Previous Issue
Volume 89, September

Sci. Pharm., Volume 89, Issue 4 (December 2021) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Review
New Frontiers on Adjuvants Drug Strategies and Treatments in Periodontitis
Sci. Pharm. 2021, 89(4), 46; https://doi.org/10.3390/scipharm89040046 (registering DOI) - 22 Oct 2021
Viewed by 128
Abstract
Causes of the progression of periodontitis such as an imbalance between the immune response by the host by the release of inflammatory mediators in the response of the oral pathogenic dysbiotic biofilm have been identified. New insights on specific cell signaling pathways that [...] Read more.
Causes of the progression of periodontitis such as an imbalance between the immune response by the host by the release of inflammatory mediators in the response of the oral pathogenic dysbiotic biofilm have been identified. New insights on specific cell signaling pathways that appear during periodontitis have attracted the attention of researchers in the study of new personalised approaches for the treatment of periodontitis. The gold standard of non-surgical therapy of periodontitis involves the removal of supra and subgingival biofilm through professional scaling and root planing (SRP) and oral hygiene instructions. In order to improve periodontal clinical outcomes and overcome the limitations of traditional SRP, additional adjuvants have been developed in recent decades, including local or systemic antibiotics, antiseptics, probiotics, anti-inflammatory and anti-resorptive drugs and host modulation therapies. This review is aimed to update the current and recent evolution of therapies of management of periodontitis based on the adjunctive and target therapies. Moreover, we discuss the advances in host modulation of periodontitis and the impact of targeting epigenetic mechanisms approaches for a personalised therapeutic success in the management of periodontitis. In conclusion, the future goal in periodontology will be to combine and personalise the periodontal treatments to the colonising microbial profile and to the specific response of the individual patient. Full article
(This article belongs to the Special Issue Feature Papers in Scientia Pharmaceutica)
Article
Antiaging Properties of the Ethanol Fractions of Clove (Syzygium aromaticum L.) Bud and Leaf at the Cellular Levels: Study in Yeast Schizosaccharomyces pombe
Sci. Pharm. 2021, 89(4), 45; https://doi.org/10.3390/scipharm89040045 - 07 Oct 2021
Viewed by 357
Abstract
The exposure of reactive oxygen species is one of the aging triggers at cellular level. The antioxidants have been used as strategic efforts in overcoming the accumulation of ROS. Previous research using crude extracts of clove bud and leaves showed its potential as [...] Read more.
The exposure of reactive oxygen species is one of the aging triggers at cellular level. The antioxidants have been used as strategic efforts in overcoming the accumulation of ROS. Previous research using crude extracts of clove bud and leaves showed its potential as an antioxidant agent. However, no data were available regarding the antioxidant and antiaging activities of subsequent fractions of clove extracts. Therefore, this study aimed to analyze the antioxidant and antiaging activities of the n-hexane and ethanol fractions from clove bud and leaves. Antioxidant and antiaging activities were tested at the cellular level using the yeast model Schizosaccharomyces pombe. The highest flavonoid content was shown by clove leaf n-hexane fraction (25.6 mgQE·g−1). However, ethanol fraction of clove bud (FEB) showed the highest antioxidant activity based on TBA and antiglycation assays. FEB (8 μg·mL−1) and leaf ethanol fraction (FEL) (10 μg·mL−1) were able to induce yeast tolerance against oxidative stress. In addition, FEB could induce mitochondrial activity and delay the G1 phase of the cell cycle. FEB was found to be rich in gallic acid and (15Z)-9,12,13-trihydroxy-15-octadecenoic. Based on the data, FEB shows the potential antiaging activity, which is promising for further development as biopharmaceutical product formulations. Full article
Show Figures

Figure 1

Article
Computer-Aided Design of Peptidomimetic Inhibitors of Falcipain-3: QSAR and Pharmacophore Models
Sci. Pharm. 2021, 89(4), 44; https://doi.org/10.3390/scipharm89040044 - 29 Sep 2021
Viewed by 381
Abstract
In this work, antiparasitic peptidomimetics inhibitors (PEP) of falcipain-3 (FP3) of Plasmodium falciparum (Pf) are proposed using structure-based and computer-aided molecular design. Beginning with the crystal structure of PfFP3-K11017 complex (PDB ID: 3BWK), three-dimensional (3D) models of FP3-PEPx complexes with [...] Read more.
In this work, antiparasitic peptidomimetics inhibitors (PEP) of falcipain-3 (FP3) of Plasmodium falciparum (Pf) are proposed using structure-based and computer-aided molecular design. Beginning with the crystal structure of PfFP3-K11017 complex (PDB ID: 3BWK), three-dimensional (3D) models of FP3-PEPx complexes with known activities () were prepared by in situ modification, based on molecular mechanics and implicit solvation to compute Gibbs free energies (GFE) of inhibitor-FP3 complex formation. This resulted in a quantitative structure–activity relationships (QSAR) model based on a linear correlation between computed GFE () and the experimentally measured . Apart from the structure-based relationship, a ligand-based quantitative pharmacophore model (PH4) of novel PEP analogues where substitutions were directed by comparative analysis of the active site interactions was derived using the proposed bound conformations of the PEPx. This provided structural information useful for the design of virtual combinatorial libraries (VL), which was virtually screened based on the 3D-QSAR PH4. The end results were predictive inhibitory activities falling within the low nanomolar concentration range. Full article
(This article belongs to the Special Issue Feature Papers in Scientia Pharmaceutica)
Article
Stability Enhancement and Skin Permeation Application of Nicotine by Forming Inclusion Complex with β-Cyclodextrin and Methyl-β-Cyclodextrin
Sci. Pharm. 2021, 89(4), 43; https://doi.org/10.3390/scipharm89040043 - 28 Sep 2021
Viewed by 540
Abstract
Nicotine is widely used in pharmaceutical industries, especially for smoking cessation in the form of transdermal patches. Nicotine gel in the patches has limitations from nicotine instability and high volatility. Thus, a nicotine preservation technique is needed. In this study, a nicotine encapsulation [...] Read more.
Nicotine is widely used in pharmaceutical industries, especially for smoking cessation in the form of transdermal patches. Nicotine gel in the patches has limitations from nicotine instability and high volatility. Thus, a nicotine preservation technique is needed. In this study, a nicotine encapsulation process using methyl-β-cyclodextrin (MβCD) is investigated and compared with β-cyclodextrin (βCD) to evaluate the preservation and skin permeation of nicotine. The M06-2X/6-31G(d,p) density functional theory calculations indicate a 1:1 host–guest molar ratio for the inclusion complex of nicotine with βCD and MβCD, which have been validated by experimental studies. The encapsulation efficiencies of βCD and MβCD to encapsulate nicotine are 59.96% and 63.76%, respectively. The preservation study of the inclusion complexes compared to pure nicotine shows a stability improvement of nicotine after being encapsulated. After 21 days, the percentages of the nicotine/βCD and nicotine/MβCD inclusion complexes that remain are 89.32% and 76.22%, while only 65.56% of pure nicotine remains. Besides the one-hour skin permeation tests, the amounts of nicotine permeated through pig skin from the nicotine/βCD and nicotine/MβCD inclusion complex gels are 14 and 10 times as much as the pure nicotine gel, respectively. Therefore, the encapsulation of nicotine with βCD and MβCD can be used to enhance the stability and skin permeation application of nicotine-containing products. Full article
(This article belongs to the Special Issue Heterocyclic Chemistry in Drug Design 2.0)
Show Figures

Figure 1

Previous Issue
Back to TopTop