Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?
Abstract
:1. Freshwater Security
2. Current Approaches to Water Quality Monitoring in the Developing World
2.1. Detection of Chemicals
Toxicant | Threshold Value * (µg·L−1) | Method | Detection Limit (µg·L−1) | Approx. Cost ($ per test) | Test Time (mins) | Source/Company |
---|---|---|---|---|---|---|
Arsenic | 10 | Merckoquant test strip Wagtech Arsenator Hach EZ test kit ITS EconoQuick Apryon Tech Arsenic test kit | 20–500 0–1000 10–500 10–1000 5–800 | 0.5 2.5 0.6 0.6 1.50 | 40 40 20 15 30 | Merck Millipore Wagtech Projects [16] [16] Apryon Tech. |
Cadmium | 3 | Wagtech Metalyser HM 1000 Merckoquant test strip | 5–1000 2–500 | 11.3 1.4 | 10 15 | Wagtech Projects Merck Millipore |
Fluoride | 1500 | Wagtech Potakit(r) Merckoquant test strip HANNA Instruments colormetric | 0–1500 150–800 0–20,000 | 6.6 2 1.4 | 40 15 15 | Wagtech Projects Merck Millipore HANNA Instruments |
Lead | 10 | Wagtech Metalyser HM 1000 Merckoquant test strip | 5–1000 20,000–500,000 | 11.3 1.4 | 10 15 | Wagtech Projects Merck Millipore |
Nitrate (ion) | 50 | Wagtech Potakit(r) Merckoquant test strip HANNA Instruments test kit | 0–20,000 0–20,000 0–50,000 | 6.6 1.4 0.5 | 40 15 10 | Wagtech Projects Merck Millipore HANNA Instruments |
Nitrite (ion) | 3 | Wagtech Potakit(r) Merckoquant test strip HANNA Instruments test kit | 0–20,000 0–20,000 0–1000 | 6.6 1.4 0.5 | 40 15 10 | Wagtech Projects Merck Millipore HANNA Instruments |
2.2. Bioassays
3. Biosensors and the Potential of Microbial Fuel Cell-Based Sensors
3.1. Biosensors for Water Quality Monitoring
3.2. Principles of MFC Technology
3.3. MFCs as Biosensors: Operating Principles and Concepts
3.4. MFCs as Sensors for the Labile Organic Carbon Content in Water
3.5. MFCs as Toxicity Sensors
Microbe Assayed (Origin) | Anode | Cathode | Membrane Used | Configuration | Detection Range (BOD5, mg·L−1) | Saturation Signal | Response Time | Refs. |
---|---|---|---|---|---|---|---|---|
Clostridium butyricum | Pt | Carbon | Anion exchange membrane | Two chamber | 10–300 | 120 µA | 70 min | [53] |
Enriched consortium (waste water) | Graphite felt | Graphite felt | Cation exchange membrane | Two chamber | 2.58–206 (based on charge) | 1.1 mA | 0.5–10 h | [39] |
Consortium (activated sludge) | Graphite felt | Graphite felt | Cation exchange membrane | Two chamber | 23–100 | 6 mA | 1 h | [40] |
Consortium (activated sludge) | Graphite felt | Graphite felt with Pt | Cation exchange membrane | Two chamber | 20–200 | 5.5 mA | 5–36 min | [56] |
Consortium (waste water) | Carbon paper | Carbon cloth with Pt | Cation exchange membrane | Single chamber (air breathing cathode) | 38–324 | 286 mW·m−2 | 0.6 h | [57] |
Consortium (anaerobic sludge) | Graphite granules | Carbon paper with Pt | Cation exchange membrane | Single chamber (air breathing cathode) | 50–500 | 0.6 mA | 40 min–2 h | [41] |
Consortium (primary clarifier) | Carbon paper | Carbon paper with Pt | Cation exchange membrane | Two chamber | 10–250 | 233 mA·m−2 | 40 min | [58] |
Consortium (from an active MFC) | Carbon cloth | Carbon cloth | Cation exchange membrane | Single chamber (air breathing cathode) | 3–164 | 35 µA | 2.8–8.7 min | [46] |
Microbe/s Assayed (Origin) | Anode | Cathode | Membrane | Toxicant-Detection Range | Baseline Signal | Response Time | Refs. |
---|---|---|---|---|---|---|---|
Consortium (Activated sludge) | Graphite felt | Graphite felt | Cation exchange membrane | Diazinon:1–10 mg·L−1 Pb: 1–10 mg·L−1 Hg: 1–10 mg·L−1 PCBs: 1–10 mg·L−1 | 0.04 mA | 20 min–2 h | [45] |
Consortium (from an active MFC) | Graphite plate | Graphite plate | Cation exchange membrane | Cu2+ 85 mg·L−1 | 1.37 A·m−2 | 50–100 min | [48] |
Consortium (primary wastewater) | Graphite rod | Graphite rod | Cation exchange membrane | sulfamethaxozole 0.05–1000 μg·L−1 sulfadiazine 0.01–1000 μg.L−1 chloramine B 0.16–3.96 mg·L−1 Cu2+ 0.01–6.0 mg·L−1 Ag+ 0.02–1.0 mg·L−1 Pb2+ 0.41–12.48 mg·L−1 Hg2+ 0.83–8.33 mg·L−1 | No Data | No Data | [42] |
Geobacter sulfurreducens DSM 12127 | Ti/Ni/Au tri-layer | Ti/Ni/Au tri-layer | Cation exchange membrane | Formaldehyde 0.1%–4% | 4 µA·cm−2 | <5 min | [59] |
Consortium (from an active MFC) | Graphite plate | Graphite plate | Cation exchange membrane | Ni 10 mg·L−1 | 2.25 mA | 30 min | [60,61] |
Consortium (real domestic wastewater) | Carbon cloth | Carbon cloth coated with Pt | Cation exchange membrane | Cu2+ 5–7 mg·L−1 | No Data | 4 h | [62] |
Consortium (waste-water) | Carbon cloth | PTFE treated carbon cloth with Pt | None | Cr6+ 1–8 mg·L−1 Fe3+ 1, 8, 48 mg·L−1 NO3− 1, 8, 48 mg·L−1 | 0.10–0.12 V | 5 min | [63] |
Consortium (from an active MFC) | Carbon cloth | Carbon cloth | Cation exchange membrane | Cd2+ 0.1–100 µg·L−1 | 32.2 µA | 12 min | [46] |
4. Challenges of Implementing MFC Biosensor Technology for Developing Countries
4.1. Simplicity of Use
4.2. Use of Inexpensive Materials
4.3. Onsite Capability
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Poverty-Environment and Partnership. In Linking Poverty Reduction and Water Management; Department for International Development, United Kingdom (DFID): London, UK; Directorate General for Development, European Commission (EC): Brussels, Belgium; United Nations Development Programme (UNDP): New York, NY, USA; The World Bank: Washington, DC, USA, 2006.
- World Bank. World Development Report 2008: Agriculture for Development; World Bank: Washington, DC, USA, 2007. [Google Scholar]
- UNESCO. The United Nations World Water Development Report 3: Water in a Changing World; Routledge: London, UK, 2009. [Google Scholar]
- WHO; UNICEF. Progress on Drinking Water and Sanitation: 2014 Update; WHO: Geneva, Switzerland; UNICEF: New York, NY, USA, 2014. [Google Scholar]
- WHO; UNICEF. Progress on Drinking Water and Sanitation; WHO: Geneva, Switzerland; UNICEF: New York, NY, USA, 2008. [Google Scholar]
- Carr, G.M.; Neary, J.P. Water Quality for Ecosystem and Human Health; United Nations Development Programme, Global Environment Monitoring System/Water Programme: New York, NY, USA, 2008. [Google Scholar]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; von Gunten, U.; Wehrli, B. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- WaterAid. Water Quality Standards and Testing Policy; WaterAid: London, UK, 2011. [Google Scholar]
- Khurana, I.; Sen, R. Drinking Water Quality in Rural India: Issues and Approaches; WaterAid: Delhi, India, 2008. [Google Scholar]
- Dixon, W.; Chiswell, B. Review of aquatic monitoring program design. Water Res. 1996, 30, 1935–1948. [Google Scholar] [CrossRef]
- Van Geen, A.; Cheng, Z.; Seddique, A.A.; Hoque, M.A.; Gelman, A.; Graziano, J.H.; Ahsan, H.; Parvez, F.; Ahmed, K.M. Reliability of a Commercial Kit To Test Groundwater for Arsenic in Bangladesh. Environ. Sci. Technol. 2005, 39, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Brindha, K.; Rajesh, R.; Murugan, R.; Elango, L. Fluoride contamination in groundwater in parts of Nalgonda District, Andhra Pradesh, India. Environ. Monit. Assess. 2011, 172, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Safarzadeh-Amiri, A.; Fowlie, P.; Kazi, A.I.; Siraj, S.; Ahmed, S.; Akbor, A. Validation of analysis of arsenic in water samples using Wagtech Digital Arsenator. Sci. Total Environ. 2011, 409, 2662–2667. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Mukherjee, D.; Sengupta, M.K.; Chowdhury, U.K.; Lodh, D.; Chanda, C.R.; Roy, S.; Selim, M.; Quamruzzaman, Q.; Milton, A.H.; et al. Effectiveness and Reliability of Arsenic Field Testing Kits: Are the Million Dollar Screening Projects Effective or Not? Environ. Sci. Technol. 2002, 36, 5385–5394. [Google Scholar] [CrossRef] [PubMed]
- Awuah, E.; Nyarko, K.B.; Owusu, P.A.; Osei-Bonsu, K. Small town water quality. Desalination 2009, 248, 453–459. [Google Scholar] [CrossRef]
- George, C.M.; Zheng, Y.; Graziano, J.H.; Rasul, S.B.; Hossain, Z.; Mey, J.L.; van Geen, A. Evaluation of an arsenic test kit for rapid well screening in Bangladesh. Environ. Sci. Technol. 2012, 46, 11213–11219. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- EPA. Monitoring and Assessing Water Quality. Available online: http://water.epa.gov/type/watersheds/monitoring/ (accessed on 29 January 2015).
- IUPAC. Compendium of Chemical Terminology—The Gold Book, 2nd ed.; Blackwell Scientific Publications: Oxford, UK, 1997. [Google Scholar]
- Abrevaya, X.C.; Sacco, N.J.; Bonetto, M.C.; Hilding-Ohlsson, A.; Cortón, E. Analytical applications of microbial fuel cells. Part I: Biochemical oxygen demand. Biosens. Bioelectron. 2015, 63, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Dewhurst, R.E.; Wheeler, J.R.; Chummun, K.S.; Mather, J.D.; Callaghan, A.; Crane, M. The comparison of rapid bioassays for the assessment of urban groundwater quality. Chemosphere 2002, 47, 547–554. [Google Scholar] [CrossRef]
- Chaubey, A.; Malhotra, B.D. Mediated biosensors. Biosens. Bioelectron. 2002, 17, 441–456. [Google Scholar] [CrossRef]
- Eggins, B. Biosensors: An Introduction; Wiley: Hoboken, NJ, USA, 1997. [Google Scholar]
- Lagarde, F.; Jaffrezic-Renault, N. Cell-based electrochemical biosensors for water quality assessment. Anal. Bioanal. Chem. 2011, 400, 947–964. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Chen, W.; Mulchandani, A. Microbial biosensors. Anal. Chim. Acta 2006, 568, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Jia, W.; Hou, C.; Lei, Y. Microbial biosensors: A review. Biosens. Bioelectron. 2011, 26, 1788–1799. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, S.F. Microbial biosensors. Biosens. Bioelectron. 2001, 16, 337–353. [Google Scholar] [CrossRef]
- Liu, H.; Logan, B.E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 2004, 38, 4040–4046. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.; Regan, J. Microbial challenges and applications. Environ. Sci. Technol. 2006, 40, 5172–5180. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.; Hamelers, B.; Rozendal, R.; Schroder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Critical Review Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Lee, H.-S.; Chae, J. Miniaturizing microbial fuel cells for potential portable power sources: Promises and challenges. Microfluid. Nanofluidics 2012, 13, 353–381. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, M.; Guo, J.; Sun, G. Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem. 2012, 47, 1707–1714. [Google Scholar] [CrossRef]
- Du, Z.; Li, H.; Gu, T. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 2007, 25, 464–482. [Google Scholar] [CrossRef] [PubMed]
- Holzman, D.C. Microbe power! Environ. Health Perspect. 2005, 113, A754–A757. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ramnarayanan, R.; Logan, B.E. Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environ. Sci. Technol. 2004, 38, 2281–2285. [Google Scholar] [CrossRef] [PubMed]
- Habermann, W.; Pommer, E.H. Biological fuel cells with sulphide storage capacity. Appl. Microbiol. Biotechnol. 1991, 35, 128–133. [Google Scholar] [CrossRef]
- Pham, T.H.; Rabaey, K.; Aelterman, P.; Clauwaert, P.; de Schamphelaire, L.; Boon, N.; Verstraete, W. Microbial Fuel Cells in Relation to Conventional Anaerobic Digestion Technology. Eng. Life Sci. 2006, 6, 285–292. [Google Scholar] [CrossRef]
- Das, S.; Mangwani, N. Recent developments in microbial fuel cells: A review. J. Sci. Ind. Res. 2010, 69, 727–731. [Google Scholar]
- Kim, B.H.; Chang, I.S.; Gil, G.C.; Park, H.S.; Kim, H.J. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 2003, 25, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.S.; Jang, J.K.; Gil, G.C.; Kim, M.; Kim, H.J.; Cho, B.W.; Kim, B.H. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens. Bioelectron. 2004, 19, 607–613. [Google Scholar] [CrossRef]
- Di Lorenzo, M.; Scott, K.; Curtis, T.P.; Katuri, K.P.; Head, I.M. Continuous Feed Microbial Fuel Cell Using an Air Cathode and a Disc Anode Stack for Wastewater Treatment. Energy Fuels 2009, 23, 5707–5716. [Google Scholar] [CrossRef]
- Patil, S.; Harnisch, F.; Schröder, U. Toxicity response of electroactive microbial biofilms—A decisive feature for potential biosensor and power source applications. Chemphyschem 2010, 11, 2834–2837. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Barr, W.; Harper, W.F. Neural network processing of microbial fuel cell signals for the identification of chemicals present in water. J. Environ. Manag. 2013, 120, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Chang, I.S.; Gadd, G.M. Challenges in microbial fuel cell development and operation. Appl. Microbiol. Biotechnol. 2007, 76, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Hyun, M.S.; Gaddb, G.M.; Kim, H.J. A novel biomonitoring system using microbial fuel cells. J. Environ. Monit. 2007, 9, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, M.; Thomson, A.R.; Schneider, K.; Cameron, P.J.; Ieropoulos, I. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosens. Bioelectron. 2014, 62, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovley, D.R. The microbe electric: Conversion of organic matter to electricity. Curr. Opin. Biotechnol. 2008, 19, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Stein, N.E.; Hamelers, H.V.M.; Buisman, C.N.J. Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions. Bioelectrochemistry 2010, 78, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Hyun, M.; Chang, I.; Kim, B. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 1999, 9, 365–367. [Google Scholar]
- Kim, M.; Youn, S.M.; Shin, S.H.; Jang, J.G.; Han, S.H.; Hyun, M.S.; Gadd, G.M.; Kim, H.J. Practical field application of a novel BOD monitoring system. J. Environ. Monit. 2003, 5, 640. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, M.; Curtis, T.P.; Head, I.M.; Scott, K. A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res. 2009, 43, 3145–3154. [Google Scholar] [CrossRef] [PubMed]
- Melhuish, C.; Ieropoulos, I.; Greenman, J.; Horsfield, I. Energetically autonomous robots: Food for thought. Auton. Robots 2006, 21, 187–198. [Google Scholar] [CrossRef]
- Karube, I.; Matsunaga, T.; Mitsuda, S.; Suzuki, S. Microbial electrode BOD sensors. Biotechnol. Bioeng. 1977, 19, 1535–1547. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.S.; Moon, H.; Bretschger, O.; Jang, J.K.; Park, H.I.; Nealson, K.H.; Kim, B.H. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 2006, 16, 163–177. [Google Scholar]
- Stein, N.E.; Hamelers, H.V.M.; van Straten, G.; Keesman, K.J. Effect of toxic components on microbial fuel cell-polarization curves and estimation of the type of toxic inhibition. Biosensors 2012, 2, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.; Chang, I.S.; Kang, K.H.; Jang, J.K.; Kim, B.H. Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnol. Lett. 2004, 26, 1717–1721. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; Logan, B.E. Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell. Environ. Sci. Technol. 2004, 38, 5809–5814. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Angelidaki, I. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability. Biotechnol. Bioeng. 2011, 108, 2339–2347. [Google Scholar] [CrossRef] [PubMed]
- Dávila, D.; Esquivel, J.P.; Sabaté, N.; Mas, J. Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens. Bioelectron. 2011, 26, 2426–2430. [Google Scholar] [CrossRef] [PubMed]
- Stein, N.E.; Hamelers, H.V.; Buisman, C.N. Influence of membrane type, current and potential on the response to chemical toxicants of a microbial fuel cell based biosensor. Sens. Actuators B Chem. 2012, 163, 1–7. [Google Scholar] [CrossRef]
- Stein, N.E.; Hamelers, H.V.; Buisman, C.N. The effect of different control mechanisms on the sensitivity and recovery time of a microbial fuel cell based biosensor. Sens. Actuators B Chem. 2012, 171–172, 816–821. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, M.; Chang, I.S.; Ng, H.Y. Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(II). Bioresour. Technol. 2013, 136, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Lei, Y.; Li, B. A batch-mode cube microbial fuel cell based “shock” biosensor for wastewater quality monitoring. Biosens. Bioelectron. 2014, 62, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Borole, A.P.; Reguera, G.; Ringeisen, B.; Wang, Z.-W.; Feng, Y.; Kim, B.H. Electroactive biofilms: Current status and future research needs. Energy Environ. Sci. 2011, 4, 4813–4834. [Google Scholar] [CrossRef]
- Celmer, D.; Oleszkiewicz, J.A.; Cicek, N. Impact of shear force on the biofilm structure and performance of a membrane biofilm reactor for tertiary hydrogen-driven denitrification of municipal wastewater. Water Res. 2008, 42, 3057–3065. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.J.; Lefebvre, O.; Tan, Z.; Ng, H.Y. Microbial fuel-cell-based toxicity sensor for fast monitoring of acidic toxicity. Water Sci. Technol. 2012, 6, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Palaniappan, M.; Gleick, P.H.; Allen, L.; Cohen, M.J.; Christian-Smith, J.; Smith, C. Clearing the Waters: A Focus on Water Quality Solutions; UNEP: Nairobi, Kenya, 2010. [Google Scholar]
- Elmekawy, A.; Hegab, H.M.; Dominguez-Benetton, X.; Pant, D. Internal resistance of microfluidic microbial fuel cell: Challenges and potential opportunities. Bioresour. Technol. 2013, 142, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-P.; Zhao, Y.; Qiu, K.-Q.; Chu, J.; Lu, R.; Sun, M.; Liu, X.-W.; Sheng, G.-P.; Yu, H.-Q.; Chen, J.; et al. An innovative miniature microbial fuel cell fabricated using photolithography. Biosens. Bioelectron. 2011, 26, 2841–2846. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.-X.; Sun, Y.-M.; Kong, X.-Y.; Zhen, F.; Li, Y.; Li, L.-H.; Lei, T.-Z.; Yuan, Z.-H.; Chen, G.-Y. Factors affecting the performance of a single-chamber microbial fuel cell-type biological oxygen demand sensor. Water Sci. Technol. 2013, 68, 1914–1919. [Google Scholar] [CrossRef] [PubMed]
- Stein, N.E.; Hamelers, H.M.; van Straten, G.; Keesman, K.J. On-line detection of toxic components using a microbial fuel cell-based biosensor. J. Process Control 2012, 22, 1755–1761. [Google Scholar] [CrossRef]
- Winfield, J.; Ieropoulos, I.; Rossiter, J.; Greenman, J.; Patton, D. Biodegradation and proton exchange using natural rubber in microbial fuel cells. Biodegradation 2013, 24, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Winfield, J.; Chambers, L.D.; Stinchcombe, A.; Rossiter, J.; Ieropoulos, I. The power of glove: Soft microbial fuel cell for low-power electronics. J. Power Sources 2014, 249, 327–332. [Google Scholar] [CrossRef]
- Behera, M.; Jana, P.S.; Ghangrekar, M.M. Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresour. Technol. 2010, 101, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Santoro, C.; Ieropoulos, I.; Greenman, J.; Cristiani, P.; Vadas, T.; Mackay, A.; Li, B. Current generation in membraneless single chamber microbial fuel cells (MFCs) treating urine. J. Power Sources 2013, 238, 190–196. [Google Scholar] [CrossRef]
- Cristiani, P.; Carvalho, M.L.; Guerrini, E.; Daghio, M.; Santoro, C.; Li, B. Cathodic and anodic biofilms in Single Chamber Microbial Fuel Cells. Bioelectrochemistry 2013, 92, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Huggins, T.; Wang, H.; Kearns, J.; Jenkins, P.; Ren, Z.J. Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour. Technol. 2014, 157, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Yuan, T.; Wang, D.; Tang, J.; Zhou, S. Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell. Bioresour. Technol. 2013, 144, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Deng, L.; Qi, Y.; Kobayashi, N.; Tang, J. Nonactivated and Activated Biochar Derived from Bananas as Alternative Cathode Catalyst in Microbial Fuel Cells. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Stein, N.E.; Keesman, K.J.; Hamelers, H.V.M.; van Straten, G. Kinetic models for detection of toxicity in a microbial fuel cell based biosensor. Biosens. Bioelectron. 2011, 26, 3115–3120. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, F.; Rehmani, M.H. Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Renew. Sustain. Energy Rev. 2015, 45, 769–784. [Google Scholar] [CrossRef]
- Thomas, Y.R.J.; Picot, M.; Carer, A.; Berder, O.; Sentieys, O.; Barrière, F. A single sediment-microbial fuel cell powering a wireless telecommunication system. J. Power Sources 2013, 241, 703–708. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Wang, K.-C.; Huang, Y. Energy-Neutral Communication Protocol for very Low Power Microbial Fuel Cell Based Wireless Sensor Network. IEEE Sens. J. 2015, 15, 2306–2315. [Google Scholar] [CrossRef]
- Tommasi, T.; Chiolerio, A.; Crepaldi, M.; Demarchi, D. A microbial fuel cell powering an all-digital piezoresistive wireless sensor system. Microsyst. Technol. 2014, 20, 1023–1033. [Google Scholar] [CrossRef]
- Pietrelli, A.; Micangeli, A.; Ferrara, V.; Raffi, A. Wireless Sensor Network Powered by a Terrestrial Microbial Fuel Cell as a Sustainable Land Monitoring Energy System. Sustainability 2014, 6, 7263–7275. [Google Scholar] [CrossRef]
- Donovan, C.; Dewan, A.; Peng, H.; Heo, D.; Beyenal, H. Power management system for a 2.5W remote sensor powered by a sediment microbial fuel cell. J. Power Sources 2011, 196, 1171–1177. [Google Scholar] [CrossRef]
- Shantaram, A.; Beyenal, H.; Veluchamy, R.R.A.; Lewandowski, Z. Wireless Sensors Powered by Microbial Fuel Cells. Environ. Sci. Technol. 2005, 39, 5037–5042. [Google Scholar] [CrossRef] [PubMed]
- Guzman, J.J.; Cooke, K.G.; Gay, M.O.; Radachowsky, S.E.; Girguis, P.R.; Chiu, M.A. Benthic microbial fuel cells: Long-term power sources for wireless marine sensor networks. In Proceedings of the SPIE 7666, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IX, Orlando, FL, USA, 5 April 2010; Volume 7666.
- Zhang, F.; Tian, L.; He, Z. Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. J. Power Sources 2011, 196, 9568–9573. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chouler, J.; Di Lorenzo, M. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer? Biosensors 2015, 5, 450-470. https://doi.org/10.3390/bios5030450
Chouler J, Di Lorenzo M. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer? Biosensors. 2015; 5(3):450-470. https://doi.org/10.3390/bios5030450
Chicago/Turabian StyleChouler, Jon, and Mirella Di Lorenzo. 2015. "Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?" Biosensors 5, no. 3: 450-470. https://doi.org/10.3390/bios5030450
APA StyleChouler, J., & Di Lorenzo, M. (2015). Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer? Biosensors, 5(3), 450-470. https://doi.org/10.3390/bios5030450