Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (33,972)

Search Parameters:
Keywords = preservative

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 559 KiB  
Review
Interest Flooding Attacks in Named Data Networking and Mitigations: Recent Advances and Challenges
by Simeon Ogunbunmi, Yu Chen, Qi Zhao, Deeraj Nagothu, Sixiao Wei, Genshe Chen and Erik Blasch
Future Internet 2025, 17(8), 357; https://doi.org/10.3390/fi17080357 (registering DOI) - 6 Aug 2025
Abstract
Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful [...] Read more.
Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful forwarding plane introduces significant vulnerabilities, particularly Interest Flooding Attacks (IFAs). These IFA attacks exploit the Pending Interest Table (PIT) by injecting malicious interest packets for non-existent or unsatisfiable content, leading to resource exhaustion and denial-of-service attacks against legitimate users. This survey examines research advances in IFA detection and mitigation from 2013 to 2024, analyzing seven relevant published detection and mitigation strategies to provide current insights into this evolving security challenge. We establish a taxonomy of attack variants, including Fake Interest, Unsatisfiable Interest, Interest Loop, and Collusive models, while examining their operational characteristics and network performance impacts. Our analysis categorizes defense mechanisms into five primary approaches: rate-limiting strategies, PIT management techniques, machine learning and artificial intelligence methods, reputation-based systems, and blockchain-enabled solutions. These approaches are evaluated for their effectiveness, computational requirements, and deployment feasibility. The survey extends to domain-specific implementations in resource-constrained environments, examining adaptations for Internet of Things deployments, wireless sensor networks, and high-mobility vehicular scenarios. Five critical research directions are proposed: adaptive defense mechanisms against sophisticated attackers, privacy-preserving detection techniques, real-time optimization for edge computing environments, standardized evaluation frameworks, and hybrid approaches combining multiple mitigation strategies. Full article
Show Figures

Figure 1

16 pages, 53964 KiB  
Article
UNet–Transformer Hybrid Architecture for Enhanced Underwater Image Processing and Restoration
by Jie Ji and Jiaju Man
Mathematics 2025, 13(15), 2535; https://doi.org/10.3390/math13152535 (registering DOI) - 6 Aug 2025
Abstract
Underwater image enhancement is crucial for fields like marine exploration, underwater photography, and environmental monitoring, as underwater images often suffer from reduced visibility, color distortion, and contrast loss due to light absorption and scattering. Despite recent progress, existing methods struggle to generalize across [...] Read more.
Underwater image enhancement is crucial for fields like marine exploration, underwater photography, and environmental monitoring, as underwater images often suffer from reduced visibility, color distortion, and contrast loss due to light absorption and scattering. Despite recent progress, existing methods struggle to generalize across diverse underwater conditions, such as varying turbidity levels and lighting. This paper proposes a novel hybrid UNet–Transformer architecture based on MaxViT blocks, which effectively combines local feature extraction with global contextual modeling to address challenges including low contrast, color distortion, and detail degradation. Extensive experiments on two benchmark datasets, UIEB and EUVP, demonstrate the superior performance of our method. On UIEB, our model achieves a PSNR of 22.91, SSIM of 0.9020, and CCF of 37.93—surpassing prior methods such as URSCT-SESR and PhISH-Net. On EUVP, it attains a PSNR of 26.12 and PCQI of 1.1203, outperforming several state-of-the-art baselines in both visual fidelity and perceptual quality. These results validate the effectiveness and robustness of our approach under complex underwater degradation, offering a reliable solution for real-world underwater image enhancement tasks. Full article
20 pages, 2225 KiB  
Article
Multi-Sensor Heterogeneous Signal Fusion Transformer for Tool Wear Prediction
by Ju Zhou, Xinyu Liu, Qianghua Liao, Tao Wang, Lin Wang and Pin Yang
Sensors 2025, 25(15), 4847; https://doi.org/10.3390/s25154847 - 6 Aug 2025
Abstract
In tool wear monitoring, the efficient fusion of multi-source sensor signals poses significant challenges due to their inherent heterogeneous characteristics. In this paper, we propose a Multi-Sensor Multi-Domain feature fusion Transformer (MSMDT) model that achieves precise tool wear prediction through innovative feature engineering [...] Read more.
In tool wear monitoring, the efficient fusion of multi-source sensor signals poses significant challenges due to their inherent heterogeneous characteristics. In this paper, we propose a Multi-Sensor Multi-Domain feature fusion Transformer (MSMDT) model that achieves precise tool wear prediction through innovative feature engineering and cross-modal self-attention mechanisms. Specifically, we first develop a physics-aware feature extraction framework, where time-domain statistical features, frequency-domain energy features, and wavelet packet time–frequency features are systematically extracted for each sensor type. This approach constructs a unified feature matrix that effectively integrates the complementary characteristics of heterogeneous signals while preserving discriminative tool wear signatures. Then, a position-embedding-free Transformer architecture is constructed, which enables adaptive cross-domain feature fusion through joint global context modeling and local feature interaction analysis to predict tool wear values. Experimental results on the PHM2010 demonstrate the superior performance of MSMDT, outperforming state-of-the-art methods in prediction accuracy. Full article
(This article belongs to the Section Industrial Sensors)
30 pages, 22926 KiB  
Article
Comparative Study to Evaluate Mixing Efficiency of Very Fine Particles
by Sung Je Lee and Se-Yun Hwang
Appl. Sci. 2025, 15(15), 8712; https://doi.org/10.3390/app15158712 (registering DOI) - 6 Aug 2025
Abstract
This study evaluates the applicability and accuracy of coarse-grain modeling (CGM) in discrete-element method (DEM)–based simulations, focusing on particle-mixing efficiency in five representative industrial mixers: the tumbling V mixer, ribbon-blade mixer, paddle-blade mixer, vertical-blade mixer, and conical-screw mixer. Although the DEM is widely [...] Read more.
This study evaluates the applicability and accuracy of coarse-grain modeling (CGM) in discrete-element method (DEM)–based simulations, focusing on particle-mixing efficiency in five representative industrial mixers: the tumbling V mixer, ribbon-blade mixer, paddle-blade mixer, vertical-blade mixer, and conical-screw mixer. Although the DEM is widely employed for particulate system simulations, the high computational cost associated with fine particles significantly hinders large-scale applications. CGM addresses these issues by scaling up particle sizes, thereby reducing particle counts and allowing longer simulation timesteps. We utilized the Lacey mixing index (LMI) as a statistical measure to quantitatively assess mixing uniformity across various CGM scaling factors. Based on the results, CGM significantly reduced computational time (by over 90% in certain cases) while preserving acceptable accuracy levels in terms of LMI values. The mixing behaviors remained consistent under various CGM conditions, based on both visually inspected particle distributions and the temporal LMI trends. Although minor deviations occurred in early-stage mixing, these discrepancies diminished with time, with the final LMI errors remaining below 5% in most scenarios. These findings indicate that CGM effectively enhances computational efficiency in DEM simulations without significantly compromising physical accuracy. This research provides practical guidelines for optimizing industrial-scale particle-mixing processes and conducting computationally feasible, scalable, and reliable DEM simulations. Full article
22 pages, 1215 KiB  
Article
Gas Atmosphere Innovation Applied to Prolong the Shelf Life of ‘Regina’ Sweet Cherries
by Rodrigo Neira-Ojeda, Sebastián Rodriguez, Cristian Hernández-Adasme, Violeta Muñoz, Dakary Delgadillo, Bo Sun, Xiao Yang and Victor Hugo Escalona
Plants 2025, 14(15), 2440; https://doi.org/10.3390/plants14152440 - 6 Aug 2025
Abstract
In this study, the impact of moderate and high CO2 and O2 levels was compared to low and moderate gas combinations during prolonged storage on the quality of Regina sweet cherries harvested in different maturity stages, particularly in terms of decreasing [...] Read more.
In this study, the impact of moderate and high CO2 and O2 levels was compared to low and moderate gas combinations during prolonged storage on the quality of Regina sweet cherries harvested in different maturity stages, particularly in terms of decreasing internal browning. Fruits were harvested in two different maturity stages (Light and Dark Mahogany skin color) and stored in CA of 15% CO2 + 10% O2; 10% CO2 + 10% O2; 10% CO2 + 5% O2; 5% CO2 + 5% O2 and MA of 4 to 5% CO2 + 16 to 17% O2 for 30 and 40 days at 0 °C and 90% RH, followed by a marketing period. After the storage, both maturity stages significantly reduced internal browning, decay, and visual quality losses in CA with 10–15% CO2 and 10% O2. In addition, it preserved luminosity, total soluble solids (TSSs), titratable acidity (TA), and bioactive compounds such as anthocyanins and phenols. This treatment also maintained the visual appearance of the sweet cherries, favoring their market acceptance. At the same time, the light red fruits showed a better general quality compared to darker color after the storage. In conclusion, a controlled atmosphere with optimized CO2 and O2 concentrations, together with harvesting with a Light Mahogany external color, represents an effective strategy to extend the shelf life of Regina sweet cherries up to 40 days plus the marketing period, maintaining their physical and sensory quality for export markets. Full article
(This article belongs to the Special Issue Postharvest Quality and Physiology of Vegetables and Fruits)
Show Figures

Figure 1

22 pages, 481 KiB  
Article
Fuzzy Signature from Computational Diffie–Hellman Assumption in the Standard Model
by Yunhua Wen, Tianlong Jin and Wei Li
Axioms 2025, 14(8), 613; https://doi.org/10.3390/axioms14080613 - 6 Aug 2025
Abstract
Fuzzy signature (SIGF) is a type of digital signature that preserves the core functionalities of traditional signatures, while accommodating variations and non-uniformity in the signing key. This property enables the direct use of high-entropy fuzzy data, such as biometric information, [...] Read more.
Fuzzy signature (SIGF) is a type of digital signature that preserves the core functionalities of traditional signatures, while accommodating variations and non-uniformity in the signing key. This property enables the direct use of high-entropy fuzzy data, such as biometric information, as the signing key. In this paper, we define the m-existentially unforgeable under chosen message attack (m-EUF-CMA) security of fuzzy signature. Furthermore, we propose a generic construction of fuzzy signature, which is composed of a homomorphic secure sketch (SS) with an error-recoverable property, a homomorphic average-case strong extractor (Ext), and a homomorphic and key-shift* secure signature scheme (SIG). By instantiating the foundational components, we present a m-EUF-CMA secure fuzzy signature instantiation based on the Computational Diffie–Hellman (CDH) assumption over bilinear groups in the standard model. Full article
Show Figures

Figure 1

20 pages, 2088 KiB  
Article
Sustainable Soil Management in Reservoir Riparian Zones: Impacts of Long-Term Water Level Fluctuations on Aggregate Stability and Land Degradation in Southwestern China
by Pengcheng Wang, Zexi Song, Henglin Xiao and Gaoliang Tao
Sustainability 2025, 17(15), 7141; https://doi.org/10.3390/su17157141 - 6 Aug 2025
Abstract
Soil structural instability in reservoir riparian zones, induced by water level fluctuations, threatens sustainable land use by accelerating land degradation. This study examined the impact of water-level variations on soil aggregate composition and stability based on key indicators, including water-stable aggregate content (WSAC), [...] Read more.
Soil structural instability in reservoir riparian zones, induced by water level fluctuations, threatens sustainable land use by accelerating land degradation. This study examined the impact of water-level variations on soil aggregate composition and stability based on key indicators, including water-stable aggregate content (WSAC), mean weight diameter (MWD), and geometric mean diameter (GMD). The Savinov dry sieving, Yoder wet sieving, and Le Bissonnais (LB) methods were employed for analysis. Results indicated that, with decreasing water levels and increasing soil layer, aggregates larger than 5 mm decreased, while aggregates smaller than 0.25 mm increased. Rising water levels and increasing soil layer corresponded to reductions in soil stability indicators (MWD, GMD, and WSAC), highlighting a trend toward soil structural instability. The LB method revealed the lowest aggregate stability under rapid wetting and the highest under slow wetting conditions. Correlation analysis showed that soil organic matter positively correlated with the relative mechanical breakdown index (RMI) (p < 0.05) and negatively correlated with the relative slaking index (RSI), whereas soil pH was negatively correlated with both RMI and RSI (p < 0.05). Comparative analysis of aggregate stability methods demonstrated that results from the dry sieving method closely resembled those from the SW treatment of the LB method, whereas the wet sieving method closely aligned with the FW (Fast Wetting) treatment of the LB method. The Le Bissonnais method not only reflected the outcomes of dry and wet sieving methods but also effectively distinguished the mechanisms of aggregate breakdown. The study concluded that prolonged flooding intensified aggregate dispersion, with mechanical breakdown influenced by water levels and soil layer. Dispersion and mechanical breakdown represent primary mechanisms of soil aggregate instability, further exacerbated by fluctuating water levels. By elucidating degradation mechanisms, this research provides actionable insights for preserving soil health, safeguarding water resources, and promoting sustainable agricultural in ecologically vulnerable reservoir regions of the Yangtze River Basin. Full article
Show Figures

Figure 1

39 pages, 5251 KiB  
Article
Metamodeling Approach to Sociotechnical Systems’ External Context Digital Twins Building: A Higher Education Case Study
by Ana Perisic, Ines Perisic, Marko Lazic and Branko Perisic
Appl. Sci. 2025, 15(15), 8708; https://doi.org/10.3390/app15158708 (registering DOI) - 6 Aug 2025
Abstract
Sociotechnical systems (STSs) are generally assumed to be systems that incorporate humans and technology, strongly depending on a sustainable equilibrium between the following nondeterministic social context ingredients: social structures, roles, and rights, as well as the designers’ Holy Grail, the deterministic nature of [...] Read more.
Sociotechnical systems (STSs) are generally assumed to be systems that incorporate humans and technology, strongly depending on a sustainable equilibrium between the following nondeterministic social context ingredients: social structures, roles, and rights, as well as the designers’ Holy Grail, the deterministic nature of the underlying technical system. The fact that the relevant social concepts are more mature than the supporting technologies qualifies the digital transformation of sociotechnical systems as a reengineering rather than an engineering endeavor. Preserving the social mission throughout the digital transformation process in varying social contexts is mandatory, making the digital twins (DT) methodology application a contemporary research hotspot. In this research, we combined continuous transformation STS theory principles, an observer-based system-of-sociotechnical-systems (SoSTS) architecture model, and digital twinning methods to address common STS context representation challenges. Additionally, based on model-driven systems engineering methodology and meta-object-facility principles, the research specifies the universal meta-concepts and meta-modeling templates, supporting the creation of arbitrary sociotechnical systems’ external context digital twins. Due to the inherent diversity, significantly influenced by geopolitical, economic, and cultural influencers, a higher education external context specialization illustrates the reusability potentials of the proposed universal meta-concepts. Substituting higher-education-related meta-concepts and meta-models with arbitrary domain-dependent specializations further fosters the proposed universal meta-concepts’ reusability. Full article
46 pages, 3093 KiB  
Review
Security and Privacy in the Internet of Everything (IoE): A Review on Blockchain, Edge Computing, AI, and Quantum-Resilient Solutions
by Haluk Eren, Özgür Karaduman and Muharrem Tuncay Gençoğlu
Appl. Sci. 2025, 15(15), 8704; https://doi.org/10.3390/app15158704 (registering DOI) - 6 Aug 2025
Abstract
The IoE forms the foundation of the modern digital ecosystem by enabling seamless connectivity and data exchange among smart devices, sensors, and systems. However, the inherent nature of this structure, characterized by high heterogeneity, distribution, and resource constraints, renders traditional security approaches insufficient [...] Read more.
The IoE forms the foundation of the modern digital ecosystem by enabling seamless connectivity and data exchange among smart devices, sensors, and systems. However, the inherent nature of this structure, characterized by high heterogeneity, distribution, and resource constraints, renders traditional security approaches insufficient in areas such as data privacy, authentication, access control, and scalable protection. Moreover, centralized security systems face increasing fragility due to single points of failure, various AI-based attacks, including adversarial learning, model poisoning, and deepfakes, and the rising threat of quantum computers to encryption protocols. This study systematically examines the individual and integrated solution potentials of technologies such as Blockchain, Edge Computing, Artificial Intelligence, and Quantum-Resilient Cryptography within the scope of IoE security. Comparative analyses are provided based on metrics such as energy consumption, latency, computational load, and security level, while centralized and decentralized models are evaluated through a multi-layered security lens. In addition to the proposed multi-layered architecture, the study also structures solution methods and technology integrations specific to IoE environments. Classifications, architectural proposals, and the balance between performance and security are addressed from both theoretical and practical perspectives. Furthermore, a future vision is presented regarding federated learning-based privacy-preserving AI solutions, post-quantum digital signatures, and lightweight consensus algorithms. In this context, the study reveals existing vulnerabilities through an interdisciplinary approach and proposes a holistic framework for sustainable, scalable, and quantum-compatible IoE security. Full article
Show Figures

Figure 1

20 pages, 1070 KiB  
Article
P2ESA: Privacy-Preserving Environmental Sensor-Based Authentication
by Andraž Krašovec, Gianmarco Baldini and Veljko Pejović
Sensors 2025, 25(15), 4842; https://doi.org/10.3390/s25154842 - 6 Aug 2025
Abstract
The presence of Internet of Things (IoT) devices in modern working and living environments is growing rapidly. The data collected in such environments enable us to model users’ behaviour and consequently identify and authenticate them. However, these data may contain information about the [...] Read more.
The presence of Internet of Things (IoT) devices in modern working and living environments is growing rapidly. The data collected in such environments enable us to model users’ behaviour and consequently identify and authenticate them. However, these data may contain information about the user’s current activity, emotional state, or other aspects that are not relevant for authentication. In this work, we employ adversarial deep learning techniques to remove privacy-revealing information from the data while keeping the authentication performance levels almost intact. Furthermore, we develop and apply various techniques to offload the computationally weak edge devices that are part of the machine learning pipeline at training and inference time. Our experiments, conducted on two multimodal IoT datasets, show that P2ESA can be efficiently deployed and trained, and with user identification rates of between 75.85% and 93.31% (c.f. 6.67% baseline), can represent a promising support solution for authentication, while simultaneously fully obfuscating sensitive information. Full article
Show Figures

Figure 1

26 pages, 516 KiB  
Article
Sustainability Struggle: Challenges and Issues in Managing Sustainability and Environmental Protection in Local Tourism Destinations Practices—An Overview
by Zorica Đurić, Drago Cvijanović, Vita Petek and Jasna Potočnik Topler
Sustainability 2025, 17(15), 7134; https://doi.org/10.3390/su17157134 - 6 Aug 2025
Abstract
This article aims to explore and analyze current issues and features of environmental protection in managing local tourism destinations based on the principles of sustainable development through the relevant literature and thus to provide an insight into major environmental measures and activities that [...] Read more.
This article aims to explore and analyze current issues and features of environmental protection in managing local tourism destinations based on the principles of sustainable development through the relevant literature and thus to provide an insight into major environmental measures and activities that should be implemented in practice, emphasizing the importance of environmental sustainability as a key factor in the development and success of local tourist destinations in today’s business environment. Qualitative methods were used, with the literature review based on content analysis by keywords. This particularly affects the business process efficiency and the participation of destination stakeholders and in many cases leads to a low level of environmentally sustainable destination practices. In addition to this theoretical approach, this study also has direct managerial implications for destination environmental business operations. An attractive and well-preserved environment is the primary factor of tourism and local tourism destination development and its success, as well as an integrated part of the tourism product. This study addresses a critical gap in the existing literature on environmental sustainability at local destinations, where prior work has often overlooked the integration of actionable, practice-oriented frameworks tailored for both researchers and practitioners. While theoretical insights into sustainable practices abound, there remains a scarcity of holistic analyses that bridge scholarly understanding with implementable strategies for on-the-ground application. To fill this void, our research provides a comprehensive overview and systematic analysis of current practices, with targeted emphasis on co-developing scalable frameworks for improving environmentally sustainable practices at local destinations. Full article
Show Figures

Figure 1

38 pages, 2332 KiB  
Article
Decision Tree Pruning with Privacy-Preserving Strategies
by Yee Jian Chew, Shih Yin Ooi, Ying Han Pang and Zheng You Lim
Electronics 2025, 14(15), 3139; https://doi.org/10.3390/electronics14153139 - 6 Aug 2025
Abstract
Machine learning techniques, particularly decision trees, have been extensively utilized in Network-based Intrusion Detection Systems (NIDSs) due to their transparent, rule-based structures that enable straightforward interpretation. However, this transparency presents privacy risks, as decision trees may inadvertently expose sensitive information such as network [...] Read more.
Machine learning techniques, particularly decision trees, have been extensively utilized in Network-based Intrusion Detection Systems (NIDSs) due to their transparent, rule-based structures that enable straightforward interpretation. However, this transparency presents privacy risks, as decision trees may inadvertently expose sensitive information such as network configurations or IP addresses. In our previous work, we introduced a sensitive pruning-based decision tree to mitigate these risks within a limited dataset and basic pruning framework. In this extended study, three privacy-preserving pruning strategies are proposed: standard sensitive pruning, which conceals specific sensitive attribute values; optimistic sensitive pruning, which further simplifies the decision tree when the sensitive splits are minimal; and pessimistic sensitive pruning, which aggressively removes entire subtrees to maximize privacy protection. The methods are implemented using the J48 (Weka C4.5 package) decision tree algorithm and are rigorously validated across three full-scale NIDS datasets: GureKDDCup, UNSW-NB15, and CIDDS-001. To ensure a realistic evaluation of time-dependent intrusion patterns, a rolling-origin resampling scheme is employed in place of conventional cross-validation. Additionally, IP address truncation and port bilateral classification are incorporated to further enhance privacy preservation. Experimental results demonstrate that the proposed pruning strategies effectively reduce the exposure of sensitive information, significantly simplify decision tree structures, and incur only minimal reductions in classification accuracy. These findings reaffirm that privacy protection can be successfully integrated into decision tree models without severely compromising detection performance. To further support the proposed pruning strategies, this study also includes a comprehensive review of decision tree post-pruning techniques. Full article
24 pages, 1471 KiB  
Article
WDM-UNet: A Wavelet-Deformable Gated Fusion Network for Multi-Scale Retinal Vessel Segmentation
by Xinlong Li and Hang Zhou
Sensors 2025, 25(15), 4840; https://doi.org/10.3390/s25154840 - 6 Aug 2025
Abstract
Retinal vessel segmentation in fundus images is critical for diagnosing microvascular and ophthalmologic diseases. However, the task remains challenging due to significant vessel width variation and low vessel-to-background contrast. To address these limitations, we propose WDM-UNet, a novel spatial-wavelet dual-domain fusion architecture that [...] Read more.
Retinal vessel segmentation in fundus images is critical for diagnosing microvascular and ophthalmologic diseases. However, the task remains challenging due to significant vessel width variation and low vessel-to-background contrast. To address these limitations, we propose WDM-UNet, a novel spatial-wavelet dual-domain fusion architecture that integrates spatial and wavelet-domain representations to simultaneously enhance the local detail and global context. The encoder combines a Deformable Convolution Encoder (DCE), which adaptively models complex vascular structures through dynamic receptive fields, and a Wavelet Convolution Encoder (WCE), which captures the semantic and structural contexts through low-frequency components and hierarchical wavelet convolution. These features are further refined by a Gated Fusion Transformer (GFT), which employs gated attention to enhance multi-scale feature integration. In the decoder, depthwise separable convolutions are used to reduce the computational overhead without compromising the representational capacity. To preserve fine structural details and facilitate contextual information flow across layers, the model incorporates skip connections with a hierarchical fusion strategy, enabling the effective integration of shallow and deep features. We evaluated WDM-UNet in three public datasets: DRIVE, STARE, and CHASE_DB1. The quantitative evaluations demonstrate that WDM-UNet consistently outperforms state-of-the-art methods, achieving 96.92% accuracy, 83.61% sensitivity, and an 82.87% F1-score in the DRIVE dataset, with superior performance across all the benchmark datasets in both segmentation accuracy and robustness, particularly in complex vascular scenarios. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

34 pages, 3002 KiB  
Article
A Refined Fuzzy MARCOS Approach with Quasi-D-Overlap Functions for Intuitive, Consistent, and Flexible Sensor Selection in IoT-Based Healthcare Systems
by Mahmut Baydaş, Safiye Turgay, Mert Kadem Ömeroğlu, Abdulkadir Aydin, Gıyasettin Baydaş, Željko Stević, Enes Emre Başar, Murat İnci and Mehmet Selçuk
Mathematics 2025, 13(15), 2530; https://doi.org/10.3390/math13152530 - 6 Aug 2025
Abstract
Sensor selection in IoT-based smart healthcare systems is a complex fuzzy decision-making problem due to the presence of numerous uncertain and interdependent evaluation criteria. Traditional fuzzy multi-criteria decision-making (MCDM) approaches often assume independence among criteria and rely on aggregation operators that impose sharp [...] Read more.
Sensor selection in IoT-based smart healthcare systems is a complex fuzzy decision-making problem due to the presence of numerous uncertain and interdependent evaluation criteria. Traditional fuzzy multi-criteria decision-making (MCDM) approaches often assume independence among criteria and rely on aggregation operators that impose sharp transitions between preference levels. These assumptions can lead to decision outcomes with insufficient differentiation, limited discriminatory capacity, and potential issues in consistency and sensitivity. To overcome these limitations, this study proposes a novel fuzzy decision-making framework by integrating Quasi-D-Overlap functions into the fuzzy MARCOS (Measurement of Alternatives and Ranking According to Compromise Solution) method. Quasi-D-Overlap functions represent a generalized extension of classical overlap operators, capable of capturing partial overlaps and interdependencies among criteria while preserving essential mathematical properties such as associativity and boundedness. This integration enables a more intuitive, flexible, and semantically rich modeling of real-world fuzzy decision problems. In the context of real-time health monitoring, a case study is conducted using a hybrid edge–cloud architecture, involving sensor tasks such as heartrate monitoring and glucose level estimation. The results demonstrate that the proposed method provides greater stability, enhanced discrimination, and improved responsiveness to weight variations compared to traditional fuzzy MCDM techniques. Furthermore, it effectively supports decision-makers in identifying optimal sensor alternatives by balancing critical factors such as accuracy, energy consumption, latency, and error tolerance. Overall, the study fills a significant methodological gap in fuzzy MCDM literature and introduces a robust fuzzy aggregation strategy that facilitates interpretable, consistent, and reliable decision making in dynamic and uncertain healthcare environments. Full article
Show Figures

Figure 1

18 pages, 1253 KiB  
Article
Leveraging Synthetic Degradation for Effective Training of Super-Resolution Models in Dermatological Images
by Francesco Branciforti, Kristen M. Meiburger, Elisa Zavattaro, Paola Savoia and Massimo Salvi
Electronics 2025, 14(15), 3138; https://doi.org/10.3390/electronics14153138 - 6 Aug 2025
Abstract
Teledermatology relies on digital transfer of dermatological images, but compression and resolution differences compromise diagnostic quality. Image enhancement techniques are crucial to compensate for these differences and improve quality for both clinical assessment and AI-based analysis. We developed a customized image degradation pipeline [...] Read more.
Teledermatology relies on digital transfer of dermatological images, but compression and resolution differences compromise diagnostic quality. Image enhancement techniques are crucial to compensate for these differences and improve quality for both clinical assessment and AI-based analysis. We developed a customized image degradation pipeline simulating common artifacts in dermatological images, including blur, noise, downsampling, and compression. This synthetic degradation approach enabled effective training of DermaSR-GAN, a super-resolution generative adversarial network tailored for dermoscopic images. The model was trained on 30,000 high-quality ISIC images and evaluated on three independent datasets (ISIC Test, Novara Dermoscopic, PH2) using structural similarity and no-reference quality metrics. DermaSR-GAN achieved statistically significant improvements in quality scores across all datasets, with up to 23% enhancement in perceptual quality metrics (MANIQA). The model preserved diagnostic details while doubling resolution and surpassed existing approaches, including traditional interpolation methods and state-of-the-art deep learning techniques. Integration with downstream classification systems demonstrated up to 14.6% improvement in class-specific accuracy for keratosis-like lesions compared to original images. Synthetic degradation represents a promising approach for training effective super-resolution models in medical imaging, with significant potential for enhancing teledermatology applications and computer-aided diagnosis systems. Full article
(This article belongs to the Section Computer Science & Engineering)
Back to TopTop