Fatty Acid and Aroma Profiles of Microencapsulated Olive Oils from Southeastern Anatolia: Effects of Cultivar Variations, Storage Time, and Wall Material Formulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Method
2.2.1. Emulsion Preparation
Emulsion Stability
2.2.2. Freeze-Drying (Lyophilization)
2.2.3. Microencapsulation Efficiency
2.2.4. Oxidative Stability
2.2.5. Analysis of Fatty Acids
2.2.6. Analysis of Aroma Compounds
GC-FID and GC-MS Conditions
2.2.7. Statistical Analysis
3. Results and Discussion
3.1. Results of Emulsion Stability
3.2. Determination of Microencapsulation Efficiency (ME)
3.3. Results of Oxidative Stability
3.4. Fatty Acid Profiles of Oils and Microencapsules
3.5. Aroma Compounds of the Oils and Microencapsules
3.6. PCA Results of the Aroma Compounds and Fatty Acids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bosnalı, S.; Özdestan, Ö. Microencapsulation applications of essential oils used in food industry. Pamukkale Univ. J. Eng. Sci. 2019, 25, 846–853. [Google Scholar] [CrossRef]
- Kanat, S.; Terzi, G. Mikroenkapsülasyon ve gıda endüstrisinde kullanım alanları microencapsulation and its uses in food industry. Aydingas 2017, 5, 81–89. [Google Scholar] [CrossRef]
- Jokar, Y.; Goli, M.; Nasr-Esfahani, M.; Fazel, M.; Najarian, A. Microencapsulation of fish oil rich in epa and dha using mixture of arabic gum and persian gum through spray-drying technique. Eur. J. Lipid Sci. Technol. 2024, 126, 2300239. [Google Scholar] [CrossRef]
- Bakry, A.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.; Mousa, A.; Liang, L. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Compr. Rev. Food Sci. Food Saf. 2015, 15, 143–182. [Google Scholar] [CrossRef]
- Alencar, D.D.O.; Souza, E.L.; Almeida, E.T.C.; Silva, A.L.; Lisboa, H.M.; Cavalcanti, M.T. Microencapsulation of cymbopogon citratus d.c. stapf essential oil with spray drying: Development, characterization, and antioxidant and antibacterial activities. Foods 2022, 11, 1111. [Google Scholar] [CrossRef]
- Pudžiuvelytė, L.; Marksa, M.; Sosnowska, K.; Winnicka, K.; Morkūnienė, R.; Bernatonienė, J. Freeze-drying technique for microencapsulation of elsholtzia ciliata ethanolic extract using different coating materials. Molecules 2020, 25, 2237. [Google Scholar] [CrossRef]
- Özbek, Z.A.; Ergönül, P.G. Influence of wall material composition on microencapsulation efficiency of cold-pressed pumpkin seed oil by freeze-drying. Nov. Tech. Nutr. Food Sci. 2018, 3, 1–4. [Google Scholar]
- Aydın, A.; Tezel, B.; Öğütçü, M. Microorganisms and effects on the olive oil quality. Turk. J. Agric.-Food Sci. Technol. 2024, 12, 100–108. [Google Scholar] [CrossRef]
- Dıraman, H.; Tugen, A. Food safety in olive oils as a halal food source and detection of adulteration. J. Halal Ethical Res. 2022, 4, 43–68. [Google Scholar] [CrossRef]
- Mirzaei, M.; Emam-Djomeh, Z.; Askari, G. Spray-drying microencapsulation of anthocyanins of black seedless barberry (berberis vulgaris). J. Food Process. Preserv. 2021, 45, e15858. [Google Scholar] [CrossRef]
- Li, M.; Li, C.; Zhou, Y.; Tian, H.; Deng, Q.; Liu, H.; Zhu, L.; Yin, X. Optimization of cinnamaldehyde microcapsule wall materials by experimental and quantitative methods. J. Appl. Polym. Sci. 2020, 138, 49667. [Google Scholar] [CrossRef]
- Aisyah, Y.; Sabilla, A.; Yunita, D. Encapsulation of patchouli (pogostemon cablin benth), nutmeg (myristica fragrans), and citronella (cymbopogon nardus) essential oil using a combination of coating materials with complex coacervation method. IOP Conf. Ser. Earth Environ. Sci. 2022, 1116, 012021. [Google Scholar] [CrossRef]
- Glomm, W.; Molesworth, P.; Sandru, E.; Truong, L.; Brunsvik, A.; Johnsen, H. Microencapsulation of peppermint oil by complex coacervation and subsequent spray drying using bovine serum albumin/gum acacia and an oxidized starch crosslinker. Appl. Sci. 2021, 11, 3956. [Google Scholar] [CrossRef]
- Chasquibol, N.; Gonzales, B.F.; Alarcón, R.; Sotelo, A.; Gallardo, G.; García, B.; Pérez-Camino, M.D.C. Co-microencapsulation of sacha inchi (Plukenetia huayllabambana) oil with natural antioxidants extracts. Foods 2023, 12, 2126. [Google Scholar] [CrossRef]
- Kustyawati, M.; Sugiharto, R.; Rini, R. Microencapsulation of green capulaga (elettaria cardamomum) essential oil with maltodextrin and its applications in coffee drink. J. Agric. Eng. 2022, 11, 531. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Huang, J.; Zhou, Z.; Zhao, D.; Jiang, L.; Shen, Y. Encapsulation and controlled release of fragrances from functionalized porous metal–organic frameworks. AlChE J. 2018, 65, 491–499. [Google Scholar] [CrossRef]
- Márquez-Goméz, M.; Galicia-García, T.; Márquez-Meléndez, R.; Ruíz-Gutiérrez, M.; Quintero-Ramos, A. Spray-dried microencapsulation of orange essential oil using modified rice starch as wall material. J. Food Process. Preserv. 2017, 42, e13428. [Google Scholar] [CrossRef]
- Sukri, N.; Annisa, D.; Djali, M.; Cahyana, Y.; Mahani, M.; Huda, S. Effect of whey protein isolate (wpi)—Pectin ratio on phenolic content stability of propolis microcapsules. Food Sci. Technol. 2023; 1–10, In press. [Google Scholar] [CrossRef]
- Wójtowicz, E.; Zawirska-Wojtasiak, R.; Adamiec, J.; Wąsowicz, E.; Przygoński, K.; Remiszewski, M. Odor active compounds content in spices and their microencapsulated powders measured by SPME. J. Food Sci. 2010, 75, 441–445. [Google Scholar] [CrossRef]
- Chaabane, D.; Mirmazloum, I.; Yakdhane, A.; Ayari, E.; Albert, K.; Vatai, G.; Ladanyi, M.; Koris, A.; Nath, A. Microencapsulation of olive oil by dehydration of emulsion: Effects of the emulsion formulation and dehydration process. Bioengineering 2023, 10, 657. [Google Scholar] [CrossRef]
- Plati, F.; Papi, R.; Paraskevopoulou, A. Characterization of oregano essential oil (Origanum vulgare L. subsp. hirtum) particles produced by the novel nano spray drying technique. Foods 2021, 10, 2923. [Google Scholar] [CrossRef]
- Alcântara, M.A.; de Lima, A.E.A.; Braga, A.L.M.; Tonon, R.V.; Galdeano, M.C.; da Costa Mattos, M.; Santa Brígida, A.I.; Rosenhaim, R.; dos Santos, N.A.; de Magalhães Cordeiro, A.M.T. Influence of the emulsion homogenization method on the stability of chia oil microencapsulated by spray drying. Powder Technol. 2019, 354, 877–885. [Google Scholar] [CrossRef]
- Tonon, R.V.; Grosso, C.R.F.; Hubinger, M.D. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Res. Int. 2011, 44, 282–289. [Google Scholar] [CrossRef]
- AOCS. Official Method Peroxide Value Acetic Acid (Chloroform Method), Sampling and Analysis of Commercial Fats and Oils; Cd 8-53; Copyright The American Oils Chemist’s Society; Urbana—Illinois: Urbana, IL, USA, 2003. [Google Scholar]
- Determination of Fatty Acid Methyl Esters by Gas Chromatography; COI/T. 20/Doc. No. 33/Rev. 1; International Olive Council: Madrid, Spain, 2017; Available online: http://www.internationaloliveoil.org (accessed on 5 July 2025).
- García-González, D.L.; Casadei, E.; Aparicio-Ruiz, R.; Ortiz Romero, C.; Valli, E.; Brereton, P.; Koidis, A.; Korytkowska, M.; Servili, M.; Selvaggini, R.; et al. Multianalyte analysis of volatile compounds in virgin olive oils using SPME-GC with FID or MS detection: Results of an international interlaboratory validation. Eur. J. Lipid Sci. Technol. 2024, 126, 2300079. [Google Scholar] [CrossRef]
- Kesen, S.; Amanpour, A.; Tsouli Sarhir, S.; Sevindik, O.; Guclu, G.; Kelebek, H.; Selli, S. Characterization of aroma-active compounds in seed extract of black cumin (Nigella sativa L.) by aroma extract dilution analysis. Foods 2018, 7, 98. [Google Scholar] [CrossRef]
- Kesen, S. Monitoring fatty acid and sterol profile of Nizip Yaglik olive oil adulterated by cotton and sunflower oil. J. Oleo Sci. 2019, 68, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Calvo, P.; Castaño, Á.L.; Lozano, M.; González-Gómez, D. Influence of the microencapsulation on the quality parameters and shelf-life of extra-virgin olive oil encapsulated in the presence of BHT and different capsule wall components. Food Res. Int. 2012, 45, 256–261. [Google Scholar] [CrossRef]
- Hee, Y.Y.; Tan, C.P.; Abdul Rahman, R.; Mohd Adzahan, N.; Lai, W.T.; Chong, G.H. Influence of different wall materials on the microencapsulation of virgin coconut oil by spray drying. Int. J. Food Eng. 2015, 11, 61–69. [Google Scholar] [CrossRef]
- Lerma García, M.J. Development of Methods for the Classification of EVOOs According to Their Geographical Origin. In Characterization and Authentication of Olive and Other Vegetable Oils; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Gölükçü, M.; Tokgöz, H.; Kocatürk, M. Bazı soya (glycine max) çeşit ve hatlarının yağ içeriği ile yağ asitleri bileşimlerinin araştırılması. Akad. Ziraat Derg. 2019, 8, 283–290. [Google Scholar] [CrossRef]
- Keshri, P.; Lohani, U.; Shahi, N.; Kumar, A. Process optimization for developing ultrasound assisted and microwave dried encapsulated flaxseed oil and its storability. J. Food Process. Eng. 2024, 47, e14666. [Google Scholar] [CrossRef]
- Chasquibol, N.; Alarcón, R.; Gonzales, B.; Sotelo, A.; Landoni, L.; Gallardo, G.; Camino, M. Design of functional powdered beverages containing co-microcapsules of sacha inchi P. huayllabambana oil and antioxidant extracts of camu camu and mango skins. Antioxidants 2022, 11, 1420. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Scher, H.B.; Jeoh, T. Volatile retention and enteric release of d-limonene by encapsulation in complex coacervated powders formed by spray drying. ACS FST 2021, 1, 2086–2095. [Google Scholar] [CrossRef]
- Tang, Y.; Park, H.; Scher, H.B.; Jeoh, T. The role of a moisture-barrier latex in controlling retention, stability and release of d-limonene from complex coacervated matrix microparticles formed during spray drying. Front. Nutr. 2022, 9, 979656. [Google Scholar] [CrossRef]
- Chaabane, D.; Yakdhane, A.; Vatai, G.; Kőris, A.; Nath, A. Microencapsulation of olive oil. Period. Polytech. Chem. Eng. 2022, 66, 354–366. [Google Scholar] [CrossRef]
- Mollica, F.; Gelabert, I.; Amorati, R. Synergic antioxidant effects of the essential oil component γ-terpinene on high-temperature oil oxidation. ACS Food Sci. Amp. Technol. 2022, 2, 180–186. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Wang, Y.U.; Leng, Q.; Sun, Y.; Hoffman, R.M.; Jin, H. The anti-oxidant monoterpenep-cymene reduced the occurrence of colorectal cancer in a hyperlipidemia rat model by reducing oxidative stress and expression of inflammatory cytokines. Anticancer Res. 2021, 41, 1213–1218. [Google Scholar] [CrossRef]
- Hernández-Hernández, E.; Regalado-González, C.; Vázquez-Landaverde, P.; Guerrero-Legarreta, I.; García-Almendárez, B.E. Microencapsulation, chemical characterization, and antimicrobial activity of Mexican (Lippia graveolens HBK) and European (Origanum vulgare L.) oregano essential oils. Sci. World J. 2014, 2014, 641814. [Google Scholar] [CrossRef]
- Diksha; Singh, S.; Mahajan, E.; Sohal, S.K. Growth inhibitory, immunosuppressive, cytotoxic, and genotoxic effects of γ-terpinene on Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). Sci. Rep. 2023, 13, 16472. [Google Scholar] [CrossRef]
- Dourou, A.; Brizzolara, S.; Famiani, F.; Tonutti, P. Changes in volatile organic composition of olive oil extracted from cv. ‘leccino’ fruit subjected to ethylene treatments at different ripening stages. J. Sci. Food Agric. 2021, 101, 3981–3986. [Google Scholar] [CrossRef]
- Şişik Oğraş, Ş.; Kaban, G.; Kaya, M. Volatile compounds of olive oils from different geographic regions in Turkey. Int. J. Food Prop. 2018, 21, 1833–1843. [Google Scholar] [CrossRef]
Olive Oil Samples | Wall Materials | Wall Materials Ratio | Amount of Wall Material (g) | Amount of Olive Oil (g) | Amount of Water (g) |
---|---|---|---|---|---|
NY | WPI | 1:1 | 12.5 | 12.5 | 62.5 |
Maltodextrin | 12.5 | ||||
KY | WPI | 1:1 | 12.5 | 12.5 | 62.5 |
Maltodextrin | 12.5 | ||||
NY | WPI | 1:4 | 5 | 12.5 | 62.5 |
Maltodextrin | 20 | ||||
KY | WPI | 1:4 | 5 | 12.5 | 62.5 |
Maltodextrin | 20 | ||||
NY | WPI | 1:10 | 2.27 | 12.5 | 62.5 |
Maltodextrin | 22.73 | ||||
KY | WPI | 1:10 | 2.27 | 12.5 | 62.5 |
Maltodextrin | 22.73 |
Emulsion Formulations | Separation, % * |
---|---|
NY (1:1) | 11.55 ± 0.06 e |
NY (1:4) | 11.44 ± 0.03 d |
NY (1:10) | 10.98 ± 0.04 b |
KY (1:1) | 11.44 ± 0.03 d |
KY (1:4) | 11.09 ± 0.04 c |
KY (1:10) | 10.45 ± 0.06 a |
Microencapsules | Microencapsulation Efficiency (ME, %) * |
---|---|
NY (1:1) | 87.09 ± 1.17 a |
NY (1:4) | 89.46 ± 1.62 ab |
NY (1:10) | 90.56 ± 0.16 b |
KY (1:1) | 87.30 ± 1.99 a |
KY (1:4) | 89.33 ± 1.29 ab |
KY (1:10) | 90.59 ± 0.20 b |
Microcapsules | Peroxide Values (meq O2/kg oil) * | ||
---|---|---|---|
Days | |||
0 | 45 | 90 | |
NY | 5.94 ± 0.36 aA | 9.25 ± 0.35 cB | 15.98 ± 0.75 dC |
NY (1:1) | 6.35 ± 0.10 aA | 7.94 ± 0.55 abA | 10.96 ± 1.10 cB |
NY (1:4) | 6.26 ± 0.31 aA | 7.51 ± 0.05 abB | 9.81 ± 0.00 bcC |
NY (1:10) | 6.06 ± 0.43 aA | 7.04 ± 0.40 aAB | 8.39 ± 0.46 aB |
KY | 6.04 ± 0.15 aA | 9.19 ± 0.44 cB | 16.06 ± 0.09 dC |
KY (1:1) | 6.55 ± 0.16 aA | 8.01 ± 0.51 bB | 10.82 ± 0.55 cC |
KY (1:4) | 6.53 ± 0.15 aA | 7.60 ± 0.38 abB | 9.12 ± 0.28 abC |
KY (1:10) | 6.18 ± 0.56 aA | 7.18 ± 0.15 abA | 8.61 ± 0.17 abB |
Fatty Acids | Concentration of Fatty Acids (%) * | ||||
---|---|---|---|---|---|
NY | NY (1:1) | NY (1:4) | NY (1:10) | ||
1 | Lauric acid (C12:0) | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a |
2 | Miristic acid (C14:0) | 0.02 ± 0.00 a | 0.05 ± 0.01 b | 0.11 ± 0.01 d | 0.06 ± 0.00 c |
3 | Palmitic acid (C16:0) | 16.43 ± 0.26 a | 16.54 ± 0.29 ab | 16.82 ± 0.07 b | 16.76 ± 0.04 b |
4 | Palmitoleic acid (C16:1) | 2.41 ± 0.19 a | 2.17 ± 0.24 a | 2.27 ± 0.03 a | 2.40 ± 0.02 a |
5 | Margaric acid (C17:0) | 0.41 ± 0.06 b | 0.36 ± 0.01 ab | 0.35 ± 0.00 a | 0.36 ± 0.01 ab |
6 | Cis-10-Heptadecenoik acid (C17:1) | 0.58 ± 0.02 c | 0.49 ± 0.05 b | 0.49 ± 0.02 b | 0.40 ± 0.02 a |
7 | Stearic acid (C16:0) | 7.83 ± 0.12 a | 7.88 ± 0.64 a | 7.84 ± 0.01 a | 7.88 ± 0.05 a |
8 | Oleic acid (C18:1) | 58.51 ± 2.13 a | 57.91 ± 0.84 a | 57.60 ± 0.34 a | 57.67 ± 0.41 a |
9 | Linoleic acid (C18:2) | 9.73 ± 0.30 a | 10.72 ± 0.18 b | 10.66 ± 0.31 b | 10.91 ± 0.08 b |
10 | Arachidic acid (C20:0) | 1.37 ± 0.03 a | 1.43 ± 0.05 a | 1.43 ± 0.02 a | 1.44 ± 0.04 a |
11 | Cis-11-Eicosenoic acid (C20:1) | 0.73 ± 0.01 c | 0.66 ± 0.02 b | 0.66 ± 0.01 b | 0.62 ± 0.01 a |
12 | Linolenic acid (C18:3) | 1.39 ± 0.03 b | 1.18 ± 0.18 a | 1.17 ± 0.02 a | 1.16 ± 0.08 a |
13 | Docosanoic acid (C22:0) | 0.38 ± 0.02 a | 0.40 ± 0.03 a | 0.39 ± 0.03 a | 0.46 ± 0.01 b |
14 | Lignoseric acid (C24:0) | 0.20 ± 0.01 a | 0.21 ± 0.03 a | 0.21 ± 0.01 a | 0.29 ± 0.04 b |
Saturated fatty acids (SFAs) | 26.64 | 26.88 | 27.16 | 27.26 | |
Monounsaturated fatty acids (MUFAs) | 62.23 | 61.23 | 61.02 | 61.09 | |
Polyunsaturated fatty acids (PUFAs) | 11.12 | 11.90 | 11.83 | 12.07 | |
Unsaturated fatty acids (MUFAs + PUFAs) | 73.35 | 73.13 | 72.85 | 73.16 |
Fatty Acids | Concentration of Fatty Acids (%) * | ||||
---|---|---|---|---|---|
KY | KY (1:1) | KY (1:4) | KY (1:10) | ||
1 | Lauric acid (C12:0) | 0.02 ± 0.01 a | 0.02 ± 0.01 a | 0.02 ± 0.01 a | 0.02 ± 0.01 a |
2 | Miristic acid (C14:0) | 0.00 ± 0.00 a | 0.12 ± 0.01 d | 0.04 ± 0.00 c | 0.03 ± 0.01 b |
3 | Palmitic acid (C16:0) | 16.55 ± 0.03 ab | 16.83 ± 0.09 b | 16.37 ± 0.43 ab | 16.32 ± 0.19 a |
4 | Palmitoleic acid (C16:1) | 2.22 ± 0.01 b | 2.41 ± 0.07 c | 1.81 ± 0.13 a | 1.84 ± 0.09 a |
5 | Margaric acid (C17:0) | 0.41 ± 0.02 b | 0.40 ± 0.02 b | 0.30 ± 0.01 a | 0.30 ± 0.02 a |
6 | Cis-10-Heptadecenoik acid (C17:1) | 0.54 ± 0.02 c | 0.58 ± 0.01 d | 0.45 ± 0.02 b | 0.35 ± 0.01 a |
7 | Stearic acid (C16:0) | 8.25 ± 0.14 b | 7.93 ± 0.24 b | 7.33 ± 0.28 a | 7.55 ± 0.27 ab |
8 | Oleic acid (C18:1) | 57.82 ± 1.40 a | 58.05 ± 1.22 a | 58.64 ± 2.18 a | 58.49 ± 1.54 a |
9 | Linoleic acid (C18:2) | 10.15 ± 0.30 a | 9.90 ± 0.41 a | 11.24 ± 0.25 b | 11.18 ± 0.28 b |
10 | Arachidic acid (C20:0) | 1.50 ± 0.05 b | 1.32 ± 0.03 a | 1.43 ± 0.03 b | 1.46 ± 0.09 b |
11 | Cis-11-Eicosenoic acid (C20:1) | 0.68 ± 0.02 b | 0.58 ± 0.04 a | 0.64 ± 0.03 b | 0.65 ± 0.03 b |
12 | Linolenic acid (C18:3) | 1.21 ± 0.08 a | 1.35 ± 0.04 b | 1.20 ± 0.03 a | 1.23 ± 0.02 a |
13 | Docosanoic acid (C22:0) | 0.42 ± 0.02 b | 0.36 ± 0.02 a | 0.36 ± 0.01 a | 0.40 ± 0.01 b |
14 | Lignoseric acid (C24:0) | 0.22 ± 0.01 c | 0.15 ± 0.01 a | 0.17 ± 0.01 ab | 0.18 ± 0.02 b |
Saturated fatty acids (SFAs) | 27.37 | 27.13 | 26.02 | 26.26 | |
Monounsaturated fatty acids (MUFAs) | 61.26 | 61.62 | 61.54 | 61.33 | |
Polyunsaturated fatty acids (PUFAs) | 11.36 | 11.25 | 12.44 | 12.41 | |
Unsaturated fatty acids (MUFAs + PUFAs) | 72.62 | 72.87 | 73.98 | 73.74 |
No. | Aroma Compounds | RT | NY | NY1:1 | NY1:4 | NY1:10 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 Days | 45 Days | 90 Days | 0 Days | 45 Days | 90 Days | 0 Days | 45 Days | 90 Days | 0 Days | 45 Days | 90 Days | |||
1 | Hexanal | 13.35 | 5711 ± 51 aC | 6046 ± 72 aD | 6646 ± 176 bB | 1481 ± 15 bA | 1234 ± 12 aA | 1227 ± 14 aA | 1463 ± 18 cA | 1366 ± 13 bB | 1283 ± 19 aA | 2812 ± 20 cB | 1976 ± 23 bC | 1471 ± 19 aA |
2 | Heptanal | 18.39 | 2620 ± 116 a | 3682 ± 99 b | 3741 ± 101 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
3 | D-Limonene | 19.44 | 3855 ± 33 aC | 3886 ± 58 aB | 3921 ± 178 aA | 3214 ± 54 aA | 3549 ± 105 abAB | 3653 ± 182 bA | 3459 ± 160 aAB | 3478 ± 169 aA | 3611 ± 133 aA | 3730 ± 173 aBC | 3527 ± 174 aAB | 3530 ± 168 aA |
4 | (E)-2-Hexenal | 19.82 | 366 ± 18 aB | 864 ± 17 bB | 917 ± 27 bC | 81 ± 9 aA | 74 ± 9 aA | 62 ± 5 aA | 86 ± 6 aA | 80 ± 5 aA | 71 ± 4 aA | 96 ± 7 bA | 85 ± 6 abA | 74 ± 4 aA |
5 | 2-Pentyl furan | 20.83 | 175 ± 6 a | 408 ± 18 b | 479 ± 23 c | nd | nd | nd | nd | nd | nd | nd | nd | nd |
6 | Pentanol | 21.48 | 700 ± 20 a | 744 ± 18 a | 907 ± 20 c | nd | nd | nd | nd | nd | nd | nd | nd | nd |
7 | Ɣ-Terpinene | 21.76 | nd | nd | nd | 1986 ± 40 aA | 3579 ± 171 bA | 4912 ± 105 cA | 1866 ± 49 aA | 4383 ± 114 bB | 5215 ± 124 cAB | 2949 ± 65 aB | 5015 ± 171 bC | 5297 ± 151 bC |
8 | 3,7-Dimethyl octanol | 22.19 | 1382 ± 26 a | 1512 ± 32 ab | 1614 ±58 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
9 | p-Cymene | 22.77 | nd | nd | nd | 1764 ± 45 aA | 2317 ± 46 bA | 2730 ± 83 cA | 1815 ± 30 aA | 2878 ± 119 bB | 3085 ± 41 bB | 2889 ± 73 aB | 2940 ± 92 abB | 3270 ± 136 bB |
10 | Hexyl acetate | 22.86 | 185 ± 9 a | 212 ± 14 a | 316 ± 16 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
11 | Octanal | 23.60 | 3684 ± 32 aB | 6352 ± 80 bB | 7367 ± 92 cB | 146 ± 8 aA | 244 ± 19 bA | 288 ± 20 bA | nd | nd | nd | nd | nd | nd |
12 | (E)-2-Heptenal | 25.01 | 517 ± 18 a | 1205 ± 27 b | 1692 ± 96 c | nd | nd | nd | nd | nd | nd | nd | nd | nd |
13 | 6-Methyl-5-Hepten-2-one | 25.55 | nd | 218 ± 10 a | 379 ± 11 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
14 | Hexanol | 26.26 | 5266 ± 88 aD | 6000 ± 76 bD | 6265 ± 55 cD | 1565 ± 56 bA | 1383 ± 92 abA | 1276 ± 20 aA | 2086 ± 76 bB | 1917 ± 31 aB | 1871 ± 35 aB | 2644 ± 88 aC | 2576 ± 150 aC | 2496 ± 125 aC |
15 | (Z)-3-Hexenol | 27.47 | 167 ± 10 a | 190 ± 13 a | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
16 | Nonanal | 28.35 | 2432 ± 73 aA | 4101 ± 192 bC | 5859 ± 51 cC | 366 ± 12 aB | 481 ± 22 bA | 529 ± 25 bA | 409 ± 22 aB | 685 ± 17 bAB | 612 ± 33 bAB | 632 ± 32 aC | 870 ± 21 bB | 653 ± 35 aB |
17 | (E)-2-Octenal | 29.62 | 251 ± 19 a | 661 ± 10 b | 1137 ± 42 c | nd | nd | nd | nd | nd | nd | nd | nd | nd |
18 | 2-Butyl octanol | 29.70 | nd | nd | nd | 233 ± 10 aA | 350 ± 23 bAB | 614 ± 38 cC | 213 ± 15 aA | 321 ± 19 bA | 436 ± 20 cA | 224 ± 14 aA | 402 ± 26 bB | 492 ± 24 cA |
19 | Acetic acid | 29.74 | 1921 ± 34 a | 3132 ± 45 b | 1791 ± 51 a | nd | nd | nd | nd | nd | nd | nd | nd | nd |
20 | Heptanol | 30.50 | 1312 ± 23 a | 1868 ± 77 b | 2221 ± 131 c | nd | nd | nd | nd | nd | nd | nd | nd | nd |
21 | (E, E)-2,4-Heptadienal | 30.73 | 332 ± 2 a | 668 ± 11 b | 1116 ± 45 c | nd | nd | nd | nd | nd | nd | nd | nd | nd |
22 | 2-Octynoic acid | 31.89 | nd | 145 ± 8 a | 346 ± 10 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
23 | Decanal | 32.61 | nd | nd | 343 ± 18 | nd | nd | nd | nd | nd | nd | nd | nd | nd |
24 | (E)-2-Heptenol | 32.64 | 137 ± 9 a | 250 ± 19 b | 302 ± 19 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
25 | Benzaldehyde | 33.03 | nd | nd | nd | 314 ± 13 cA | 256 ± 17 aA | 288 ± 21 abA | 289 ± 20 aA | 367 ± 23 bA | 368 ± 18 bB | 2262 ± 65 bB | 2689 ± 91 cB | 1464 ± 45 aC |
26 | Copaene | 33.24 | 208 ± 14 a | 455 ± 14 b | 711 ± 38 c | nd | nd | nd | nd | nd | nd | nd | nd | nd |
27 | (E)-2-Nonenal | 34.12 | nd | 144 ± 9 a | 266 ± 14 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
28 | Octanol | 34.98 | 705 ± 25 a | 1089 ± 21 b | 1651 ± 72 c | nd | nd | nd | nd | nd | nd | nd | nd | nd |
29 | (E)-2-Decenal | 38.95 | 482 ± 18 a | 997 ± 21 b | 1639 ± 30 c | nd | nd | nd | nd | nd | nd | nd | nd | nd |
30 | Hexanoic acid | 45.23 | 1212 ± 35 a | 1775 ± 103 b | 2458 ± 66 c | nd | nd | nd | nd | nd | nd | nd | nd | nd |
31 | Phenylethyl alcohol | 47.13 | 164 ± 5 a | 386 ± 15 b | 450 ± 26 c | nd | nd | nd | nd | nd | nd | nd | nd | nd |
32 | Octanoic acid | 51.08 | nd | nd | 609 ± 20 | nd | nd | nd | nd | nd | nd | nd | nd | nd |
33 | Nonanoic acid | 53.63 | nd | nd | 809 ± 24 | nd | nd | nd | nd | nd | nd | nd | nd | nd |
No. | Aroma Compounds | RT | KY | KY1:1 | KY1:4 | KY1:10 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 Days | 45 Days | 90 Days | 0 Days | 45 Days | 90 Days | 0 Days | 45 Days | 90 Days | 0 Days | 45 Days | 90 Days | |||
1 | Hexanal | 13.35 | 3582 ± 23 bB | 3542 ± 18 abB | 3503 ± 24 aC | 1514 ± 22 cA | 1253 ± 13 bA | 1154 ± 11 aA | 1503 ± 22 cA | 1334 ± 19 bA | 1201 ± 14 aB | 1495 ± 26 cA | 1427 ± 19 bA | 1233 ± 14 aB |
2 | 2-Pentanol | 15.15 | 166 ± 13 bA | 115 ± 7 aA | 136 ± 10 abA | nd | nd | nd | nd | nd | nd | nd | nd | nd |
3 | Ethyl pentanoate | 16.02 | 215 ± 10 b | 100 ± 6 a | 116 ± 9 a | nd | nd | nd | nd | nd | nd | nd | nd | nd |
4 | 2-Heptanone | 18.18 | nd | nd | 132 ± 9 aA | nd | nd | nd | nd | nd | nd | nd | nd | nd |
5 | Heptanal | 18.39 | 412 ± 19 bA | 303 ± 9 aA | 502 ± 17 cA | nd | nd | nd | nd | nd | nd | nd | nd | nd |
6 | Methyl hexanoate | 18.53 | 834 ± 19 bA | 580 ± 13 aA | 542 ± 15 aA | nd | nd | nd | nd | nd | nd | nd | nd | nd |
7 | D-Limonene | 19.44 | 3315 ± 24 aA | 3589 ± 24 bA | 3596 ± 110 cC | 2125 ± 142 aB | 2655 ± 100 bC | 2771 ± 106 bB | 2324 ± 140 aBC | 2385 ± 103 aBC | 2672 ± 122 aA | 2326 ± 107 aC | 2476 ± 90 aB | 2557 ± 140 aA |
8 | (E)-2-Hexenal | 19.82 | 546 ± 19 aB | 700 ± 18 b | 849 ± 21 c | 320 ± 18 aA | nd | nd | nd | nd | nd | nd | nd | nd |
9 | 2-Pentyl furan | 20.83 | 96 ± 7 a | 105 ± 8 a | 152 ± 7 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
10 | Ethyl hexanoate | 21.01 | 500 ± 17 bA | 411 ± 15 a | 554 ± 22 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
11 | Pentanol | 21.48 | 278 ± 13 b | 150 ± 11 a | 279 ± 17 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
12 | Ɣ-Terpinene | 21.76 | nd | nd | nd | 1734 ± 30 aA | 3842 ± 87 bA | 5252 ± 89 cA | 2435 ± 77 aB | 4899 ± 162 bC | 5771 ± 287 cB | 1899 ± 95 aA | 4361 ± 70 bB | 5098 ± 176 cA |
13 | Linalyl isobutyrate | 21.97 | 115 ± 8 a | 117 ± 7 a | 241 ± 13 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
14 | p-Cymene | 22.77 | nd | nd | nd | 1581 ± 53 aA | 2151 ± 48 bA | 2880 ± 93 cA | 2310 ± 76 aA | 2561 ± 89 aB | 3037 ± 121 bA | 1978 ± 91 aC | 2762 ± 84 bC | 3078 ± 67 cA |
15 | Hexyl acetate | 22.86 | 432 ± 18 a | 484 ± 16 a | 649 ± 22 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
16 | Octanal | 23.60 | 1687 ± 21 aC | 1966 ± 75 bC | 2805 ± 36 cD | 172 ± 11 aA | 286 ± 19 bA | 377 ± 11 cA | 187 ± 11 aA | 375 ± 16 bA | 570 ± 21 cB | 448 ± 22 aB | 579 ± 25 bB | 688 ± 33 cC |
17 | (Z)-2-Pentenol | 24.60 | 134 ± 9 a | 157 ± 10 a | 226 ± 11 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
18 | 2-Nonynoic acid | 24.73 | 247 ± 10 a | 291 ± 19 a | 398 ± 20 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
19 | 6-Methyl-5-Hepten-2-one | 25.41 | nd | 189 ± 14 a | 264 ± 16 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
20 | Hexanol | 26.26 | 5536 ± 84 cD | 3409 ± 61 aD | 4976 ± 60 bD | 655 ± 25 bB | 613 ± 18 abB | 574 ± 21 aB | 421 ± 24 cA | 397 ± 21 bA | 373 ± 12 aA | 845 ± 31 aC | 816 ± 34 aC | 754 ± 20 aC |
21 | (Z)-3-Hexenol | 27.47 | 2230 ± 44 b | 1478 ± 26 a | 2237 ± 52 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
22 | Methyl octanoate | 28.16 | 308 ± 17 a | 347 ± 9 a | 460 ± 20 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
23 | Nonanal | 28.35 | 2312 ± 67 aC | 2488 ± 78 aC | 3029 ± 52 bD | 398 ± 28 aA | 634 ± 27 bA | 655 ± 13 bA | 440 ± 28 aA | 719 ± 26 bA | 967 ± 36 cC | 1262 ± 58 cB | 964 ± 30 bB | 810 ± 23 aB |
24 | (E)-2-Octenal | 29.62 | 94 ± 8 a | 107 ± 5 a | 156 ± 8 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
25 | Acetic acid | 29.74 | 3292 ± 66 c | 2444 ± 65 b | 1348 ± 38 a | nd | nd | nd | nd | nd | nd | nd | nd | nd |
26 | Heptanol | 30.50 | 1476 ± 16 b | 1248 ± 73 a | 1891 ± 59 c | nd | nd | nd | nd | nd | nd | nd | nd | nd |
27 | Decanal | 32.61 | nd | 118 ± 6 a | 112 ± 7 a | nd | nd | nd | nd | nd | nd | nd | nd | nd |
28 | Benzaldehyde | 33.03 | nd | nd | nd | 1644 ± 45 aB | 2340 ± 43 aC | 1707 ± 44 bB | 375 ± 24 bA | 421 ± 31 bA | 189 ± 12 aB | 2008 ± 45 bC | 2135 ± 43 bA | 1656 ± 88 aB |
29 | Copaene | 33.24 | 572 ± 20 a | 563 ± 17 a | 853 ± 20 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
30 | Octanol | 34.98 | 841 ± 29 a | 797 ± 21 a | 1267 ± 49 b | nd | nd | nd | nd | nd | nd | nd | nd | nd |
31 | (E)-2-Decenal | 38.95 | 542 ± 22 a | 758 ± 9 b | 511 ± 19 a | nd | nd | nd | nd | nd | nd | nd | nd | nd |
32 | Hexanoic acid | 45.23 | 494 ± 27 b | 445 ± 20 b | 235 ± 18 a | nd | nd | nd | nd | nd | nd | nd | nd | nd |
33 | Phenylethyl alcohol | 47.13 | 138 ± 5 a | 260 ± 9 b | 224 ± 16 c | nd | nd | nd | nd | nd | nd | nd | nd | nd |
34 | Octanoic acid | 51.08 | nd | nd | 106 ± 8 a | nd | nd | nd | nd | nd | nd | nd | nd | nd |
35 | Nonanoic acid | 53.63 | nd | nd | 87 ± 4 a | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kesen, S.; Kiliç, E.E. Fatty Acid and Aroma Profiles of Microencapsulated Olive Oils from Southeastern Anatolia: Effects of Cultivar Variations, Storage Time, and Wall Material Formulation. Foods 2025, 14, 2439. https://doi.org/10.3390/foods14142439
Kesen S, Kiliç EE. Fatty Acid and Aroma Profiles of Microencapsulated Olive Oils from Southeastern Anatolia: Effects of Cultivar Variations, Storage Time, and Wall Material Formulation. Foods. 2025; 14(14):2439. https://doi.org/10.3390/foods14142439
Chicago/Turabian StyleKesen, Songül, and Eda Elgin Kiliç. 2025. "Fatty Acid and Aroma Profiles of Microencapsulated Olive Oils from Southeastern Anatolia: Effects of Cultivar Variations, Storage Time, and Wall Material Formulation" Foods 14, no. 14: 2439. https://doi.org/10.3390/foods14142439
APA StyleKesen, S., & Kiliç, E. E. (2025). Fatty Acid and Aroma Profiles of Microencapsulated Olive Oils from Southeastern Anatolia: Effects of Cultivar Variations, Storage Time, and Wall Material Formulation. Foods, 14(14), 2439. https://doi.org/10.3390/foods14142439