Special Issue "Weed Management & Sustainable Agriculture"

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Weed Science and Weed Management".

Deadline for manuscript submissions: 31 January 2021.

Special Issue Editors

Dr. Ilias Travlos
Website
Guest Editor
Department of Crop Science, Agricultural University of Athens, 75, Iera Odos str., GR11855, Athens, Greece
Interests: weed biology and ecology; herbicide resistance; integrated weed management; agronomy
Special Issues and Collections in MDPI journals
Dr. Nicholas Korres

Guest Editor
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, USA
Interests: Weed demographics and population dynamics; weed eco-physiological aspects; weed-crop interactions
Dr. Rafael De Prado

Guest Editor
University of Cordoba, Spain
Interests: Herbicide resistance; mechanisms of resistance; weed management
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

The sustainability of agriculture can be based on an integrated crop and weed management approach. Consequently, further research is required to improve weed management and evaluate new and more ecologically friendly approaches. For this Special Issue, we invite you to share your studies on weed research. In particular, we are seeking submissions on the following topics: 1) mechanical weed control; 2) non-chemical weed control; 3) ecologically based methods; 4) precision weed control; 5) herbicide-resistant crops and weeds; 6) biological weed control; and 7) integrated weed management. Other aspects of weed research outside these topics are also of interest.

Dr. Ilias Travlos
Dr. Nicholas Korres
Dr. Rafael De Prado
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • weed management
  • ecologically based methods
  • mechanical weed control
  • non-chemical weed control
  • allelopathy
  • precision weed control
  • herbicide-resistant crops and weeds
  • biological weed control
  • integrated weed management

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Evaluation of Preemergence and Postemergence Herbicide Programs on Weed Control and Weed Seed Suppression in Mississippi Peanut (Arachis hypogea)
Agronomy 2020, 10(8), 1058; https://doi.org/10.3390/agronomy10081058 - 22 Jul 2020
Abstract
Weed control and reducing weed seed deposition to the soil seedbank is a challenging issues for Mississippi peanut producers. Research was established during 2017 and 2018 at the Delta Research and Extension Center in Stoneville, Mississippi, to evaluate herbicide programs for weed control [...] Read more.
Weed control and reducing weed seed deposition to the soil seedbank is a challenging issues for Mississippi peanut producers. Research was established during 2017 and 2018 at the Delta Research and Extension Center in Stoneville, Mississippi, to evaluate herbicide programs for weed control and reducing weed seed production in Mississippi peanut production. Treatments were combinations of acetochlor, clethodim, flumioxazin, lactofen, paraquat, and S-metolachlor with their respective adjuvants if needed. Treatments were applied PRE, two to three weeks after emergence (EPOST), and/or four to five weeks after emergence (MPOST). All treatments included a PRE application followed by (fb) application of EPOST and/or MPOST application. Flumioxazin PRE fb lactofen plus clethodim MPOST provided greater than or equal to (≥) 88% control of barnyardgrass, hemp sesbania, Palmer amaranth, pitted morningglory, and prickly sida. Additionally, this treatment reduced total weed seed production 88% compared to the nontreated control. Flumioxazin PRE fb lactofen plus clethodim EPOST fb acetochlor MPOST provided similar weed control and peanut yield as flumioxazin PRE fb lactofen plus clethodim MPOST. This treatment reduced total weed seed production 93%. Treatments containing PRE, EPOST, and MPOST herbicide applications provided the best season-long control of weeds and weed seed suppression in Mississippi peanut. Full article
(This article belongs to the Special Issue Weed Management & Sustainable Agriculture)
Open AccessArticle
Evaluation of Commercial Wheat Cultivars for Canopy Architecture, Early Vigour, Weed Suppression, and Yield
Agronomy 2020, 10(7), 983; https://doi.org/10.3390/agronomy10070983 - 09 Jul 2020
Abstract
Herbicide resistance in weeds restricts control options, thereby escalating economic loss and threatening agricultural sustainability in cereal production. Field evaluation of the crop performance, competitive traits, and consequent weed suppressive potential of 13 commercial winter wheat (Triticum aestivum L.) cultivars was performed [...] Read more.
Herbicide resistance in weeds restricts control options, thereby escalating economic loss and threatening agricultural sustainability in cereal production. Field evaluation of the crop performance, competitive traits, and consequent weed suppressive potential of 13 commercial winter wheat (Triticum aestivum L.) cultivars was performed in central NSW Australia with a focus on the evaluation and modelling of above-ground interactions. In 2015 and 2016, replicated field trials were established with genetically diverse commercial wheat genotypes under moderate to low rainfall conditions in Wagga Wagga (572 mm) and Condobolin (437 mm) New South Wales, respectively. The heritage cultivar Federation and a commercial cultivar of winter cereal rye (Secale cereale L.) were included as known weed-suppressive controls. Crop and weed growth, as well as early vigour, leaf area index, and photosynthetically active radiation, were monitored at various crop phenological stages including early growth, vegetative, flowering, grain fill, and harvest. Significant differences between wheat cultivar and location were observed for crop biomass, early vigour, leaf area index, weed number, weed biomass, canopy architecture, and yield in both 2015 and 2016. Differences in weed establishment were largely impacted first by rainfall and season and secondly by crop architecture (i.e., height, size, canopy) and phenology (i.e., growth stages). Early vigour and early canopy closure were instrumental in suppressing weed establishment and growth. Cultivar performance and competition with weeds were also clearly influenced by both environmental factors and genotype, as evidenced by differences in early cultivar performance, yield, and weed suppression by season and location. Specifically, Federation, Condo, and Janz wheat cultivars were superior performers in terms of weed suppression in both locations and years; however, Federation produced up to 55% lower yield than recently introduced cultivars. Partial least squares (PLS) regression was performed to develop a predictive linear model for weed competition in commercial wheat cultivars based on weed dry biomass as the response variable and selected aboveground crop canopy traits as predictors. In 2015, the model differed in accordance with crop growth stage, but the impact of predictors on weed biomass at both locations was not significant. In 2016, under local above average rainfall conditions, the model showed a significant negative correlation (p < 0.001) of most predictors on weed biomass (r2 = 0.51 at Condobolin, r2 = 0.62 at Wagga Wagga), suggesting the most influential factors in reducing weed numbers and establishment as crop vigour, biomass, and height. Our results indicate the establishment of competitive wheat cultivars in the absence of post-emergent herbicides resulted in a two to five-fold increased weed suppression over less suppressive genotypes, without significant yield penalties. Therefore, cultivar choice constitutes a cost-effective and sustainable weed management tool, particularly when weed pressure is significant. Full article
(This article belongs to the Special Issue Weed Management & Sustainable Agriculture)
Show Figures

Figure 1

Open AccessArticle
Different Ground Vegetation Cover Management Systems to Manage Cynodon dactylon in an Irrigated Vineyard
Agronomy 2020, 10(6), 908; https://doi.org/10.3390/agronomy10060908 - 25 Jun 2020
Abstract
Ground cover management in vineyards in Spain is focused on minimizing soil erosion and compaction. Such practices have influenced the weed community structure in the inter-rows, contributing to the spread of the high noxious weed Cynodon dactylon (L.) Pers. This fact highlights the [...] Read more.
Ground cover management in vineyards in Spain is focused on minimizing soil erosion and compaction. Such practices have influenced the weed community structure in the inter-rows, contributing to the spread of the high noxious weed Cynodon dactylon (L.) Pers. This fact highlights the need for further investigation of the interaction between ground cover practices and weed control techniques. In this study, the effect of four different ground cover managements (M) in the inter-rows on C. dactylon population dynamics (changes in coverage and frequency) was assessed over three seasons (2015–2017): (M1) a no-till spontaneous vegetation ground cover managed by shredding; (M2) a no-till spontaneous vegetation ground cover managed by shredding plus herbicide application, (M3) tilled soil and spontaneous vegetation growing; and (M4) tilled soil and a barley cover crop seeded (Hordeum vulgare L.). Cynodon dactylon and the other weeds responded differently to the various weed control methods. After three seasons, the barley cover crop was the most efficient management system to control C. dactylon and other weeds. Final soil cover in barley cover crop and tilled soil with spontaneous vegetation were 0.5% and 1.1%, respectively, compared to 3.7% and 7.7% obtained by spontaneous vegetation shredded with and without herbicide application, respectively. In addition, total weed frequency varied from 9.7% for barley cover crop to 45.8% for spontaneous vegetation only shredded. Weed community composition changed due to the pressure exerted by each management and the adaptive strategy of the different species. This study highlights the importance of knowledge of how vegetation management influences weed flora to improve the sustainability of wine grape production systems. Full article
(This article belongs to the Special Issue Weed Management & Sustainable Agriculture)
Show Figures

Figure 1

Open AccessArticle
Witchweed’s Suicidal Germination: Can Slenderleaf Help?
Agronomy 2020, 10(6), 873; https://doi.org/10.3390/agronomy10060873 - 18 Jun 2020
Abstract
The parasitic plant Striga hermonthica (Delile) Benth. is stimulated to germinate by biomolecules (strigolactones) produced in the roots of host and some non-host plants. Non-hosts induce Striga’s suicidal germination and are therefore used as trap crops. Among trap crops, the Slenderleaf legume [...] Read more.
The parasitic plant Striga hermonthica (Delile) Benth. is stimulated to germinate by biomolecules (strigolactones) produced in the roots of host and some non-host plants. Non-hosts induce Striga’s suicidal germination and are therefore used as trap crops. Among trap crops, the Slenderleaf legume in the genus Crotalaria (Crotalaria brevidens (L.) Benth.) and (Crotalaria orchroleuca (G.) Don.) has been popularized in African smallholder farms. However, the Striga germination efficiency of these locally grown Crotalaria varieties (landraces) is unknown. Also unclear is Crotolaria’s extent to inhibiting Striga growth, post germination. Extensive parasite penetration can expose the trap crop to secondary infections and possible phytotoxicity from Striga. We used in vitro germination assays to determine the Striga germination efficiency of 29 Crotalaria landraces. Furthermore, we determined Crotalaria’s ability to inhibit Striga attachment and growth using histological analysis. We found that: i) Crotalaria stimulated germination of Striga seeds at frequencies ranging between 15.5% and 54.5% compared to 74.2% stimulation by the synthetic strigolactone (GR24) used a positive control; ii) Crotalaria blocked Striga entry at multiple levels and did not allow growth beyond the pericycle, effectively blocking vascular connection with the non-host. Hence, Crotalaria is suitable as a trap crop in integrated Striga management. Full article
(This article belongs to the Special Issue Weed Management & Sustainable Agriculture)
Show Figures

Figure 1

Open AccessArticle
Is There a Possibility to Involve the Hormesis Effect on the Soybean with Glyphosate Sub-Lethal Amounts Used to Control Weed Species Amaranthus retroflexus L.?
Agronomy 2020, 10(6), 850; https://doi.org/10.3390/agronomy10060850 - 14 Jun 2020
Abstract
Sub-lethal doses of herbicides can promote plant growth and have a positive effect on an organism this is called hormesis. The purpose of this study was to test the effects of sub-lethal doses of glyphosate on soybean (Glycine max (L.) Merr.) (1.8, [...] Read more.
Sub-lethal doses of herbicides can promote plant growth and have a positive effect on an organism this is called hormesis. The purpose of this study was to test the effects of sub-lethal doses of glyphosate on soybean (Glycine max (L.) Merr.) (1.8, 3.6, 7.2, 36, 180, and 720 g ha−1) and Amaranthus retroflexus L. (7.2, 36, 180, 720, 1440, and 2880 g ha−1). Different biological parameters, such as phytotoxicity, fresh weight, root length, content of photosynthetic pigments, and shikimate concentration, were measured. Glyphosate in doses of 1440 and 2880 g ha−1 destroyed A. retroflexus plants. A fresh weight of A. retroflexus at a dose of 36 g ha−1 was reduced by 76.31%, while for the soybean it was reduced by 19.26%. At the highest dose, the shikimate concentration was 145% in the soybean, while in A. retroflexus, the concentration increased by 58.80% compared to the control plants. All doses of glyphosate were statistically significantly different in terms of chlorophyll a content, while higher doses in A. retroflexus caused chlorophyll b to decrease. The change in the production of carotenoids was not statistically significant. The results showed that sub-lethal amounts of glyphosate did not lead to stimulation of measured parameters of soybean. Full article
(This article belongs to the Special Issue Weed Management & Sustainable Agriculture)
Show Figures

Figure 1

Back to TopTop