptional regulation. Shown are the top 40 genes
with neuronal relevance. An asterisk (*) indicates transcription factors. ATF3: activating transcription
factor 3; LEF1: lymphoid enhancer binding factor 1; FoxA2: forkhead box A2; APP: amyloid precursor
protein; CREB: cAMP response element-binding protein; SOX2: SRY-box 2; PITX2: paired like home-
odomain 2; bZIP: basic leucine zipper domain; C-MYC: MYC proto-oncogene, BHLH transcription
factor; NFATc1: nuclear factor of activated T cells 1; FOXP3: forkhead box P3; HIF: hypoxia inducible
factor; TGFβ: transforming growth factor beta; PD: Parkinson’s disease; NLS: nuclear localisation
signal; SMAD: transcription factors forming the core of the TGFβ signalling pathway; AP-1: activator
protein 1; ALS: amyotrophic lateral sclerosis; MEF2: monocyte enhancer factor; GABAA: γ-aminobu-
tyric acid type A; JAK/STAT: Janus kinases/ signal transducer and activator of transcription; SCA1:
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spinocerebellar ataxia type 1; MAPK: mitogen-activated protein kinase; ZNF683: zinc finger protein
683; HTT: huntingtin. References: 1 [292], 2 [293], 3 [294], 4–5 [114,295], 6 [132], 7 [296], 8 [297], 9 [298],
10 [299], 11–12 [300,301], 13 [302], 14–15 [303,304], 16–19 [305–308], 20 [309], 21–22 [310,311], 23 [312],
24 [313], 25–26 [314,315], 27–28 [316,317], 29 [318], 30–31 [319,320], 32 [321], 33 [322], 34–35 [323,324],
36 [325], 37 [326], 38 [327], 39–43 [177,178,328–330], 44–47 [331–334], 48–49 [335,336], 50 [337], 51 [338],
52–54 [339–341], 55 [342], 56 [343], 57–58 [344,345], 59 [346], 60–61 [347,348], 62–64 [349–351], 65,
66 [352,353].
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3.11. Upstream Regulators Associated with Arc-Dependent Genes

Because Arc knockdown resulted in the differential expression of 1945 genes (Figure 6),
altering downstream pathways (Figure 11) possibly leading to disease states (Figure 12),
we identified the upstream modulators that could explain the vast differential expression
pattern observed. From the IPA analysis, 11 upstream regulators were predicted to critically
contribute to the differential expression profile (Figure 17).

Except for Sox2, none of these upstream regulators were transcriptionally affected by
Arc knockdown, suggesting that Arc controls their function through a different mecha-
nism. SOX2 and HDAC4 were both activated by the absence of Arc, while the function of
the remaining nine regulators was inhibited. Of note, the predicted inhibition of CREB1
(z-score = −3.5) and APP (z-score = −2.8) explains the differential expression of 100 and
94 genes, respectively (Figure 17). The 11 upstream regulators predicted by IPA control
the expression of Nr4a2, Slc6a1 and Igf1r, genes that are also involved in AD progression,
neuroinflammation pathways and synaptic LTD (Figures 11A and 14). We have investi-
gated the mechanisms by which Arc could alter the function of the identified upstream
regulators, resulting in the alteration of downstream pathways and AD progression. The
downstream pathways investigated are (i) opioid signalling, (ii) synaptogenesis, (iii) the
endocannabinoid neuronal synapse pathway, (iv) synaptic LTD and (v) neuroinflamma-
tion (Figure 18). These are also the pathways whose downstream effects we focused on
in Figure 11.
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Figure 17. Upstream regulators associated with differential gene expression observed upon
knockdown of Arc. Activation z-score indicates the predicted activity of upstream regulators by IPA
analysis. Upstream regulators that were predicted to be inhibited are highlighted in blue while those
activated are highlighted in orange. Regulated genes were highlighted in green (downregulated) and
red (upregulated).

APP, CREB1 and TNF are three upstream regulators identified by IPA that controlled
the highest number of genes involved in the downstream pathways highlighted (Figure 18).
The top five genes regulated by APP were Igf1r (synaptic LTD) [354], Ptgs2 (endocannabi-
noid neuronal synapse pathway; neuroinflammation, AD progression) [227,355–357], Jun
(neuroinflammation, AD progression) [358–361], Dlg4 (PSD95, synaptogenesis) [362,363]
and Syn2 (synaptogenesis) [364] (Figure 18). In addition to Ptgs2 and Syn2, CREB1 reg-
ulated the differential expression of Slc6a1 (neuroinflammation) [365], Pdyn (opioid sig-
nalling) [366] and Fosb (opioid signalling) [367] (Figure 18). Interestingly, TNF, whose
transcription was not altered upon knockdown of Arc, regulates 15 genes (Figure 17), the
top five of which are Casp8 (neuroinflammation) [368], Ptgs2 (also regulated by APP and
CREB1), Gabrg2 (neuroinflammation) [369,370], Bdnf (synaptogenesis, neuroinflammation,
AD progression) [371–374] and Penk (opioid signalling, AD progression) [375]. While the
top CREB1-regulated genes are mainly associated with the opioid signalling pathway,
APP and TNF are implicated in neuroinflammation. Triggering of the neuroinflammation
pathway leads to the altered expression of AD-associated genes such as Ptgs2, Jun, Bdnf,
Hmox1 and Gabbr2.
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3.12. Arc Over-Expression Alters Gene Expression in Human Embryonic Kidney Cells

The results presented thus far suggest that preventing Arc expression during neu-
ronal network activation results in an altered gene expression profile affecting synaptic
plasticity and cellular excitability, as well as neurodegenerative disease state. We there-
fore tested whether Arc could alter gene transcription outside of the context of neuronal
network activation and without viral infection. We induced the expression of the en-
dogenous Arc gene in human embryonic kidney (HEK293T) cells using a CRISPR-Cas9
approach [376] (Figure 19A). Whereas wildtype HEK293T cells expressed Arc at a very
low level, targeting a transcription activator complex to its promoter increased Arc mRNA
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levels nearly 250-fold. This in turn altered the expression of 57 genes (absolute FC > 2,
p < 0.05), with 54 genes upregulated and 3 genes downregulated. Many of the genes have
neuronal functions (Figure 19B). We have performed a GO analysis to understand the
cellular components (Figure 19C) and biological processes (Figure 19D) these differentially
expressed genes were involved in. We observed many genes that are typically expressed in
neurons or are synaptic components, as indicated by the following GO terms: (i) synapse
part (p = 1.1 × 10−4), (ii) presynapse (p = 1.0 × 10−3), (iii) neuron part (p = 1.5 × 10−3) and
(iv) postsynaptic membrane (p = 2.3 × 10−3) (Figure 19C). Differentially expressed genes
upon the induction of Arc in HEK293T cells are involved in synaptic transmission pro-
cesses or neuronal development, including (i) chemical synaptic transmission (p = 2.5 × 10−4),
(ii) signal release from synapse (p = 1.9 × 10−3), (iii) interneuron precursor migration
(p = 3.2 × 10−3) and (iv) axon guidance (p = 3.2 × 10−3) (Figure 19D). Genes that are asso-
ciated with these cellular components and processes were also highly altered, including
(i) Chat (p = 4.7 × 10−85, choline acetyltransferase) located at presynaptic terminals, syn-
thesising acetylcholine, (ii) Oprd1 (p = 2.6 × 10−62, δ-opioid receptor), whose activation
reduces pain and improves negative emotional states, (iii) Arx (p = 1.1 × 10−70, Aristaless
Related Homeobox), a transcription factor involved in neuronal migration and develop-
ment, (iv) Scn1b (p = 6.6 × 10−22, Na channel β1 subunit), involved in axonal guidance,
(v) Foxa3 (p = 3.3 × 10−24, Forkhead Box A3), a transcription factor involved in the de-
termination of neuronal fate [377,378], (vi) Pllp (p = 1.5 × 10−25, Plasmolipin), involved
in membrane organisation and ion transport, (vii) Slc18a3 (p = 1.6 × 10−16), a vesicular
acetylcholine transporter at the presynapse, (viii) Fndc11 (p = 4.4 × 10−14, Fibronectin
Type III Domain Containing 11), a vesicular gene, and (ix) Adgrb1 (p = 3.7 × 10−12, Adhe-
sion G Protein-Coupled Receptor B1), localised at the postsynapse, involved in synapse
organisation and cell projection morphogenesis (Figure 19B).
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Figure 19. HEK293T cells exhibit neuronal properties upon induced expression of Arc. (A) En-
dogenous Arc expression was enhanced in HEK293T cells by targeting two single guide RNAs
(sgRNAs) containing MS2 aptamers to the Arc promoter with the CRISPR/Cas9 Synergistic Activa-
tion Mediator system (see Methods for details). As a negative control, we used two sgRNAs targeting
the promoter of the lac operon. Control cells (top) and Arc-induced cells (bottom) were stained for
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Arc (green) and DNA was labelled with DAPI (blue). About 90% of the cells expressed Arc. Scale
bar is 30 µm. (B) Graph showing the top 20 differentially expressed genes upon the induction
of endogenous Arc in HEK293T cells. RNA-Seq was used to compare the mRNA levels between
the Arc-induced and control HEK293T cells. Neuronal genes are bolded and highlighted in red.
(C,D) GO analysis of the differential expressed genes upon overexpression of Arc. The top 20
cellular components (C) and biological processes (D) are presented. Neuronal features were bolded
and highlighted in red. Na+: sodium; V-gated: voltage-gated; Postsynapt: postsynaptic; Memb:
membrane; Synapt: synaptic; Clath: clathrin; Ach: acetylcholine; Presynapt: presynaptic; Musc:
muscle; Develop: development; Neg: negative; Reg: regulation; Prolif: proliferation; Skelet: skeletal;
Contract: contraction and Mech: mechanical; Conv: conversion.

Together with the results obtained with Arc knockdown in neurons, this finding
strongly implicates Arc as a transcriptional regulator of neuronal development, synaptic
function, plasticity and intrinsic excitability.

4. Discussion

Activity-regulated cytoskeleton-associated protein (Arc) was discovered in 1995 as a
neuronal activity-dependent immediate early gene [1,2], which is rapidly transcribed in
response to network activation associated with novel experiences [7–11]. Knockdown of
Arc expression interferes with the stabilisation of short-term memory, indicating that Arc
plays a critical role in memory consolidation [3,4].

Arc’s function has been most widely studied in excitatory synapses, where it regulates
the endocytosis of AMPA receptors [14,17]. Interestingly, AMPA receptor removal also
underlies Aβ-induced synaptic depression and dendritic spine loss [379], processes thought
to be associated with cognitive dysfunction in Alzheimer’s disease [380]. In Arc knockout
mice, LTP is not stable, and dissipates within a few hours, consistent with the impaired
memory consolidation observed in these mice [3–6]. However, the absence of the late
form of LTP in Arc knockout mice cannot be explained by an AMPA receptor endocytosis
deficit [4], indicating that Arc must have additional functions. The data presented here
identify a second function for Arc: regulation of neuronal activity-dependent transcription
for genes associated with synaptic plasticity, intrinsic excitability and cellular signalling.
Analysis of the differentially expressed genes points to Arc’s involvement in several neuro-
logical disorders, including autism, Huntington’s disease and Alzheimer’s disease. This
newly proposed role for Arc is supported by its interaction with chromatin and histone
markers reported here (Figures 2–5, Movie S1).

4.1. Arc and Chromatin

Pharmacological network stimulation induces Arc in a subset of cultured neurons
(Figure 1). Whereas chromatin in cultured hippocampal neurons is relatively uniform,
Arc-positive neurons are characterised by a larger number of densely packed heterochro-
matin puncta (chromocenters), likely harbouring silent genes, interspersed with highly
open euchromatin domains, which are capable of active transcription (Figure 2). This result
is consistent with what has been observed in vivo, where Arc-deficient mice were found
to have decreased heterochromatin domains [51]. These significant changes in chromatin
structure observed in Arc-positive neurons are likely associated with equally substan-
tial alterations in gene expression profiles. The correlation between Arc expression and
chromatin remodelling that we observed does not establish a causative relationship. It is
possible that Arc expression requires an alteration in chromatin structure, or alternatively,
Arc expression may cause chromatin remodelling. Additional experiments are needed
to decide on the underlying mechanism. It is also not clear at this time what determines
which neurons will express Arc following network activation, although it likely has to do
with the degree of participation of individual neurons in the enhanced network activity,
which in turn depends on their synaptic connectivity.
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Arc appears to physically interact with DNA: time-lapse movies show dynamic chro-
matin loops that appear to invade Arc puncta (Figure 3, Movie S1). The interaction is
transient, lasting only a few seconds. Because these Arc puncta likely contain the histone
acetylase Tip60 [29], it is conceivable that this interaction alters chromatin accessibility,
thereby facilitating transcription. This idea is further strengthened by the association of Arc
puncta with a histone marker for active enhancers (Figure 4), as well as the close apposition
between Arc puncta and puncta for a dual histone marker (H3K9Ac-S10P) that labels
sites of active transcription (Figure 5). A similar result has been obtained in vivo, where
cocaine administration in rats results in an increase in nuclear Arc, which then associates
with H3S10P [51]. Taken together, the data presented here on the interaction of Arc and
chromatin may provide a mechanism for epigenetic regulation of gene transcription as the
basis for memory consolidation.

4.2. How Does Arc Regulate Transcription?

Preventing Arc induction during neuronal network activation affects the transcription
of a very large number of genes (Figure 6). The domain structure of Arc protein appears to
rule out that it can function as a transcription factor [212]. This raises the question: how
does Arc regulate transcription?

One possible mechanism, discussed above, is that Arc epigenetically controls gene
transcription by regulating chromatin structure (through Tip60 or other chromatin re-
modellers) and modification of histones (e.g., H4K12Ac [29]). However, the differential
gene expression associated with Arc knockdown is mediated through eleven upstream
regulators identified by IPA (Figures 17 and 18). This suggests that Arc has additional, less-
direct ways of regulating transcription. Interestingly, to date, none of the eleven upstream
regulator proteins have been shown to either directly interact with or be modulated by Arc.
They are also not transcriptionally controlled by Arc (except for Sox2) (Figure 17). How,
then, does Arc regulate transcription by activating or inhibiting these upstream regulators?
Using IPA and its ingenuity knowledge base, we were able to identify several known
interactors of Arc that can modulate the action of the upstream regulators, which could then
subsequentially alter gene transcription (Figure 20A). Next, we will discuss the mechanisms
by which four identified Arc interactors, NOTCH1, TIP60/Kat5, APP and GSK3B, could
modulate the upstream regulators.

NOTCH1. NOTCH1 is a transmembrane receptor capable of signalling to the nucleus.
Arc is required for the proteolytic cleavage of NOTCH1 to release its intracellular domain
(NICD), which can translocate to the nucleus and alter transcription [381]. NICD regulates
the expression of the transcriptional repressor BCL6 [100] and the activity of the calcium-
dependent kinase CAMK4 [382], which in turn alter the localisation and the nuclear-
cytoplasmic shuttling of the histone deacetylase HDAC4, thereby affecting its downstream
interactions/modulation [383,384] (Figure 20B). NOTCH1 could regulate the stability,
nuclear localisation and signalling of the transcription factor SOX2 through regulation
of the protein kinase AKT1 and cell-surface glycoprotein CD44 [385–388] (Figure 20B).
NOTCH1, through NICD, controls the expression of plasminogen activator inhibitor-1
(SERPINE1) [389], an inhibitor of thrombin (F2) [390] (Figure 20B). NOTCH1 regulates the
transcriptional activity of T-cell factor 4 (TCF7L2) [391], through its interaction with the
DNA-repair protein Ku70 (XRCC6) [392] (Figure 20B). NOTCH1 interacts with the nerve
growth factor NR4A1/Nur77 [393], thereby modulating expression levels of the cytokine
tumour necrosis factor alpha (TNF) [394]. Finally, NOTCH1 regulates the expression level of
the inhibitor of apoptosis protein cIAP1/Birc2 [395], which also affects TNF expression [396]
(Figure 20B).
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Figure 20. Regulation of upstream regulators by Arc interactors. (A) Schematic diagram illustrat-
ing how interactors of Arc could bring about changes in activity of upstream regulators identified by
IPA, which in turn results in alteration of gene transcription. The dotted line indicates an indirect
effect on transcription through the regulation of a transduction cascade. (B) Diagram showing the
functional connectivity between Arc interactors (KAT5, NOTCH1, GSK3B and APP), upstream regu-
lators highlighted in orange (activated) or blue (inhibited) and genes that mediate their interaction.
Connections of Arc interactors with other genes are highlighted in cyan. Connections between KAT5,
NOTCH1, GSK3B and APP are highlighted in blue. Genes from A are shown in bold.

TIP60/Kat5. The Kat5 gene encodes TIP60, a member of the MYST family of histone
acetyl transferases, which plays important roles in chromatin remodelling and transcription
regulation [397]. In the fruit fly Drosophila, TIP60 has been implicated in epigenetic control
of learning and memory [398], while it mediates APP-induced apoptosis and lethality
in a fly AD model [399]. Nuclear Arc interacts with TIP60 at perichromatin regions and
recruits TIP60 to PML bodies, sites of epigenetic transcription regulation [29]. Arc levels
correlate with acetylation status of H4K12, a substrate of TIP60 and a memory mark that
declines with aging [33], suggesting that Arc mediates activation of TIP60. TIP60/Kat5
facilitates the repressive action of HDAC4 through the formation of complexes with the
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zinc-finger transcription factor KLF4 [400,401], the cAMP-dependent transcription factor
ATF3 [402–404] and the neurodegenerative disease protein ataxin-1 (ATXN1) [405,406]
(Figure 20B). Arc’s interaction with TIP60/Kat5 may result in a complex being formed at
the cIAP1/Birc2 promoter region [407] to mediate downstream signalling of TNF [396]
(Figure 20B). TIP60/Kat5 forms a complex with the Kaiso transcription factor ZBTB33 [408],
resulting in the inhibition of the TCF7L2 transcriptional complex [409] (Figure 20B). Com-
plexing of TIP60 with ARID1B could affect SOX2 signalling [410–412]. The regulation
of SOX2 by TIP60/Kat5 could also have an implication on the transcriptional activity of
Achaete-Scute homolog 1 (ASCL1), as SOX2 and ASCL1 regulate each other, possibly in a
feedback loop [413,414].

APP. The functional interaction between APP and Arc is crucial for Arc’s modulation
of upstream regulators (Figure 20A). Arc interacts with endophilin 2/3 (SH3GL3) and
dynamin on early/recycling endosomes to alter the trafficking and localisation of APP. The
association of Arc with presenilin 1 (PSEN1) promotes the trafficking of γ-secretase to endo-
somes and enzymatic cleavage of APP [214] (Figure 20B). The generation of amyloid beta
through APP cleavage leads to altered downstream signalling, activity and production of
HDAC4, SOX2 and F2 through changes in caspase-3 (CASP3) [415,416], JUN [417,418] and
thrombospondin-1 (THBS1) [419,420], respectively (Figure 20B). Cleavage of APP generates
a cytosolic fragment, AICD, which forms a transcriptionally active complex with TIP60
and the transcription factor FE65 [421]. AICD also modulates the ubiquitin–proteasome
system (UPS) via UBE2N [422], to change downstream signalling induced by TNF [423]
(Figure 20B). The modulation of the UPS via UBE2N, UBC and UBE3A [424] could implicate
the ubiquitination of serum- and glucocorticoid-regulated kinase-1 (SGK-1) [425–427] and
polyglutamine-expanded ataxin 3 (ATXN3) [428] and their ability to regulate the transcrip-
tion factor cAMP responsive element binding protein 1 (CREB1) [429,430] (Figure 20B). The
modulation of CREB1 would further implicate changes in expression levels of the cAMP
responsive element modulator CREM [431–433] (Figure 20B). Finally, APP has a role in the
regulation of TNF through indirect modulation of CREM [434] and direct interactions with
laminin could regulate the production of TNF [435,436] (Figure 20B).

GSK3B. Although glycogen synthase kinase 3 beta (GSK3B) is not regulated by Arc,
the promotion of cleavage of APP to amyloid beta enhances the induction and activation
of GSK3B [437–439]. This could lead to modified downstream signalling of CREB1 [440]
(Figure 20B). GSK3B is also a downstream mediator of NOTCH1 [441], PSEN1 [442], and
CAMK2B [443], all of which are Arc interactors [214,381,444]. This creates an interesting
situation as APP/amyloid beta is positively regulated by GSK3B [445,446], creating a
positive feedback loop for amyloid beta production and its downstream signalling [437–439]
(Figure 20B).

4.3. Interactions among TIP60, NOTCH1 and APP

A delicate regulatory network exists among Arc’s interactors TIP60/Kat5, NOTCH1
and APP (Figure 20B). Arc’s activation of the γ-secretase PSEN1 to promote cleavage of
APP not only increases amyloid beta load, but also results in an increased level of the APP
intracellular domain (AICD) [214,447]. AICD forms a complex with TIP60/Kat5 to alter
transcriptional activity crucial for AD progression [421,448–453] (Figure 20B). This AICD-
TIP60 interaction is disrupted by NICD, formed when Arc activates NOTCH1 [381], thereby
downregulating AICD signalling while promoting NICD signalling [454,455] (Figure 20B).
The formation of NICD and AICD is competitive, as NOTCH1 and APP are both substrates
of γ-secretase [456], whose activity is regulated by Arc [214]. In addition, the induction of
TIP60 histone acetylation activity by Arc [29] could also increase the negative regulation
of NOTCH1 [454] (Figure 20B). This highlights Arc as an important modulator of the
relationship and downstream signalling mediated by NOTCH1, TIP60/Kat5 and APP.
Of note, the mRNA levels of Notch1, Kat5 and App were not significantly altered upon
knockdown of Arc, indicating that the transcriptional changes brought about were due
to protein interaction and activation (Figure 20B), which is upstream of transcription
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(Figure 20A). However, the modulation of upstream regulators by Arc is also dependent on
its subcellular localisation.

4.4. Arc’s Subcellular Localisation Determines Its Function

When Arc is localised outside of the nucleus, it tends to accumulate in dendrites
and spines, small membrane protrusions that harbour excitatory synapses. Here, Arc
controls the removal of AMPA receptors by endocytosis, allowing it to regulate synaptic
efficacy [14,17]. Synaptic Arc also associates with the synaptic scaffolding protein PSD-
95/Dlg4, which complexes with the tyrosine kinase FYN [457–459], allowing it to regulate
brain-derived neurotrophic factor (BDNF) signalling through tyrosine receptor kinase B
(TrkB), a major pathway for synapse maturation, plasticity and neurodevelopmental disor-
ders [460]. Activation of FYN could also mediate the secretion of TNF [461] (Figure 20B).
A high-affinity interaction with calcium-calmodulin kinase 2 beta (CAMK2B) targets Arc
to inactive synapses, where it removes GluA1 AMPA receptors from the postsynaptic
membrane surface [444].

Arc has been shown to possess both a nuclear localisation signal (NLS) and a nuclear
retention domain [28], allowing it to translocate to the nucleus autonomously. Once in the
nucleus, Arc has access to several other potential binding partners, including a nuclear
spectrin isoform (βSpectrinIV∑5) [22] and TIP60, a subunit of a chromosome remodelling
complex [29]. Association with Amida, encoded by the Tfpt gene (Figure 20B), facilitates
Arc’s entry into the nucleus [462]. Amida is a subunit of the INO80 chromatin remodelling
complex, which contains the transcriptional regulator MCRS1 [463,464]. MCRS2, an isoform
of MCRS1, is associated with the MLL chromatin remodelling complex, which also contains
KMT2A (MLL1) (Figure 20B). Arc’s association with Amida and possibly the INO80 and
MLL complexes may provide Arc with yet another opportunity to control gene expression
by altering chromatin structure.

The ability of Arc to translocate between the synapse and the nucleus, with unique
functions in each subcellular compartment, further strengthens its role in memory consoli-
dation, which requires both alterations in synaptic function and de novo gene transcrip-
tion [465].

4.5. Arc Controls Synaptic Plasticity and Intrinsic Excitability

Arc’s well-studied ability to alter synaptic efficacy by endocytosis of AMPA receptors
established it as a critical regulator of synaptic plasticity [14,17,459,466]. Whereas this
mechanism of activity-dependent removal of glutamate receptors supports Arc’s role in
mediating long-term depression (LTD) [467–470], it does not explain the absence of stable
LTP observed in Arc knock-out mice [4]. Because late-LTP is considered a critical cellular
mechanism underlying memory consolidation, the molecular and cellular mechanism by
which Arc supports memory stabilisation has remained elusive. The data presented here
showing that Arc transcriptionally regulates the expression of a large number of synaptic
proteins, with functions in both the pre- and post-synaptic compartment (Figure 9), provide
a new mechanism by which Arc can control long-lasting changes in synaptic structure and
function required for memory consolidation.

Formation of a memory trace not only requires long-term changes in the strength of
the synapses connecting the neurons that constitute the engram, but also stable changes in
their intrinsic excitability [471–473]. Because Arc controls the expression of a large number
of ion channels and pumps/transporters, it appears that Arc is capable of supporting this
functional aspect of memory consolidation as well.

4.6. Arc and Alzheimer’s Disease

Alzheimer’s disease is a devastating neurodegenerative disorder [474,475] charac-
terised by the progressive loss of both synaptic function [476] and long-term memory
formation [477]. There is currently no therapy that prevents, stabilises, or reverses the
progression of this disease, which is projected to take on epidemic proportions as the world
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population ages [478,479]. Several previous studies have revealed an association between
Arc and AD. A landmark study published in 2011 showed that Arc protein is required for
the formation of amyloid (Aβ) plaques [214]. Moreover, Arc protein levels are aberrantly
regulated in the hippocampus of AD patients [480] and are locally upregulated around amy-
loid plaques [481], whereas a polymorphism in the Arc gene confers a decreased likelihood
of developing AD [482]. It has been shown that spatial memory impairment is associated
with dysfunctional Arc expression in the hippocampus of an AD mouse model [483].

These published results together with the data presented here suggest that aberrant
expression or dysfunction of Arc contribute to the pathophysiology of AD [476,484].

4.7. Arc and Ad Therapy

Arc’s ability to transcriptionally regulate AD susceptibility and AD pathophysiology-
related genes indicates a possibility for modifying expression and activity of Arc as a ther-
apy for AD. Current treatments for AD are symptomatic, not effective disease-modifying
cures [485,486]. Many hypotheses have been proposed to underlie the development of
AD, including (i) amyloid beta aggregation, (ii) tau hyperphosphorylation, (iii) neuroin-
flammation, (iv) neurotransmitter dysfunction, (v) mitochondria dysfunction, (vi) glucose
metabolism, (vii) vascular dysfunction and (viii) viral infection [485,487–489]. These hy-
potheses have generated many new compounds, none of which have shown efficacy in
slowing cognitive decline or improving global functioning [485,488]. Arc appears to be a
good therapeutic candidate for AD, because of its involvement in amyloid beta produc-
tion, tau phosphorylation, neuroinflammation and neurotransmission. Moreover, we have
shown that Arc can modulate the expression of many genetic risk factors and genes associ-
ated with the pathophysiology of AD (Figures 11, 13, 14 and 19). Currently, known drugs
that could increase mRNA or protein expression of Arc include antidepressant drugs [490],
phencyclidine [491] and corticosterone, a memory-enhancing drug [492]. Arc expression
could be altered by targeting TIP60 and PHF8, two histone modifiers that together control
Arc transcription [24]. Drugs could also modulate Arc’s effect via its interactors such as
TIP60 and NOTCH1. Natural and synthetic drug molecules targeting TIP60 exist, but
they are currently used for cancer treatment [493]. Modulation of NOTCH1 function often
involves inhibitors of γ-secretase, which would also affect APP cleavage [456,494]. These
pharmaceutical modifications of Arc expression and activity could present a promising
starting point for the development of a more effective AD therapy.

5. Conclusions

The neuronal Arc gene is critically important for the stabilisation of memories. It
encodes a protein that localises to dendritic spines, where it regulates endocytosis of
glutamate receptors. However, Arc can also be found in the nucleus, where its function
is less understood. We find that Arc tightly associates with two markers of active DNA
transcription, both of which have recently been shown to be upregulated in Alzheimer’s
disease. Our results further show that Arc is a master regulator of activity-dependent gene
expression, controlling mRNA levels of over 1900 genes involved in neuronal plasticity
and intrinsic excitability, as well as over 100 genes implicated in the pathophysiology of
AD. Because Arc function has previously been shown to be dysregulated in AD, these new
findings identify Arc as new therapeutic target for the treatment of AD.
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