Next Issue
Volume 5, December
Previous Issue
Volume 5, June

Table of Contents

Biosensors, Volume 5, Issue 3 (September 2015) – 12 articles , Pages 367-615

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Smart Textile Based on Fiber Bragg Grating Sensors for Respiratory Monitoring: Design and Preliminary Trials
Biosensors 2015, 5(3), 602-615; https://doi.org/10.3390/bios5030602 - 14 Sep 2015
Cited by 55 | Viewed by 3823
Abstract
Continuous respiratory monitoring is important to assess adequate ventilation. We present a fiber optic-based smart textile for respiratory monitoring able to work during Magnetic Resonance (MR) examinations. The system is based on the conversion of chest wall movements into strain of two fiber [...] Read more.
Continuous respiratory monitoring is important to assess adequate ventilation. We present a fiber optic-based smart textile for respiratory monitoring able to work during Magnetic Resonance (MR) examinations. The system is based on the conversion of chest wall movements into strain of two fiber Bragg grating (FBG) sensors, placed on the upper thorax (UT). FBGs are glued on the textile by an adhesive silicon rubber. To increase the system sensitivity, the FBGs positioning was led by preliminary experiments performed using an optoelectronic system: FBGs placed on the chest surface experienced the largest strain during breathing. System performances, in terms of respiratory period (TR), duration of inspiratory (TI) and expiratory (TE) phases, as well as left and right UT volumes, were assessed on four healthy volunteers. The comparison of results obtained by the proposed system and an optoelectronic plethysmography highlights the high accuracy in the estimation of TR, TI, and TE: Bland-Altman analysis shows mean of difference values lower than 0.045 s, 0.33 s, and 0.35 s for TR, TI, and TE, respectively. The mean difference of UT volumes between the two systems is about 8.3%. The promising results foster further development of the system to allow routine use during MR examinations.Continuous respiratory monitoring is important to assess adequate ventilation. We present a fiber optic-based smart textile for respiratory monitoring able to work during Magnetic Resonance (MR) examinations. The system is based on the conversion of chest wall movements into strain of two fiber Bragg grating (FBG) sensors, placed on the upper thorax (UT). FBGs are glued on the textile by an adhesive silicon rubber. To increase the system sensitivity, the FBGs positioning was led by preliminary experiments performed using an optoelectronic system: FBGs placed on the chest surface experienced the largest strain during breathing. System performances, in terms of respiratory period (TR), duration of inspiratory (TI) and expiratory (TE) phases, as well as left and right UT volumes, were assessed on four healthy volunteers. The comparison of results obtained by the proposed system and an optoelectronic plethysmography highlights the high accuracy in the estimation of TR, TI, and TE: Bland-Altman analysis shows mean of difference values lower than 0.045 s, 0.33 s, and 0.35 s for TR, TI, and TE, respectively. The mean difference of UT volumes between the two systems is about 8.3%. The promising results foster further development of the system to allow routine use during MR examinations. Full article
(This article belongs to the Special Issue Optical Sensors for Biomedical Applications)
Show Figures

Figure 1

Open AccessReview
Point-of-Care Diagnostics in Low Resource Settings: Present Status and Future Role of Microfluidics
Biosensors 2015, 5(3), 577-601; https://doi.org/10.3390/bios5030577 - 13 Aug 2015
Cited by 142 | Viewed by 6813
Abstract
The inability to diagnose numerous diseases rapidly is a significant cause of the disparity of deaths resulting from both communicable and non-communicable diseases in the developing world in comparison to the developed world. Existing diagnostic instrumentation usually requires sophisticated infrastructure, stable electrical power, [...] Read more.
The inability to diagnose numerous diseases rapidly is a significant cause of the disparity of deaths resulting from both communicable and non-communicable diseases in the developing world in comparison to the developed world. Existing diagnostic instrumentation usually requires sophisticated infrastructure, stable electrical power, expensive reagents, long assay times, and highly trained personnel which is not often available in limited resource settings. This review will critically survey and analyse the current lateral flow-based point-of-care (POC) technologies, which have made a major impact on diagnostic testing in developing countries over the last 50 years. The future of POC technologies including the applications of microfluidics, which allows miniaturisation and integration of complex functions that facilitate their usage in limited resource settings, is discussed The advantages offered by such systems, including low cost, ruggedness and the capacity to generate accurate and reliable results rapidly, are well suited to the clinical and social settings of the developing world. Full article
(This article belongs to the Special Issue Low-Cost Biosensors for Developing Countries)
Show Figures

Graphical abstract

Open AccessArticle
The Detection of Helicobacter hepaticus Using Whispering-Gallery Mode Microcavity Optical Sensors
Biosensors 2015, 5(3), 562-576; https://doi.org/10.3390/bios5030562 - 07 Aug 2015
Cited by 14 | Viewed by 3381
Abstract
Current bacterial detection techniques are relatively slow, require bulky instrumentation, and usually require some form of specialized training. The gold standard for bacterial detection is culture testing, which can take several days to receive a viable result. Therefore, simpler detection techniques that are [...] Read more.
Current bacterial detection techniques are relatively slow, require bulky instrumentation, and usually require some form of specialized training. The gold standard for bacterial detection is culture testing, which can take several days to receive a viable result. Therefore, simpler detection techniques that are both fast and sensitive could greatly improve bacterial detection and identification. Here, we present a new method for the detection of the bacteria Helicobacter hepaticus using whispering-gallery mode (WGM) optical microcavity-based sensors. Due to minimal reflection losses and low material adsorption, WGM-based sensors have ultra-high quality factors, resulting in high-sensitivity sensor devices. In this study, we have shown that bacteria can be non-specifically detected using WGM optical microcavity-based sensors. The minimum detection for the device was 1 × 104 cells/mL, and the minimum time of detection was found to be 750 s. Given that a cell density as low as 1 × 103 cells/mL for Helicobacter hepaticus can cause infection, the limit of detection shown here would be useful for most levels where Helicobacter hepaticus is biologically relevant. This study suggests a new approach for H. hepaticus detection using label-free optical sensors that is faster than, and potentially as sensitive as, standard techniques. Full article
(This article belongs to the Special Issue Optical Sensors for Biomedical Applications)
Show Figures

Figure 1

Open AccessReview
Current and Prospective Methods for Plant Disease Detection
Biosensors 2015, 5(3), 537-561; https://doi.org/10.3390/bios5030537 - 06 Aug 2015
Cited by 108 | Viewed by 6560
Abstract
Food losses due to crop infections from pathogens such as bacteria, viruses and fungi are persistent issues in agriculture for centuries across the globe. In order to minimize the disease induced damage in crops during growth, harvest and postharvest processing, as well as [...] Read more.
Food losses due to crop infections from pathogens such as bacteria, viruses and fungi are persistent issues in agriculture for centuries across the globe. In order to minimize the disease induced damage in crops during growth, harvest and postharvest processing, as well as to maximize productivity and ensure agricultural sustainability, advanced disease detection and prevention in crops are imperative. This paper reviews the direct and indirect disease identification methods currently used in agriculture. Laboratory-based techniques such as polymerase chain reaction (PCR), immunofluorescence (IF), fluorescence in-situ hybridization (FISH), enzyme-linked immunosorbent assay (ELISA), flow cytometry (FCM) and gas chromatography-mass spectrometry (GC-MS) are some of the direct detection methods. Indirect methods include thermography, fluorescence imaging and hyperspectral techniques. Finally, the review also provides a comprehensive overview of biosensors based on highly selective bio-recognition elements such as enzyme, antibody, DNA/RNA and bacteriophage as a new tool for the early identification of crop diseases. Full article
(This article belongs to the Special Issue Biosensors in Agroecosystems)
Show Figures

Figure 1

Open AccessArticle
Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip
Biosensors 2015, 5(3), 513-536; https://doi.org/10.3390/bios5030513 - 30 Jul 2015
Cited by 13 | Viewed by 3572
Abstract
We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1) were used as a model system. Thin-film platinum (Pt) sensors for respiration (amperometric oxygen electrode), acidification (potentiometric [...] Read more.
We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1) were used as a model system. Thin-film platinum (Pt) sensors for respiration (amperometric oxygen electrode), acidification (potentiometric pH electrodes) and cell adhesion (interdigitated-electrodes structures, IDES) allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs) permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4). Thin Si3N4 layers (20 nm or 60 nm) were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm2. Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated). Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions. Full article
(This article belongs to the Special Issue Cell and Organ on Chip: Challenges and Advances)
Show Figures

Figure 1

Open AccessArticle
SPR Biosensor Probing the Interactions between TIMP-3 and Heparin/GAGs
Biosensors 2015, 5(3), 500-512; https://doi.org/10.3390/bios5030500 - 23 Jul 2015
Cited by 12 | Viewed by 3013
Abstract
Tissue inhibitor of metalloproteinases-3 (TIMP-3) belongs to a family of proteins that regulate the activity of matrix metalloproteinases (MMPs), which can process various bioactive molecules such as cell surface receptors, chemokines, and cytokines. Glycosaminoglycans (GAGs) interact with a number of proteins, thereby playing [...] Read more.
Tissue inhibitor of metalloproteinases-3 (TIMP-3) belongs to a family of proteins that regulate the activity of matrix metalloproteinases (MMPs), which can process various bioactive molecules such as cell surface receptors, chemokines, and cytokines. Glycosaminoglycans (GAGs) interact with a number of proteins, thereby playing an essential role in the regulation of many physiological/patho-physiological processes. Both GAGs and TIMP/MMPs play a major role in many cell biological processes, including cell proliferation, migration, differentiation, angiogenesis, apoptosis, and host defense. In this report, a heparin biosensor was used to map the interaction between TIMP-3 and heparin and other GAGs by surface plasmon resonance spectroscopy. These studies show that TIMP-3 is a heparin-binding protein with an affinity of ~59 nM. Competition surface plasmon resonance analysis indicates that the interaction between TIMP-3 and heparin is chain-length dependent, and N-sulfo and 6-O-sulfo groups (rather than the 2-O-sulfo groups) in heparin are important in the interaction of heparin with TIMP-3. Other GAGs (including chondroitin sulfate (CS) type E (CS-E)and CS type B (CS-B)demonstrated strong binding to TIMP-3, while heparan sulfate (HS), CS type A (CSA), CS type C (CSC), and CS type D (CSD) displayed only weak binding affinity. Full article
(This article belongs to the Special Issue Affinity Sensors)
Show Figures

Figure 1

Open AccessReview
Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing
Biosensors 2015, 5(3), 471-499; https://doi.org/10.3390/bios5030471 - 22 Jul 2015
Cited by 17 | Viewed by 3090
Abstract
Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical [...] Read more.
Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres. Full article
(This article belongs to the Special Issue Optical Sensors for Biomedical Applications)
Show Figures

Figure 1

Open AccessReview
Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?
Biosensors 2015, 5(3), 450-470; https://doi.org/10.3390/bios5030450 - 16 Jul 2015
Cited by 54 | Viewed by 5066
Abstract
The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and [...] Read more.
The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC) technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries. Full article
(This article belongs to the Special Issue Low-Cost Biosensors for Developing Countries)
Show Figures

Figure 1

Open AccessArticle
Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors
Biosensors 2015, 5(3), 432-449; https://doi.org/10.3390/bios5030432 - 13 Jul 2015
Cited by 22 | Viewed by 3613
Abstract
This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS). The optical sensor of this research is based on an extrinsic Fabry–Perot interferometer (EFPI) with integrated fibre Bragg grating (FBG) for simultaneous pressure and [...] Read more.
This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS). The optical sensor of this research is based on an extrinsic Fabry–Perot interferometer (EFPI) with integrated fibre Bragg grating (FBG) for simultaneous pressure and temperature measurements. The sensor is fabricated exclusively in glass and with a small diameter of 0.2 mm, making it suitable for volume-restricted bio-medical applications. Diaphragm shrinking techniques based on polishing, hydrofluoric (HF) acid and femtosecond (FS) laser micro-machining are described and analysed. The presented sensors were examined carefully and demonstrated a pressure sensitivity in the range of \(s_p\) = 2–10 \(\frac{\text{nm}}{\text{kPa}}\) and a resolution of better than \(\Delta P\) = 10 Pa protect (0.1 cm H\(_2\)O). A static pressure test in 38 cmH\(_2\)O shows no drift of the sensor in a six-day period. Additionally, a dynamic pressure analysis demonstrated that the OFPTS never exceeded a drift of more than 130 Pa (1.3 cm H\(_2\)O) in a 12-h measurement, carried out in a cardiovascular simulator. The temperature sensitivity is given by \(k=10.7\) \(\frac{\text{pm}}{\text{K}}\), which results in a temperature resolution of better than \(\Delta T\) = 0.1 K. Since the temperature sensing element is placed close to the pressure sensing element, the pressure sensor is insensitive to temperature changes. Full article
(This article belongs to the Special Issue Optical Sensors for Biomedical Applications)
Show Figures

Figure 1

Open AccessArticle
Aluminum Nanoholes for Optical Biosensing
Biosensors 2015, 5(3), 417-431; https://doi.org/10.3390/bios5030417 - 09 Jul 2015
Cited by 13 | Viewed by 3410
Abstract
Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields [...] Read more.
Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. Full article
Show Figures

Figure 1

Open AccessArticle
Characterization of Lactate Sensors Based on Lactate Oxidase and Palladium Benzoporphyrin Immobilized in Hydrogels
Biosensors 2015, 5(3), 398-416; https://doi.org/10.3390/bios5030398 - 07 Jul 2015
Cited by 13 | Viewed by 3897
Abstract
An optical biosensor for lactate detection is described. By encapsulating enzyme-phosphor sensing molecules within permeable hydrogel materials, lactate-sensitive emission lifetimes were achieved. The relative amount of monomer was varied to compare three homo- and co-polymer materials: poly(2-hydroxyethyl methacrylate) (pHEMA) and two copolymers of [...] Read more.
An optical biosensor for lactate detection is described. By encapsulating enzyme-phosphor sensing molecules within permeable hydrogel materials, lactate-sensitive emission lifetimes were achieved. The relative amount of monomer was varied to compare three homo- and co-polymer materials: poly(2-hydroxyethyl methacrylate) (pHEMA) and two copolymers of pHEMA and poly(acrylamide) (pAam). Diffusion analysis demonstrated the ability to control lactate transport by varying the hydrogel composition, while having a minimal effect on oxygen diffusion. Sensors displayed the desired dose-variable response to lactate challenges, highlighting the tunable, diffusion-controlled nature of the sensing platform. Short-term repeated exposure tests revealed enhanced stability for sensors comprising hydrogels with acrylamide additives; after an initial “break-in” period, signal retention was 100% for 15 repeated cycles. Finally, because this study describes the modification of a previously developed glucose sensor for lactate analysis, it demonstrates the potential for mix-and-match enzyme-phosphor-hydrogel sensing for use in future multi-analyte sensors. Full article
(This article belongs to the Special Issue Fluorescence Based Sensing Technologies)
Show Figures

Graphical abstract

Open AccessReview
Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs
Biosensors 2015, 5(3), 367-397; https://doi.org/10.3390/bios5030367 - 26 Jun 2015
Cited by 10 | Viewed by 3088
Abstract
The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them [...] Read more.
The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein. Full article
(This article belongs to the Special Issue Fluorescence Based Sensing Technologies)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop