MIL-53 MOF on Sustainable Biomaterial for Antimicrobial Evaluation Against E. coli and S. aureus Bacteria by Efficient Release of Penicillin G
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Procedure to Obtain BCaP Biomaterial from Beef Bone Powder, Synthesis of MIL-53, and 1
2.3. Characterization of BCaP, MIL-53, and 1
2.4. Penicillin G Loading in BCaP, MIL-53, and 1
2.5. Bacterial Strains
2.6. Antibacterial Activity Test
3. Results and Discussion
3.1. Materials Characterization
3.2. Penicillin G Loading and Release in the Synthesized Materials
3.3. Penicillin G Loading Mechanism in the Synthesized Materials
Elements | Be (eV) | Interactions Associated | Ref. |
---|---|---|---|
P2p | 132.09 | PO4-Fe | [66] |
C1s | 291 | π-π | [63] |
Ca2p | 347.73 350.93 | PO43− -OH | [67] |
N1s | 396 | N-Fe | [65] |
O1s | 532.11 532.76 | O-Fe Fe-O-H | [64] |
Fe2p | 706 712 712.05 | Fe-N Fe-S Fe-PO4 | [68] [69] |
3.4. Antibacterial Activity Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.; Akhter, N.; Rabaan, A.; Algumber, M.A. Antimicrobial resistance: A growing serious threat for global public health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Aguilar, G.R.; Swetschinski, L.R.; Weaver, N.D.; Ikuta, K.S.; Mestrovic, T.; Gray, A.P.; Naghavi, M. The burden of antimicrobial resistance in the Americas in 2019: A cross-country systematic analysis. Lancet Reg. Health–Am. 2023, 25, 100561. [Google Scholar] [CrossRef]
- Dávila-López, E.C.; Berumen-Lechuga, M.G.; Molina-Pérez, C.J.; Jimenez-Juarez, R.N.; Leaños-Miranda, A.; Robles-Ordoñez, N.; Peña-Cano, M.I.; Venegas-Esquivel, G.A. Antimicrobial resistance and antibiotic consumption in a Secondary Care Hospital in Mexico. Antibiotics 2024, 13, 178. [Google Scholar] [CrossRef]
- Kilinc, M. Antibiotic resistance and mortality in ICU patients: A retrospective analysis of first culture growth results. Antibiotics 2025, 14, 290. [Google Scholar] [CrossRef] [PubMed]
- Huayhuaz, J.A.A.; Vitorino, H.A.; Campos, O.S.; Serrano, S.H.P.; Kaneko, T.M.; Espósito, B.P. Desferrioxamine and desferrioxamine-caffeine as carriers of aluminum and gallium to microbes via the Trojan Horse Effect. J. Trace Elem. Med. Biol. 2017, 41, 16–22. [Google Scholar] [CrossRef]
- Najjafidoust, A.; Abdollahi, B.; Sarani, M.; Darroudi, M.; Vala, A. MIL-(53) Fe metal-organic framework (MOF)-based Ag2CrO4 heterostructure with enhanced solar-light degradation of organic dyes. Opt. Mater. 2022, 125, 112108. [Google Scholar] [CrossRef]
- Gautam, S.; Lakhanpal, I.; Sonowal, L.; Goyal, N. Recent advances in targeted drug delivery using metal-organic frameworks: Toxicity and release kinetics. Next Nanotechnol. 2023, 3, 100027. [Google Scholar] [CrossRef]
- Heikkilä, T.; Salonen, J.; Tuura, J.; Kumar, N.; Salmi, T.; Murzin, D.Y.; Hamdy, M.S.; Mul, G.; Laitinen, L.; Kaukonen, A.M.; et al. Evaluation of mesoporous TCPSi, MCM-41, SBA-15, and TUD-1 materials as API carriers for oral drug delivery. Drug Deliv. 2007, 14, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Mirzanejad, S.; Bagherzadeh, M.; Bayrami, A.; Daneshgar, H.; Bahrami, A.; Mahdavi, M. Improving the drug delivery performance of ZIF-8 with amine functionalization as a 5-fluorouracil nanocarrier. Sci. Rep. 2025, 15, 18793. [Google Scholar] [CrossRef]
- Aydin, N.E. Effect of temperature on drug release: Production of 5-FU-encapsulated hydroxyapatite-gelatin polymer composites via spray drying and analysis of in vitro kinetics. Int. J. Polym. Sci. 2020, 2020, 8017035. [Google Scholar] [CrossRef]
- Rojas, S.; Arenas-Vivo, A.; Horcajada, P. Metal-organic frameworks: A novel platform for combined advanced therapies. Coord. Chem. Rev. 2019, 388, 202–226. [Google Scholar] [CrossRef]
- Mohammed, M.; Ahmad, V.; Ahmad, A.; Tabrez, S.; Choudhry, H.; Zamzami, M.; Bakhrebah, M.; Ahmad, A.; Wasi, S.; Mukhtar, H.; et al. Prospective of nanoscale metal organic frameworks [NMOFs] for cancer therapy. Semin. Cancer Biol. 2021, 69, 129–139. [Google Scholar] [CrossRef]
- Li, Y.M.; Jiang, T.; Lv, Y.; Wu, Y.; He, F.; Zhuo, R.X. Amphiphilic copolymers with pendent carboxyl groups for high-efficiency loading and controlled release of doxorubicin. Colloids Surf. B 2015, 132, 54–61. [Google Scholar] [CrossRef]
- Keshta, B.E.; Yu, H.; Wang, L. MIL series-based MOFs as effective adsorbents for removing hazardous organic pollutants from water. Sep. Purif. Technol. 2023, 322, 124301. [Google Scholar] [CrossRef]
- Ghasemzadeh, M.A.; Mirhosseini-Eshkevari, B.; Abdollahi-Basir, M.H. MIL-53(Fe) Metal–Organic Frameworks (MOFs) as an efficient and reusable catalyst for the one-pot four component synthesis of pyrano [2,3-c]-pyrazoles. Appl. Organomet. Chem. 2019, 33, e4679. [Google Scholar] [CrossRef]
- Tomar, S.; Singh, V.K. Review on synthesis and application of MIL-53. Mater. Today Proc. 2021, 43, 3291–3296. [Google Scholar] [CrossRef]
- Gugtapeh, H.S.; Abbasi, M.; Moghadam, M.H.; Rezaei, M. Solvent-exchange-assisted activation of Cu-1, 4-benzene dicarboxylate metal-organic framework for use as a bifunctional water splitting electrocatalyst. Electrochim. Acta 2024, 508, 145224. [Google Scholar] [CrossRef]
- Fandzloch, M.; Bodylska, W.; Trzcinska-Wencel, J.; Golińska, P.; Roszek, K.; Wisniewska, J.; Bartmanski, M.; Lewinska, A.; Jaromin, A. Cu-HKUST-1 and hydroxyapatite–the interface of two worlds toward the design of functional materials dedicated to bone tissue regeneration. ACS Biomater. Sci. Eng. 2023, 9, 4646–4653. [Google Scholar] [CrossRef]
- Pu’Ad, N.M.; Koshy, P.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Syntheses of hydroxyapatite from natural sources. Heliyon 2019, 5, e01588. [Google Scholar] [CrossRef] [PubMed]
- Hart, A.; Ebiundu, K.; Peretomode, E.; Onyeaka, H.; Nwabor, O.F.; Obileke, K. Value-added materials recovered from waste bone biomass: Technologies and applications. RSC Adv. 2022, 12, 22302. [Google Scholar] [CrossRef]
- Moreno, D.; Vargas, F.; Ruiz, J.; López, M.E. Solid-state synthesis of alpha tricalcium phosphate for cements used in biomedical applications. Boletín Soc. Española Cerámica Vidr. 2020, 59, 193–200. [Google Scholar] [CrossRef]
- Hussin, M.S.F.; Abdullah, H.Z.; Idris, M.I.; Wahap, M.A.A. Extraction of natural hydroxyapatite for biomedical applications—A review. Heliyon 2022, 8, e10356. [Google Scholar] [CrossRef]
- Mondal, S.; Hoang, G.; Manivasagan, P.; Moorthy, M.S.; Kim, H.H.; Phan, T.T.V.; Oh, J. Comparative characterization of biogenic and chemical synthesized hydroxyapatite biomaterials for potential biomedical application. Mater. Chem. Phys. 2019, 228, 344–356. [Google Scholar] [CrossRef]
- Ibrahim, A.R.; Benoit, R.; Suo, X.; Li, X.; Huang, Y.; Ma, G.; Li, J. Ultra-fast route to synthesizing biogenic carbonate hydroxyapatite: Consequence of a high-pressure solid-solid preparation technique. Chem. Eng. Process.-Process Intensif. 2019, 142, 107549. [Google Scholar] [CrossRef]
- Zou, Z.; Robinson, J.I.; Steinberg, L.K.; Henderson, J.P. Uropathogenic Escherichia coli wield enterobactin-derived catabolites as siderophores. J. Biol. Chem. 2024, 300, 105554. [Google Scholar] [CrossRef]
- WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance. Available online: https://www.who.int/publications/i/item/9789240093461 (accessed on 7 December 2024).
- Jakhar, S.; Singh, N.; Siwal, S. In-situ synthesis of reduced graphene oxide templated MIL-53 (Fe) nanorods for photo-catalytic degradation of organic dyes under sunlight. Vietnam. J. Chem. 2023, 61, 646–654. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Gordon, J.; Kazemian, H.; Rohani, S. MIL-53 (Fe), MIL-101, and SBA-15 porous materials: Potential platforms for drug delivery. Mater. Sci. Eng. C 2015, 47, 172–179. [Google Scholar] [CrossRef]
- Lee, K.; Choi, Y.; Kim, K.; Koo, H.J.; Choi, J. Quantification of unknown nanoscale biomolecules using the average-weight-difference method. Appl. Sci. 2019, 9, 130. [Google Scholar] [CrossRef]
- Hatamie, S.; Ahadian, M.M.; Zomorod, M.S.; Torabi, S.; Babaie, A.; Hosseinzadeh, S.; Soleimani, M.; Hatami, N.; Wei, Z. Antibacterial properties of nanoporous graphene oxide/cobalt metal organic framework. Mater. Sci. Eng. C 2019, 104, 109862. [Google Scholar] [CrossRef]
- Wang, K.; Geng, Z.; Yin, Y.; Ma, X.; Wang, Z. Morphology effect on the luminescent property and antibacterial activity of coordination polymer particles with identical crystal structures. CrystEngComm 2011, 13, 5100–5104. [Google Scholar] [CrossRef]
- Djošić, M.S.; Mišković-Stanković, V.B.; Milonjić, S.; Kačarević-Popović, Z.M.; Bibić, N.; Stojanović, J. Electrochemical synthesis and characterization of hydroxyapatite powders. Mater. Chem. Phys. 2008, 111, 137–142. [Google Scholar] [CrossRef]
- Kumar, K.V.; Subha, T.J.; Ahila, K.G.; Ravindran, B.; Chang, S.W.; Mahmoud, A.H.; Rathi, M.A. Spectral characterization of hydroxyapatite extracted from Black Sumatra and Fighting cock bone samples: A comparative analysis. Saudi J. Biol. Sci. 2021, 28, 840–846. [Google Scholar] [CrossRef]
- Yadav, M.K.; Pandey, V.; Mohanta, K.; Singh, V.K. A low-cost approach to develop silica doped Tricalcium Phosphate (TCP) scaffold by valorizing animal bone waste and rice husk for tissue engineering applications. Ceram. Int. 2022, 48, 25335–25345. [Google Scholar] [CrossRef]
- Hajyani, Z.; Mousavi, Z.; Soleimanbeigi, M.; Wong, Y.J.; Beni, A.A. Antibiotic adsorption from real pharmaceutical factory wastewater using a hole-punched flat ceramic membrane based on clay and hydroxyapatite in a fixed bed module. Results Eng. 2025, 26, 105364. [Google Scholar] [CrossRef]
- Barakat, N.A.M.; Khil, M.S.; Omran, A.M.; Sheikh, F.A.; Kim, H.Y. Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. J. Mater. Process. Technol. 2009, 209, 3408–3415. [Google Scholar] [CrossRef]
- Bano, N.; Jikan, S.S.; Basri, H.; Adzila, S.; Zago, D.M. XRD and FTIR study of A&B type carbonated hydroxyapatite extracted from bovine bone. AIP Conf. Proc. 2019, 2068, 020100. [Google Scholar] [CrossRef]
- Dinh Du, P.M.; Ngoc Hoai, P. Synthesis of MIL-53 (Fe) metal-organic framework material and its application as a catalyst for Fenton-type oxidation of organic pollutants. Adv. Mater. Sci. Eng. 2021, 2021, 5540344. [Google Scholar] [CrossRef]
- He, Q.; Fu, Y.; Ge, X.; Al-Enizi, A.M.; Nafady, A.; Wang, Q.; Ma, S. Facile fabrication of Fe-BDC/Fe-2MI heterojunction with boosted photocatalytic activity for Cr (VI) reduction. J. Environ. Chem. Eng. 2021, 9, 105961. [Google Scholar] [CrossRef]
- Van Tran, T.; Dai Cao, V.; Nguyen, V.H.; Hoang, B.N.; Vo, D.V.N.; Nguyen, T.D.; Bach, L.G. MIL-53 (Fe) derived magnetic porous carbon as a robust adsorbent for the removal of phenolic compounds under the optimized conditions. J. Environ. Chem. Eng. 2020, 8, 102902. [Google Scholar] [CrossRef]
- Li, A.; Yang, X.; Chen, J. A novel route to size-controlled MIL-53 (Fe) metal–organic frameworks for combined chemodynamic therapy and chemotherapy for cancer. RSC Adv. 2021, 11, 10540–10547. [Google Scholar] [CrossRef]
- Gnanasekaran, R.; Yuvaraj, D.; Muthu, C.M.; Ashwin, R.; Kaarthikeyan, K.; Kumar, V.V.; Reddy, K. Extraction and characterization of biocompatible hydroxyapatite (Hap) from red big eye fish bone: Potential for biomedical applications and reducing biowastes. Sustain. Chem. Environ. 2024, 7, 100142. [Google Scholar] [CrossRef]
- Forero-Sossa, P.A.; Salazar-Martínez, J.D.; Giraldo-Betancur, A.L.; Segura-Giraldo, B.; Restrepo-Parra, E.J.S.R. Temperature effect in physicochemical and bioactive behavior of biogenic hydroxyapatite obtained from porcine bones. Sci. Rep. 2021, 11, 11069. [Google Scholar] [CrossRef]
- Pu, M.; Ma, Y.; Wan, J.; Wang, Y.; Wang, J.; Brusseau, M.L. Activation performance and mechanism of a novel heterogeneous persulfate catalyst: Metal–organic framework MIL-53 (Fe) with Fe II/Fe III mixed-valence coordinatively unsaturated iron center. Catal. Sci. Technol. 2017, 7, 1129–1140. [Google Scholar] [CrossRef] [PubMed]
- Beiranvand, M.; Farhadi, S.; Mohammadi-Gholami, A. Adsorptive removal of tetracycline and ciprofloxacin drugs from water by using a magnetic rod-like hydroxyapatite and MIL-101 (Fe) metal–organic framework nanocomposite. RSC Adv. 2022, 12, 34438–34453. [Google Scholar] [CrossRef] [PubMed]
- Ho, B.K.; Chin, S.F.; Pang, S.C. pH-responsive carboxylic cellulose acetate nanoparticles for controlled release of penicillin G. J. Sci. Adv. Mater. Devices 2020, 5, 224–232. [Google Scholar] [CrossRef]
- Aden, S.F.; Mahmoud, L.A.M.; Ivanovska, E.H.; Terry, L.R.; Ting, V.P.; Katsikogianni, M.G.; Nayak, S. Controlled delivery of ciprofloxacin using zirconium-based MOFs and poly-caprolactone composites. J. Drug Deliv. Sci. Technol. 2023, 88, 104894. [Google Scholar] [CrossRef]
- Barr, R.K.; Barber, B.W.; Tait, J.R.; Landersdorfer, C.B.; Salman, S.; Musk, G.C.; Page-Sharp, M.; Batty, K.T.; Kado, J.; Manning, L.; et al. Development of a sustained release implant of benzathine penicillin G for secondary prophylaxis of rheumatic heart disease. Eur. J. Pharm. Biopharm. 2023, 189, 240–250. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, L.; Cao, Y.; Yu, S.; He, C.; Chen, X. A nanocomposite vehicle based on metal–organic framework nanoparticle incorporated biodegradable microspheres for enhanced oral insulin delivery. ACS Appl. Mater. Inter. 2020, 12, 22581–22592. [Google Scholar] [CrossRef]
- Siaka, A.A.; Eddy, N.O.; Idris, S.O.; Magaji, L. Experimental and computational study of corrosion potentials of penicillin G. Res. J. Appl. Sci. 2011, 6, 487–493. [Google Scholar] [CrossRef]
- Sutherland, C. Exploring the state-of-the-art in metal-organic frameworks for antibiotic adsorption: A review of performance, mechanisms, and regeneration. Environ. Toxicol. Chem. 2025, 44, 880–894. [Google Scholar] [CrossRef] [PubMed]
- Moaty, S.A.A.; Kotp, A.A.; Salah, A.M. Application of UiO-66 MOF for rifampicin removal and post-adsorption antimicrobial activity against MRSA. Sci. Rep. 2025, 15, 2576. [Google Scholar] [CrossRef]
- Huang, G.; Dreisler, M.W.; Kæstel-Hansen, J.; Nielsen, A.J.; Zhang, M.; Hatzakis, N.S. Defect-engineered Metal–Organic Frameworks as nanocarriers for pharmacotherapy: Insights into intracellular dynamics at The Single Particle Level. Adv. Mater. 2024, 36, 2405898. [Google Scholar] [CrossRef]
- Huang, X.; Brazel, C.S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release 2001, 73, 121–136. [Google Scholar] [CrossRef]
- Brazel, C.; Huang, X.; Svenson, S. Carrier-based drug delivery. ACS Symp. Ser. 2004, 879, 267–282. [Google Scholar]
- Barzegar-Jalali, M.; Adibkia, K.; Valizadeh, H.; Siahi, M.; Nokhodchi, A.; Omidi, Y.; Mohammadi, G.; Nezhadi, S.; Hassan, M. Kinetic analysis of drug release from nanoparticles. J. Pharm. Pharm. Sci. 2008, 11, 167–177. [Google Scholar] [CrossRef]
- Söylemez, M.; Güven, O. Preparation and detailed structural characterization of Penicillin G imprinted polymers by PALS and XPS. Radiat. Phys. Chem. 2019, 159, 174–180. [Google Scholar] [CrossRef]
- Zhu, B.J.; Yu, X.Y.; Jia, Y.; Peng, F.M.; Sun, B.; Zhang, M.Y.; Huang, X.J. Iron and 1, 3, 5-benzenetricarboxylic metal–organic coordination polymers prepared by solvothermal method and their application in efficient As (V) removal from aqueous solutions. J. Phys. Chem. C 2012, 116, 8601–8607. [Google Scholar] [CrossRef]
- He, Y.; Shan, Z.; Tan, T.; Chen, Z.; Zhang, Y. Ternary sulfur/polyacrylonitrile/SiO2 composite cathodes for high-performance sulfur/lithium-ion full batteries. Polymers 2018, 10, 930. [Google Scholar] [CrossRef] [PubMed]
- Akbulut, M. Selective removal of penicillin G from environmental water samples by using molecularly imprinted membranes. Hittite J. Sci. Eng. 2020, 7, 329–337. [Google Scholar] [CrossRef]
- Son, D.; Cho, S.; Nam, J.; Lee, H.; Kim, M. X-ray-based spectroscopic techniques for characterization of polymer nanocomposite materials at a molecular level. Polymers 2020, 12, 1053. [Google Scholar] [CrossRef]
- Li, H.; Cao, M.; Fu, Z.; Ma, Q.; Zhang, L.; Wang, R.; Liang, F.; Zhou, T.; Zhang, C. A covalent organic framework as a dual-active-center cathode for a high-performance aqueous zinc-ion battery. Chem. Sci. 2024, 15, 4341–4348. [Google Scholar] [CrossRef]
- Geng, N.; Chen, W.; Xu, H.; Ding, M.; Lin, T.; Wu, Q.; Zhang, L. Insights into the novel application of Fe-MOFs in ultrasound-assisted heterogeneous Fenton system: Efficiency, kinetics and mechanism. Ultrason. Sonochem. 2021, 72, 105411. [Google Scholar] [CrossRef]
- Zhang, K.; Yan, Y.; Wang, Z.; Ma, G.; Jia, D.; Huang, X.; Zhou, Y. Integration of electrical properties and polarization loss modulation on Atomic Fe–N-RGO for boosting electromagnetic wave absorption. Nano-Micro Lett. 2025, 17, 46. [Google Scholar] [CrossRef] [PubMed]
- Carrera, K.; Huerta, V.; Orozco, V.; Matutes, J.; Fernández, P.; Graeve, O.A.; Herrera, M. Formation of vacancy point-defects in hydroxyapatite nanobelts by selective incorporation of Fe3+ ions in Ca (II) sites. A CL and XPS study. Mater. Sci. Eng. B 2021, 271, 115308. [Google Scholar] [CrossRef]
- Feng, G.; Zheng, E.; Jiang, F.; Hu, Z.; Fu, H.; Li, Y.; Meng, H.; Wu, Q.; Liu, J.; Yang, Q.; et al. Preparation of novel porous hydroxyapatite sheets with high Pb2+ adsorption properties by self-assembly non-aqueous precipitation method. Ceram. Inter. 2023, 49, 30603–30612. [Google Scholar] [CrossRef]
- Ding, Z.; Chen, M.; Yuan, J.; Yu, A.; Dai, H.; Bai, S. Fenton oxidation modification mechanism of pyrite and its response to Cu-S flotation separation: Experiment, DFT, XPS and ToF-SIMS studies. Appl. Surf. Sci. 2024, 652, 159305. [Google Scholar] [CrossRef]
- Lyu, D.; Mollamahale, Y.B.; Huang, S.; Zhu, P.; Zhang, X.; Du, Y.; Wang, S.; Qing, M.; Tian, Z.Q.; Shen, P.K. Ultra-high surface area graphitic Fe-NC nanospheres with single-atom iron sites as highly efficient non-precious metal bifunctional catalysts towards oxygen redox reactions. J. Catal. 2018, 368, 279–290. [Google Scholar] [CrossRef]
- Moynié, L.; Milenkovic, S.; Mislin, G.; Gasser, V.; Malloci, G. The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model. Nat. Commun. 2019, 10, 3673. [Google Scholar] [CrossRef]
- Kenneth, R.N.; Dertz, E.A.; Sanggoo, K.S. Enterobactin: An archetype for microbial iron transport. Proc. Natl. Acad. Sci. USA 2003, 100, 3584–3588. [Google Scholar]
- Wyszogrodzka, G.; Marszałek, B.; Gil, B.; Dorożyński, P. Metal-organic frameworks: Mechanisms of antibacterial action and potential applications. Drug Discov. Today 2016, 21, 1009–1018. [Google Scholar] [CrossRef]
- Huang, X.; Yu, S.; Lin, W.; Yao, X.; Zhang, M.; He, Q.; Fu, F.; Zhu, H.; Chen, J.; Chen, J. A metal-organic framework MIL-53 (Fe) containing sliver ions with antibacterial property. J. Solid. State Chem. 2021, 302, 122442. [Google Scholar] [CrossRef]
- Lin, S.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Yeung, K.W.; Pan, H.; Wu, S. Porous iron-carboxylate metal–organic framework: A novel bioplatform with sustained antibacterial efficacy and nontoxicity. ACS Appl. Mater. Inter. 2017, 9, 19248–19257. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; He, L.; Cui, L.; Wang, W.; Siddique, K.H.; Li, S. Smart antibacterial food packaging based on MIL-53 (Fe) functionalized polylactic acid film for pH-Responsive controlled release. J. Polym. Environ. 2023, 31, 4022–4032. [Google Scholar] [CrossRef]
- Ghaffar, I.; Imran, M.; Perveen, S.; Kanwal, T.; Saifullah, S.; Bertino, M.F.; Ehrhardt, C.J.; Yadavalli, V.K.; Shah, M.R. Synthesis of chitosan coated metal organic frameworks (MOFs) for increasing vancomycin bactericidal potentials against resistant S. aureus strain. Mater. Sci. Eng. C 2019, 105, 110111. [Google Scholar] [CrossRef] [PubMed]
Materials | MIL-53 | 1 |
---|---|---|
Zero-order model | ||
k0 (%·days−1) | 0.2976 | 0.2400 |
R2 | 0.9811 | 0.9766 |
First-order model | ||
kf (days−1) | 0.6724 | 0.4906 |
R2 | 0.9908 | 0.9797 |
Higuchi model | ||
kH (%·days−0.5) | 0.7313 | 0.5943 |
R2 | 0.9778 | 0.9794 |
Degree of burst | ||
(ΔMt/Δt) to t = 1 day | 23.0154 | 8.7652 |
(ΔMt/Δt)SS to equilibrium time | 81.0666 (t = 6 days) | 31.1073 (t = 4 days) |
DB (%) | 28.39 | 28.18 |
Treatment vs. Control | Percentage of Reduction of CFUs/mL (%) | ||||
---|---|---|---|---|---|
E. coli ATCC 25922 | S. aureus ATCC 29213 | HHM25 UPEC | ERV6 UPEC | FGI4 UPEC | |
MIL-53-Pen versus Penicillin G Control | 37 ± 14.3 | 93 ± 6.4 | 81 ± 2.6 | 92 ± 1.3 | 88 ± 2.8 |
1-Pen versus Penicillin G control | 43 ± 2.5 | 93 ± 6.4 | 81 ± 1.9 | 84 ± 1.3 | 84 ± 1.4 |
MIL-53-Pen versus Growth Control | 94 ± 1.3 | 100 ± 0.2 | 93 ± 1.0 | 96 ± 0.5 | 94 ± 1.3 |
1-Pen versus Growth control | 95 ± 0.2 | 100 ± 0.2 | 93 ± 0.7 | 93 ± 0.5 | 92 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila-Márquez, D.M.; Blanco Flores, A.; Toledo Jaldin, H.P.; Burke Irazoque, M.; González Torres, M.; Vilchis-Nestor, A.R.; Toledo, C.C.; Gutiérrez-Cortez, S.; Díaz Rodríguez, J.P.; Dorazco-González, A. MIL-53 MOF on Sustainable Biomaterial for Antimicrobial Evaluation Against E. coli and S. aureus Bacteria by Efficient Release of Penicillin G. J. Funct. Biomater. 2025, 16, 295. https://doi.org/10.3390/jfb16080295
Ávila-Márquez DM, Blanco Flores A, Toledo Jaldin HP, Burke Irazoque M, González Torres M, Vilchis-Nestor AR, Toledo CC, Gutiérrez-Cortez S, Díaz Rodríguez JP, Dorazco-González A. MIL-53 MOF on Sustainable Biomaterial for Antimicrobial Evaluation Against E. coli and S. aureus Bacteria by Efficient Release of Penicillin G. Journal of Functional Biomaterials. 2025; 16(8):295. https://doi.org/10.3390/jfb16080295
Chicago/Turabian StyleÁvila-Márquez, Delia Monserrat, Alien Blanco Flores, Helen Paola Toledo Jaldin, Mateo Burke Irazoque, Maribel González Torres, Alfredo Rafael Vilchis-Nestor, Carla Calderon Toledo, Sergio Gutiérrez-Cortez, Juan Pablo Díaz Rodríguez, and Alejandro Dorazco-González. 2025. "MIL-53 MOF on Sustainable Biomaterial for Antimicrobial Evaluation Against E. coli and S. aureus Bacteria by Efficient Release of Penicillin G" Journal of Functional Biomaterials 16, no. 8: 295. https://doi.org/10.3390/jfb16080295
APA StyleÁvila-Márquez, D. M., Blanco Flores, A., Toledo Jaldin, H. P., Burke Irazoque, M., González Torres, M., Vilchis-Nestor, A. R., Toledo, C. C., Gutiérrez-Cortez, S., Díaz Rodríguez, J. P., & Dorazco-González, A. (2025). MIL-53 MOF on Sustainable Biomaterial for Antimicrobial Evaluation Against E. coli and S. aureus Bacteria by Efficient Release of Penicillin G. Journal of Functional Biomaterials, 16(8), 295. https://doi.org/10.3390/jfb16080295