Characterization of Lactate Sensors Based on Lactate Oxidase and Palladium Benzoporphyrin Immobilized in Hydrogels
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Sensor Preparation
2.3. Benchtop Testing System
2.4. Data Analysis and Sensor Response
2.5. Diffusion Analysis
2.6. Acute Sensor Degradation
3. Results and Discussion
3.1. Diffusion Analysis
3.2. Sensor Response
Monomers | 75:25 pHEMA:pAam | 90:10 pHEMA:pAam | Pure pHEMA |
---|---|---|---|
Sensitivity (μs × dL/mg) | 19.0 ± 2.3 | 9.2 ± 1.5 | 8.5 ± 2.2 |
Range (mg/dL) | 1.1–12.7 | 0.7–35.0 | 0.4–38.2 |
Response time (min) | 19.0 ± 2.9 | 16.4 ± 1.7 | 15.2 ± 1.2 |
DL (cm2/s) × 10−7 | 5.7 ± 0.3 | 4.0 ± 0.9 | 3.1 ± 1.6 |
τ0 (μs) | 251.8 ± 5.1 | 259.9 ± 8.9 | 290.0 ± 7.3 |
Ksv (%−1 O2) × 10−2 | 29.4 ± 0.3 | 28.0 ± 1.2 | 27.7 ± 0.2 |
Signal retention @ LODhigh (%) | |||
For 0–20x cycles | 73.11 ± 14.9 | 81.0 ± 10.6 | 69.9 ± 4.9 |
3.3. Acute Loss of Sensor Function
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gaster, R.S.; Hall, D.A.; Wang, S.X. nanoLAB: An ultraportable, handheld diagnostic laboratory for global health. Lab Chip 2011, 11, 950–956. [Google Scholar] [CrossRef]
- Ayub, M.; Ivanov, A.; Instuli, E.; Cecchini, M.; Chansin, G.; McGilvery, C.; Hong, J.; Baldwin, G.; McComb, D.; Edel, J.B.; et al. Nanopore/electrode structures for single-molecule biosensing. Electrochim. Acta 2010, 55, 8237–8243. [Google Scholar] [CrossRef]
- Roy, D.; Cambre, J.N.; Sumerlin, B.S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 2010, 35, 278–301. [Google Scholar] [CrossRef]
- Klonoff, D.C. Continuous Glucose Monitoring: Roadmap for 21st century diabetes therapy. Diabetes Care 2005, 28, 1231–1239. [Google Scholar] [CrossRef]
- Palleschi, G.; Mascini, M.; Bernardi, L.; Zeppilli, P. Lactate and glucose electrochemical biosensors for the evaluation of the aerobic and anaerobic threshold in runners. Med. Biol. Eng. Comput. 1990, 28, B25–B28. [Google Scholar] [CrossRef]
- Jansen, T.C.; van Bommel, J.; Bakker, J. Blood lactate monitoring in critically ill patients: A systematic health technology assessment. Crit. Care Med. 2009, 37, 2827–2839. [Google Scholar] [CrossRef]
- Zanini, V.P.; de Mishima, B.L.; Solís, V. An amperometric biosensor based on lactate oxidase immobilized in laponite–chitosan hydrogel on a glassy carbon electrode. Application to the analysis of l-lactate in food samples. Sens. Actuators B Chem. 2011, 155, 75–80. [Google Scholar] [CrossRef]
- Ekberg, N.R.; Brismar, K.; Malmstedt, J.; Hedblad, M.-A.; Adamson, U.; Ungerstedt, U.; Wisniewski, N. Analyte flux at a biomaterial-tissue interface over time: Implications for sensors for type 1 and 2 diabetes mellitus. J. Diabetes Sci. Technol. 2010, 4, 1063–1072. [Google Scholar] [CrossRef]
- Rajamand, N.; Ungerstedt, U.; Brismar, K. Subcutaneous microdialysis before and after an oral glucose tolerance test: A method to determine insulin resistance in the subcutaneous adipose tissue in diabetes mellitus. Diabetes Obes. Metab. 2005, 7, 525–535. [Google Scholar] [CrossRef]
- Nguyen, H.B.; Rivers, E.P.; Knoblich, B.P.; Jacobsen, G.; Muzzin, A.; Ressler, J.A.; Tomlanovich, M.C. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit. Care Med. 2004, 32, 1637–1642. [Google Scholar] [CrossRef]
- Matsushita, K.; Williams, E.K.; Mongraw-Chaffin, M.L.; Coresh, J.; Schmidt, M.I.; Brancati, F.L.; Hoogeveen, R.C.; Ballantyne, C.M.; Young, J.H. The association of plasma lactate with incident cardiovascular outcomes: The ARIC study. Am. J. Epidemiol. 2013, 178, 401–409. [Google Scholar] [CrossRef]
- Nakao, T. Impaired lactate production by skeletal muscle with anaerobic exercise in patients with chronic renal failure. A possible consequence of defective glycolysis in skeletal muscle. Nephron 1982, 31, 111–115. [Google Scholar] [CrossRef]
- White, N.J. Lactate trumps blood pressure for trauma triage. Sci. Transl. Med. 2015, 7, 278ec43. [Google Scholar]
- Ghosh, A.K. Anaerobic threshold: Its concept and role in endurance sport. Malays. J. Med. Sci. MJMS 2004, 11, 24–36. [Google Scholar]
- Heiss, W.-D. The ischemic penumbra: how does tissue injury evolve? Ann. N. Y. Acad. Sci. 2012, 1268, 26–34. [Google Scholar] [CrossRef]
- Zhao, W.; Ni, Y.; Zhu, Q.; Fu, R.; Huang, X.; Shen, J. Innovative biocompatible nanospheres as biomimetic platform for electrochemical glucose biosensor. Biosens. Bioelectron. 2013, 44, 1–5. [Google Scholar] [CrossRef]
- Thomas, N.; Lähdesmäki, I.; Parviz, B.A. A contact lens with an integrated lactate sensor. Sens. Actuators B Chem. 2012, 162, 128–134. [Google Scholar] [CrossRef]
- Chaudhary, A.; McShane, M.J.; Srivastava, R. Glucose response of dissolved-core alginate microspheres: Towards a continuous glucose biosensor. Analyst 2010, 135, 2620–2628. [Google Scholar] [CrossRef]
- McShane, M.J. Potential for glucose monitoring with nanoengineered fluorescent biosensors. Diabetes Technol. Ther. 2002, 4, 533–538. [Google Scholar] [CrossRef]
- Cummins, B.M.; Lim, J.; Simanek, E.E.; Pishko, M.V.; Coté, G.L. Encapsulation of a Concanavalin A/dendrimer glucose sensing assay within microporated poly (ethylene glycol) microspheres. Biomed. Opt. Express 2011, 2, 1243–1257. [Google Scholar] [CrossRef]
- Rassaei, L.; Olthuis, W.; Tsujimura, S.; Sudhölter, E.R.; van den Berg, A. Lactate biosensors: Current status and outlook. Anal. Bioanal. Chem. 2014, 406, 123–137. [Google Scholar] [CrossRef]
- Clarke, W.L.; Anderson, S.; Farhy, L.; Breton, M.; Gonder-Frederick, L.; Cox, D.; Kovatchev, B. Evaluating the clinical accuracy of two continuous glucose sensors using continuous glucose-error grid analysis. Diabetes Care 2005, 28, 2412–2417. [Google Scholar] [CrossRef]
- Koschwanez, H.E.; Reichert, W.M. In vitro, in vivo and post explantation testing of glucose-detecting biosensors: Current methods and recommendations. Biomaterials 2007, 28, 3687–3703. [Google Scholar] [CrossRef]
- Wentholt, I.M.E.; Hoekstra, J.B.L.; Devries, J. Continuous glucose monitors: The long-awaited watchdogs? Diabetes Technol. Ther. 2007, 9, 399–409. [Google Scholar] [CrossRef]
- Yu, B.Z.; Ju, Y.M.; West, L.; Moussy, Y.; Moussy, F. An investigation of long-term performance of minimally invasive glucose biosensors. Diabetes Technol. Ther. 2007, 9, 265–275. [Google Scholar] [CrossRef]
- Malik, B.H.; Coté, G.L. Characterizing dual wavelength polarimetry through the eye for monitoring glucose. Biomed. Opt. Express 2010, 1, 1247–1258. [Google Scholar] [CrossRef]
- Esenaliev, R.O.; Larin, K.V.; Larina, I.V.; Motamedi, M. Noninvasive monitoring of glucose concentration with optical coherence tomography. Opt. Lett. 2001, 26, 992–994. [Google Scholar] [CrossRef]
- Chou, I.H.; Benford, M.; Beier, H.T.; Coté, G.L.; Wang, M.; Jing, N.; Kameoka, J.; Good, T.A. Nanofluidic biosensing for β-amyloid detection using surface enhanced raman spectroscopy. Nano Lett. 2008, 8, 1729–1735. [Google Scholar] [CrossRef]
- Kazakova, L.; Shabarchina, L.; Anastasova, S.; Pavlov, A.; Vadgama, P.; Skirtach, A.; Sukhorukov, G. Chemosensors and biosensors based on polyelectrolyte microcapsules containing fluorescent dyes and enzymes. Anal. Bioanal. Chem. 2013, 405, 1559–1568. [Google Scholar] [CrossRef]
- Hu, A.-L.; Liu, Y.-H.; Deng, H.-H.; Hong, G.-L.; Liu, A.-L.; Lin, X.-H.; Xia, X.-H.; Chen, W. Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and l-lactate detection. Biosens. Bioelectron. 2014, 61, 374–378. [Google Scholar] [CrossRef]
- Caspers, P.; Lucassen, G.; Bruining, H.; Puppels, G. Detection of skin lactate by in vivo Raman spectroscopy. In Spectroscopy of Biological Molecules: New Directions; Greve, J., Puppels, G.J., Otto, C., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 485–486. [Google Scholar]
- McShane, M. Encapsulated probes. In Sensors Based on Nanostructured Materials; Arregui, F.J., Ed.; Springer: New York, NY, USA, 2009; pp. 253–273. [Google Scholar]
- Kürner, J.M.; Wolfbeis, O.S.; Klimant, I. Homogeneous luminescence decay time-based assay using energy transfer from nanospheres. Anal. Chem. 2002, 74, 2151–2156. [Google Scholar] [CrossRef]
- O’Sullivan, P.J.; Burke, M.; Soini, A.E.; Papkovsky, D.B. Synthesis and evaluation of phosphorescent oligonucleotide probes for hybridisation assays. Nucleic Acids Res. 2002, 30, e114. [Google Scholar] [CrossRef]
- O’Riordan, T.C.; Soini, A.E.; Papkovsky, D.B. Monofunctional derivatives of coproporphyrins for phosphorescent labeling of proteins and binding assays. Anal. Biochem. 2001, 290, 366–375. [Google Scholar] [CrossRef]
- Smith, A.M.; Mancini, M.C.; Nie, S. Bioimaging: Second window for in vivo imaging. Nat Nano 2009, 4, 710–711. [Google Scholar] [CrossRef]
- Lockridge, O.; Massey, V.; Sullivan, P.A. Mechanism of action of the flavoenzyme lactate oxidase. J. Biol. Chem. 1972, 247, 8097–8106. [Google Scholar]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Arciola, C.R.; Maltarello, M.C.; Cenni, E.; Pizzoferrato, A. Disposable contact lenses and bacterial adhesion. In vitro comparison between ionic/high-water-content and non-ionic/low-water-content lenses. Biomaterials 1995, 16, 685–690. [Google Scholar] [CrossRef]
- Ševčík, S.; Vacík, J.; Chmelíková, D.; Smetana, K., Jr. Surface alkaline hydrolysis of 2-hydroxyethyl methacrylate gels. J. Mater. Sci. Mater. Med. 1995, 6, 505–509. [Google Scholar] [CrossRef]
- Mohapatra, R.; Ray, D.; Swain, A.K.; Pal, T.K.; Sahoo, P.K. Release study of alfuzosin hydrochloride loaded to novel hydrogel P(HEMA-co-AA). J. Appl. Polym. Sci. 2008, 108, 380–386. [Google Scholar] [CrossRef]
- Jaiswal, M.; Koul, V. Assessment of multicomponent hydrogel scaffolds of poly(acrylic acid-2-hydroxy ethyl methacrylate)/gelatin for tissue engineering applications. J. Biomater. Appl. 2013, 27, 848–861. [Google Scholar] [CrossRef]
- Ramalingam, N.; Natarajan, T.S.; Rajiv, S. Development and characterization of electrospun poly(2-hydroxy ethyl methacrylate) for tissue engineering applications. Adv. Polym. Technol. 2013, 32. [Google Scholar] [CrossRef]
- Montheard, J.-P.; Chatzopoulos, M.; Chappard, D. 2-Hydroxyethyl methacrylate (HEMA): Chemical properties and applications in biomedical fields. J. Macromol. Sci. Part C 1992, 32, 1–34. [Google Scholar] [CrossRef]
- Kochkodan, V.M.; Hilal, N.; Goncharuk, V.V.; Al-Khatib, L.; Levadna, T.I. Effect of the surface modification of polymer membranes on their microbiological fouling. Colloid J. 2006, 68, 267–273. [Google Scholar] [CrossRef]
- Goli, K.K.; Rojas, O.J.; Genzer, J. Formation and antifouling properties of amphiphilic coatings on polypropylene fibers. Biomacromolecules 2012, 13, 3769–3779. [Google Scholar] [CrossRef]
- Peppas, N.A.; Moynihan, H.J.; Lucht, L.M. The structure of highly crosslinked poly(2-hydroxyethyl methacrylate) hydrogels. J. Biomed. Mater. Res. 1985, 19, 397–411. [Google Scholar] [CrossRef]
- Raymond, S. Acrylamide gel electrophoresis. Ann. N. Y. Acad. Sci. 1964, 121, 350–365. [Google Scholar] [CrossRef]
- Akroyd, P. Acrylamide-gel electrophoresis of [beta]-lactoglobulins stored in solutions at pH 8.7. Nature 1965, 208, 488–489. [Google Scholar] [CrossRef]
- Ramaraj, B.; Radhakrishnan, G. Hydrogel capsules for sustained drug release. J. Appl. Polym. Sci. 1994, 51, 979–988. [Google Scholar] [CrossRef]
- Roberts, J.; Collier, B.B.; McShane, M.J. Incorporation of optical enzymatic sensing chemistry into biocompatible hydrogels. In Proceedings of the 2011 IEEE on Sensors, Limerick, Irelan, 28–31 October 2011; pp. 1245–1248.
- Roberts, J.R.; Park, J.; Helton, K.; Wisniewski, N.; McShane, M.J. Biofouling of polymer hydrogel materials and its effect on diffusion and enzyme-based luminescent glucose sensor functional characteristics. J. Diabetes Sci. Technol. 2012, 6, 1267–1275. [Google Scholar] [CrossRef]
- Markvicheva, E.A.; Tkachuk, N.E.; Kuptsova, S.V.; Dugina, T.N.; Strukova, S.M.; Kirssh, Y.E.; Zubov, V.P.; Rumish, L.D. Stabilization of proteases by entrapment in a new composite hydrogel. Appl. Biochem. Biotechnol. 1996, 61, 75–84. [Google Scholar] [CrossRef]
- Zhu, X.; Ma, Y.; Zhao, C.; Lin, Z.; Zhang, L.; Chen, R.; Yang, W. A mild strategy to encapsulate enzyme into hydrogel layer grafted on polymeric substrate. Langmuir 2014, 30, 15229–15237. [Google Scholar] [CrossRef]
- Baker, D.A.; Corkhill, P.H.; Ng, C.O.; Skelly, P.J.; Tighe, B.J. Synthetic hydrogels: 2. Copolymers of carboxyl-, lactam- and amide-containing monomers—Structure/property relationships. Polymer 1988, 29, 691–700. [Google Scholar] [CrossRef]
- Garg, S.K.; Voelmle, M.; Gottlieb, P.A. Time lag characterization of two continuous glucose monitoring systems. Diabetes Res. Clin. Pract. 2010, 87, 348–353. [Google Scholar] [CrossRef]
- Kamath, A.; Mahalingam, A.; Brauker, J. Analysis of time lags and other sources of error of the DexCom SEVEN continuous glucose monitor. Diabetes Technol. Ther. 2009, 11, 689–695. [Google Scholar] [CrossRef]
- Garjonyte, R.; Yigzaw, Y.; Meskys, R.; Malinauskas, A.; Gorton, L. Prussian Blue- and lactate oxidase-based amperometric biosensor for lactic acid. Sens. Actuators B Chem. 2001, 79, 33–38. [Google Scholar] [CrossRef]
- Palmisano, F.; Centonze, D.; Zambonin, P.G. An in situ electrosynthesized amperometric biosensor based on lactate oxidase immobilized in a poly-o-phenylenediamine film: Determination of lactate in serum by flow injection analysis. Biosens. Bioelectron. 1994, 9, 471–479. [Google Scholar] [CrossRef]
- Ibupoto, Z.H.; Shah, S.M.; Khun, K.; Willander, M. Electrochemical l-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase. Sensors 2012, 12, 2456–2466. [Google Scholar] [CrossRef]
- Marquette, C.A.; Leca, B.D.; Blum, L.J. Electrogenerated chemiluminescence of luminol for oxidase-based fibre-optic biosensors. Luminescence 2001, 16, 159–165. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrus, L.P.; Unruh, R.; Wisniewski, N.A.; McShane, M.J. Characterization of Lactate Sensors Based on Lactate Oxidase and Palladium Benzoporphyrin Immobilized in Hydrogels. Biosensors 2015, 5, 398-416. https://doi.org/10.3390/bios5030398
Andrus LP, Unruh R, Wisniewski NA, McShane MJ. Characterization of Lactate Sensors Based on Lactate Oxidase and Palladium Benzoporphyrin Immobilized in Hydrogels. Biosensors. 2015; 5(3):398-416. https://doi.org/10.3390/bios5030398
Chicago/Turabian StyleAndrus, Liam P., Rachel Unruh, Natalie A. Wisniewski, and Michael J. McShane. 2015. "Characterization of Lactate Sensors Based on Lactate Oxidase and Palladium Benzoporphyrin Immobilized in Hydrogels" Biosensors 5, no. 3: 398-416. https://doi.org/10.3390/bios5030398
APA StyleAndrus, L. P., Unruh, R., Wisniewski, N. A., & McShane, M. J. (2015). Characterization of Lactate Sensors Based on Lactate Oxidase and Palladium Benzoporphyrin Immobilized in Hydrogels. Biosensors, 5(3), 398-416. https://doi.org/10.3390/bios5030398