Due to their sustainability, lightweight qualities, and simplicity of installation, wood slab systems have gained increasing attention in the building industry. Cross-laminated timber (CLT), an engineered wood product (EWP), improves structural strength and stability, offering a good alternative to conventional reinforced concrete (RC)
[...] Read more.
Due to their sustainability, lightweight qualities, and simplicity of installation, wood slab systems have gained increasing attention in the building industry. Cross-laminated timber (CLT), an engineered wood product (EWP), improves structural strength and stability, offering a good alternative to conventional reinforced concrete (RC) slab systems. Conventional CLT, however, contains adhesives that pose environmental and end-of-life (EOL) disposal challenges. Adhesive-free CLT (AFCLT) panels have recently been introduced as a sustainable option, but their environmental performance has not yet been thoroughly investigated. In this study, the environmental impacts of five slab systems are evaluated and compared using the life cycle assessment (LCA) methodology. The investigated slab systems include a standard CLT slab (SCLT), three different AFCLT slabs (AFCLT1, AFCLT2, and AFCLT3), and an RC slab. The assessment considered abiotic depletion potential (ADP), global warming potential (GWP), ozone layer depletion potential (ODP), human toxicity potential (HTP), freshwater aquatic ecotoxicity potential (FAETP), marine aquatic ecotoxicity potential (MAETP), terrestrial ecotoxicity potential (TETP), photochemical oxidation potential (POCP), acidification potential (AP), and eutrophication potential (EP), covering the entire life cycle from production to disposal, excluding part of the use stage (B2-B7). The results highlight the advantages and drawbacks of each slab system, providing insights into selecting sustainable slab solutions. AFCLT2 exhibited the lowest environmental impacts across the assessed categories. On the contrary, the RC slab showed the highest environmental impact among the studied products. For example, the RC slab had the highest GWP of 67.422 kg CO
2 eq, which was 1784.3% higher than that of AFCLT2 (3.779 kg CO
2 eq). Additionally, the simulation displayed that the analysis results vary depending on the electricity source, which is influenced by geographical location. Using the Norwegian electricity mix resulted in the most sustainable outcomes compared with Sweden, Finland, and Saudi Arabia. This study contributes to the advancement of low-carbon construction techniques and the development of building materials with reduced environmental impacts in the construction sector.
Full article