Comparison of Preservatives for the Prevention of Microbial Spoilage of Apple Pomace During Storage
Abstract
1. Introduction
2. Results and Discussion
2.1. Microbial Load and Growth on Apple Pomace
2.2. Endogenous Microflora in Apple Pomace from the Adelaide Hills Region
2.3. Treatment of Apple Pomace with Antimicrobials
2.4. Treatment of Apple Pomace with Polysaccharides
2.5. Treatment of Apple Pomace with Chitosan/Antimicrobial Combinations
2.6. Influence of pH on Microbial Growth in Apple Pomace
2.7. Influence of Acetic Acid on Microbial Growth in Apple Pomace
2.8. Fermentation of Acetic Acid Preserved Apple Pomace
3. Conclusions
4. Experimental
4.1. Materials
4.2. Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costa, J.M.; Ampese, L.C.; Ziero, H.D.D.; Sganzerla, W.G.; Forster-Carneiro, T. Apple pomace biorefinery: Integrated approaches for the production of bioenergy, biochemicals, and value-added products—An updated review. J. Environ. Chem. Eng. 2022, 10, 108358. [Google Scholar] [CrossRef]
- Gołębiewska, E.; Kalinowska, M.; Yildiz, G. Sustainable use of apple pomace (AP) in different industrial sectors. Materials 2022, 15, 1788. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The State of Food and Agriculture 2019: Moving Forward on Food Loss and Waste Reduction; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; ISBN 978-92-5-131789-1. [Google Scholar]
- Błaszczyk, A.; Sady, S.; Pachołek, B.; Jakubowska, D.; Grzybowska-Brzezińska, M.; Krzywonos, M.; Popek, S. Sustainable management strategies for fruit processing byproducts for biorefineries: A review. Sustainability 2024, 16, 1717. [Google Scholar] [CrossRef]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple pomace as food fortification ingredient: A systematic review and meta-analysis. J. Food Sci. 2020, 85, 2977. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, T.; Wang, X.; Lü, X. Apple pomace as a potential valuable resource for full-components utilization: A review. J. Clean. Prod. 2021, 329, 129676. [Google Scholar] [CrossRef]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple pomace as a functional and healthy ingredient in food products: A review. Processes 2020, 8, 319. [Google Scholar] [CrossRef]
- Kauser, S.; Murtaza, M.A.; Hussain, A.S.; Imran, M.; Kabir, K.; Najam, A.; An, Q.U.; Akram, S.; Fatima, H.; Batool, S.A.; et al. Apple pomace: A bioresource of functional and nutritional components with potential of utilization in different food formulations: A review. Food Chem. Adv. 2024, 4, 100598. [Google Scholar] [CrossRef]
- Hernández, D.; Zambra, C.; Astudillo, C.A.; Gabriel, D.; Díaz, J. Evolution of physico-chemical parameters. microorganism diversity and volatile organic compound of apple pomace exposed to ambient conditions. Heliyon 2023, 9, e19770. [Google Scholar] [CrossRef]
- Madrera, R.R.; Bedriñana, R.P.; Valles, B.S. Production and characterization of aroma compounds from apple pomace by solid-state fermentation with selected yeasts. LWT Food Sci. Tech. 2015, 64, 1342. [Google Scholar] [CrossRef]
- Bhat, I.M.; Wani, S.M.; Mir, S.A.; Naseem, Z. Effect of microwave-assisted vacuum and hot air oven drying methods on quality characteristics of apple pomace powder. Food Prod. Process. Nutr. 2023, 5, 3602. [Google Scholar] [CrossRef]
- Langeh, A.; Singh, J.; Bhat, A.; Bandral, J.D.; Gupta, S.; Choton, S. Role of preservatives in preservation of fruits and vegetables: A review. Chem. Sci. Rev. Lett. 2023, 12, 217–221. [Google Scholar]
- Salas, M.L.; Mounier, J.; Valence, F.; Coton, M.; Thierry, A.; Coton, E. Antifungal microbial agents for food biopreservation—A review. Microorganisms 2017, 5, 37. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yuan, Y.; Liu, Y.; Li, X.; Wu, S. Application of chitosan in fruit preservation: A review. Food Chem. 2024, 23, 101589. [Google Scholar] [CrossRef]
- Bose, S.K.; Howlader, P.; Wang, W.; Yin, H. Oligosaccharide is a promising natural preservative for improving postharvest preservation of fruit: A review. Food Chem. 2021, 341, 128178. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Gänzle, M.G. Challenges and opportunities related to the use of chitosan as a food preservative. J. Appli. Microbiol. 2019, 126, 1318. [Google Scholar] [CrossRef]
- Anacarso, I.; de Niederhäusern, S.; Iseppi, R.; Sabia, C.; Bondi, M.; Messi, P. Anti-listerial activity of chitosan and Enterocin 416K1 in artificially contaminated RTE products. Food Contr. 2011, 22, 2076. [Google Scholar] [CrossRef]
- Ayrapetyan, O.N.; Obluchinskaya, E.D.; Zhurishkina, E.V.; Skorik, Y.A.; Lebedev, D.V.; Kulminskaya, A.A.; Lapina, I.M. Antibacterial properties of fucoidans from the brown algae Fucus vesiculosus L. of the Barents Sea. Biology 2021, 10, 67. [Google Scholar] [CrossRef]
- Vo, T.-S.; Kim, S.-K. Fucoidans as a natural bioactive ingredient for functional foods. J. Func. Foods 2013, 5, 16–27. [Google Scholar] [CrossRef]
- Xu, B.; Wu, S. Preservation of mango fruit quality using fucoidan coatings. LWT 2021, 143, 111150. [Google Scholar] [CrossRef]
- Poveda-Castillo, G.D.C.; Rodrigo, D.; Martínez, A.; Pina-Pérez, M.C. Bioactivity of fucoidan as an antimicrobial agent in a new functional beverage. Beverages 2018, 4, 64. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Freilich, S.; Bartuv, R.; Zhimo, V.Y.; Kumar, A.; Biasi, A.; Salim, S.; Feygenberg, O.; Burchard, E.; Dardick, C.; et al. Global analysis of the apple fruit microbiome: Are all apples the same? Environ. Microbiol. 2021, 23, 6038. [Google Scholar] [CrossRef] [PubMed]
- Wassermann, B.; Müller, H.; Berg, G. An apple a day: Which bacteria do we eat with organic and conventional apples? Front. Microbiol. 2019, 10, 1629. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, V.O.; Johnson, K.B.; Sugar, D.; Loper, J.E. Antibiosis contributes to biological control of fire blight by Pantoea agglomerans strain Eh252 in orchards. Phytopathology 2002, 92, 1202. [Google Scholar] [CrossRef] [PubMed]
- Calvo, J.; Calvente, V.; de Orellano, M.E.; Benuzzi, D.; de Tosetti, M.I.S. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int. J. Food Microbiol. 2007, 113, 251. [Google Scholar] [CrossRef]
- Etebarian, H.-R.; Sholberg, P.L.; Eastwell, K.C.; Sayler, R.J. Biological control of apple blue mold with Pseudomonas fluorescens. Can. J. Microbiol. 2005, 51, 591. [Google Scholar] [CrossRef]
- Varela, C.; Barker, A.; Tran, T.; Borneman, A.; Curtin, C. Sensory profile and volatile aroma composition of reduced alcohol Merlot wines fermented with Metschnikowia pulcherrima and Saccharomyces uvarum. Int. J. Food Microbiol. 2017, 252, 1. [Google Scholar] [CrossRef]
- Chu, Y.; Li, M.; Jin, J.; Dong, X.; Xu, K.; Jin, L.; Qiao, Y.; Ji, H. Advances in the application of the non-conventional yeast Pichia kudriavzevii in food and biotechnology industries. J. Fungi 2023, 9, 170. [Google Scholar] [CrossRef]
- Sever, Z.; Ivić, D.; Kos, T.; Miličević, T. Identification of Fusarium species isolated from stored apple fruit in Croatia. Arh. Hig. Rada Toksikol. (Arch. Ind. Hyg. Toxicol.) 2012, 63, 463. [Google Scholar] [CrossRef]
- Maldonado, M.L.; Patriarca, A.; McCargo, P.; Iannone, L.; Sanchis, V.; Nielsen, K.F.; Pinto, V.F. Diversity and metabolomic characterization of Penicillium expansum isolated from apples grown in Argentina and Spain. Fungal Biol. 2022, 126, 547. [Google Scholar] [CrossRef]
- Meena, M.; Prajapati, P.; Ravichandran, C.; Sehrawat, R. Natamycin: A natural preservative for food applications—A review. Food Sci. Biotechnol. 2021, 30, 1481. [Google Scholar] [CrossRef]
- Opazo, M.C.; Coronado-Arrázola, I.; Vallejos, O.P.; Moreno-Reyes, R.; Fardella, C.; Mosso, L.; Kalergis, A.M.; Bueno, S.M.; Riedel, C.A. The impact of the micronutrient iodine in health and diseases. Crit. Rev. Food Sci. Nutr. 2022, 62, 1466. [Google Scholar] [CrossRef] [PubMed]
- Monitoring the Australian Population’s Intake of Dietary Iodine Before and After Mandatory Fortification, Report by Food Standards Australia New Zealand (FSANZ), 2016. Available online: https://www.foodstandards.gov.au/sites/default/files/publications/Documents/Iodine%20Fortification%20Monitoring%20Report.pdf (accessed on 26 June 2025).
- Duborská, E.; Vojtková, H.; Matulová, M.; Šeda, M.; Matúš, P. Microbial involvement in iodine cycle: Mechanisms and potential applications. Front. Bioeng. Biotechnol. 2023, 11, 1279270. [Google Scholar] [CrossRef]
- Habibi, M.; Golmakani, M.-T.; Eskandari, M.H.; Hosseini, S.M.H. Potential prebiotic and antibacterial activities of fucoidan from Laminaria japonica. Int. J. Biol. Macromol. 2024, 268, 131776. [Google Scholar] [CrossRef]
- Beagan, M.L.C.; Bang, L.L.; Pettersen, J.S.; Grønnemose, R.B.; Foertsch, S.; Andersen, T.E.; Ding, M. Fucoidans from Laminaria hyperborea demonstrate bactericidal activity against diverse bacteria. J. Appl. Phycol. 2024, 36, 2199. [Google Scholar] [CrossRef]
- Ke, C.-L.; Deng, F.-S.; Chuang, C.-Y.; Lin, C.-H. Antimicrobial actions and applications of chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef]
- Qin, Y.; Li, P.; Guo, Z. Cationic chitosan derivatives as potential antifungals: A review of structural optimization and applications. Carbohydr. Polym. 2020, 236, 116002. [Google Scholar] [CrossRef] [PubMed]
- Muthu, M.; Pushparaj, S.S.C.; Gopal, J.; Sivanesan, I. A Review on the antimicrobial activity of chitosan microspheres: Milestones achieved and miles to Go. J. Mar. Sci. Eng. 2023, 11, 1480. [Google Scholar] [CrossRef]
- Yajima, H.; Morita, M.; Hashimoto, M.; Sashiwa, H.; Kikuchi, T.; Ishii, T. Complex formation of chitosan with iodine and its structure and spectroscopic properties—Molecular assembly and thermal hysteresis behavior. Int. J. Thermophys. 2001, 22, 1265. [Google Scholar] [CrossRef]
- Hassan, E.M. Ionic Chitosan-Iodine Complexes: Antiseptic Hydrogels and Wound Healing Promoters. U.S. Patent US6521243B2, 18 February 2003. [Google Scholar]
- Kato, M.; Mineshima, N.; Kato, T.; Kawada, Y.; Hanada, H.; Inomata, T. Chitosan-Iodine Adduct. U.S. Patent US4275194A, 1981. [Google Scholar]
- Koide, S.S. Chitin-chitosan: Properties. benefits and risks. Nut. Res. 1998, 18, 1091. [Google Scholar] [CrossRef]
- Kawahara, A.; An, G.-H.; Miyakawa, S.; Sonoda, J.; Ezawa, T. Nestedness in Arbuscular Mycorrhizal fungal communities along soil pH gradients in early primary succession: Acid-tolerant fungi are pH generalists. PLoS ONE 2016, 11, e0165035. [Google Scholar] [CrossRef] [PubMed]
- Rousk, J.; Brookes, P.C.; Bååth, E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl. Environ. Microbiol. 2009, 75, 1589. [Google Scholar] [CrossRef] [PubMed]
- Lund, P.A.; de Biase, D.; Liran, O.; Scheler, O.; Mira, N.P.; Cetecioglu, Z.; Fernández, E.N.; Bover-Cid, S.; Hall, R.; Sauer, M.; et al. Understanding how microorganisms respond to acid pH is central to their control and successful exploitation. Front. Microbiol. 2020, 11, 556140. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Luo, J.; Ahmed, T.; Zaki, H.E.M.; Tian, Y.; Shahid, M.S.; Chen, J.; Li, B. Beneficial Effect and Potential Risk of Pantoea on Rice Production. Plants 2022, 11, 2608. [Google Scholar] [CrossRef]
- Spadaro, D.; Ciavorella, A.; Dianpeng, Z.; Garibaldi, A.; Gullino, M.L. Effect of culture media and pH on the biomass production and biocontrol efficacy of a Metschnikowia pulcherrima strain to be used as a biofungicide for postharvest disease control. Can. J. Microbiol. 2010, 56, 128–137. [Google Scholar] [CrossRef]
- Stratford, M.; Plumridge, A.; Nebe-von-Caron, G.; Archer, D.B. Inhibition of spoilage mould conidia by acetic acid and sorbic acid involves different modes of action, requiring modification of the classical weak-acid theory. Int. J. Food Microbiol. 2009, 136, 37. [Google Scholar] [CrossRef]
- Khalifa, S.A.M.; El-Shabasy, R.M.; Tahir, H.E.; Abo-Atya, D.M.; Saeed, A.; Abolibda, T.Z.; Guo, Z.; Zou, X.; Zhang, D.; Du, M.; et al. Vinegar—A beneficial food additive: Production. safety, possibilities, and applications from ancient to modern times. Food. Funct. 2024, 15, 10262. [Google Scholar] [CrossRef]
- Urrutia, N.L.; Harvatine, K.J. Acetate dose-dependently stimulates Milk fat synthesis in lactating dairy cows. J. Nutr. 2017, 147, 763. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Scientific Opinion on the safety and efficacy of acetic acid, sodium diacetateand calcium acetate as preservatives for feed for all animal species. Eur. Food. Safety Auth. J. 2012, 10, 2571.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harratt, A.; Wu, W.; Strube, P.; Ceravolo, J., Jr.; Beattie, D.; Pukala, T.; Krasowska, M.; Blencowe, A. Comparison of Preservatives for the Prevention of Microbial Spoilage of Apple Pomace During Storage. Foods 2025, 14, 2438. https://doi.org/10.3390/foods14142438
Harratt A, Wu W, Strube P, Ceravolo J Jr., Beattie D, Pukala T, Krasowska M, Blencowe A. Comparison of Preservatives for the Prevention of Microbial Spoilage of Apple Pomace During Storage. Foods. 2025; 14(14):2438. https://doi.org/10.3390/foods14142438
Chicago/Turabian StyleHarratt, Ashley, Wenyuan Wu, Peyton Strube, Joseph Ceravolo, Jr., David Beattie, Tara Pukala, Marta Krasowska, and Anton Blencowe. 2025. "Comparison of Preservatives for the Prevention of Microbial Spoilage of Apple Pomace During Storage" Foods 14, no. 14: 2438. https://doi.org/10.3390/foods14142438
APA StyleHarratt, A., Wu, W., Strube, P., Ceravolo, J., Jr., Beattie, D., Pukala, T., Krasowska, M., & Blencowe, A. (2025). Comparison of Preservatives for the Prevention of Microbial Spoilage of Apple Pomace During Storage. Foods, 14(14), 2438. https://doi.org/10.3390/foods14142438