Hydrothermal Magnesium Alloy Extracts Modulate MicroRNA Expression in RAW264.7 Cells: Implications for Bone Remodeling
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Models of Murine Pre-Osteoclast Cells
2.2. RAW 264.7 Cell Viability (WST-1 Test)
2.3. dsDNA Concentration (PicoGreen Assay)
2.4. RNA Extraction and Real-Time PCR
2.5. Evaluation of Supernatant Soluble Factors
2.6. TRAP Staining Assay
2.7. ELISA Assay
2.8. Bioinformatic Analysis
2.9. Statistical Analysis
3. Results
3.1. Mg Alloy Effects on the Cell Viability of RAW Cells
3.2. Effects of Mg Alloy Extracts on Pre-Osteoclast Marker Expression
3.3. Evaluation of Proteins Involved in Bone Remodeling Release After Mg AZ31+SPF and Mg AZ31+SPF+HT Extract Co-Cultures
3.4. Effects of Mg Alloy Extract Treatment on MiRNA Expression
4. Discussion
5. Conclusions
- Hydrothermal treatment does not compromise the viability of pre-osteoclast cells, thereby supporting its biocompatibility;
- It modulates the differentiation of pre-osteoclast cells and does not increase the number of polynucleated cells post-treatment;
- The treatment helps to maintain a balanced release of soluble factors involved in bone healing;
- It regulates the expression of microRNAs (miRNAs) associated with bone regeneration and fracture repair, including those involved in osteoclast differentiation, inflammation, immunology, bone regeneration, and bone resorption through modulation of miRNA targets.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HT | Hydrothermal treatment |
Mg AZ31+SPF | AZ31 magnesium alloy manufactured via a superplastic forming process |
Mg AZ31+SPF+HT | AZ31 magnesium alloy manufactured via a superplastic forming process and coated using a hydrothermal method |
hMSCs | Human mesenchymal stem cells |
M-CSF | Macrophage colony-stimulating factor |
BMM | Bone marrow monocyte–macrophage |
RANKL | Receptor activator of nuclear factor NF-KB ligand |
lncRNAs | Long non-coding RNAs |
miRNAs | MicroRNAs |
3′-UTR | 3′-untranslated regions |
TNFa | Tumor necrosis factor alpha |
IFNa | Interferon gamma |
TGF-β1 and -β2 | Transforming growth factor-β1 and -β2 |
DNAds | DNA double-strand |
RT-qPCR | Real-Time Quantitative Reverse Transcription-Polymerase Chain |
CTSK | Cathepsin K |
MMP9 | Matrix metalloproteinase 9 |
TFs | Transcription factors |
LRG1 | Glycosaminoglycan binding 1 |
CHI3L1 | Chitinase 3-like 1 |
LAIR-1 | Leukocyte-associated immunoglobulin-like receptor 1 ligand |
MiRNET | miRNA-centric network |
References
- Wang, N.; Yang, S.; Shi, H.; Song, Y.; Sun, H.; Wang, Q.; Tan, L.; Guo, S. Magnesium Alloys for Orthopedic Applications:A Review on the Mechanisms Driving Bone Healing. J. Magnes. Alloys 2022, 10, 3327–3353. [Google Scholar] [CrossRef]
- Tatullo, M.; Piattelli, A.; Ruggiero, R.; Marano, R.M.; Iaculli, F.; Rengo, C.; Papallo, I.; Palumbo, G.; Chiesa, R.; Paduano, F.; et al. Functionalized Magnesium Alloys Obtained by Superplastic Forming Process Retain Osteoinductive and Antibacterial Properties: An in-Vitro Study. Dent. Mater. 2024, 40, 557–562. [Google Scholar] [CrossRef]
- De Luca, A.; Ruggiero, R.; Cordaro, A.; Marrelli, B.; Raimondi, L.; Costa, V.; Bellavia, D.; Aiello, E.; Pavarini, M.; Piccininni, A.; et al. Towards Accurate Biocompatibility: Rethinking Cytotoxicity Evaluation for Biodegradable Magnesium Alloys in Biomedical Applications. J. Funct. Biomater. 2024, 15, 382. [Google Scholar] [CrossRef]
- Bordukalo-Nikšić, T.; Kufner, V.; Vukičević, S. The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications. Front. Immunol. 2022, 13, 869422. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Xie, X.; Gu, F.; Sui, Z.; Zhang, K.; Yu, T. Macrophage-Osteoclast Associations: Origin, Polarization, and Subgroups. Front. Immunol. 2021, 12, 778078. [Google Scholar] [CrossRef]
- Udagawa, N.; Takahashi, N.; Jimi, E.; Matsuzaki, K.; Tsurukai, T.; Itoh, K.; Nakagawa, N.; Yasuda, H.; Goto, M.; Tsuda, E.; et al. Osteoblasts/Stromal Cells Stimulate Osteoclast Activation through Expression of Osteoclast Differentiation Factor/RANKL but Not Macrophage Colony-Stimulating Factor. Bone 1999, 25, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.; Yu, G.; Fu, X.; Song, R.; Gu, J.; Liu, Z. A Review of Signaling Transduction Mechanisms in Osteoclastogenesis Regulation by Autophagy, Inflammation, and Immunity. Int. J. Mol. Sci. 2022, 23, 9846. [Google Scholar] [CrossRef]
- Müller, E.; Schoberwalter, T.; Mader, K.; Seitz, J.-M.; Kopp, A.; Baranowsky, A.; Keller, J. The Biological Effects of Magnesium-Based Implants on the Skeleton and Their Clinical Implications in Orthopedic Trauma Surgery. Biomater. Res. 2024, 28, 0122. [Google Scholar] [CrossRef]
- Lin, X.; Saijilafu; Wu, X.; Wu, K.; Chen, J.; Tan, L.; Witte, F.; Yang, H.; Mantovani, D.; Zhou, H.; et al. Biodegradable Mg-Based Alloys: Biological Implications and Restorative Opportunities. Int. Mater. Rev. 2023, 68, 365–403. [Google Scholar] [CrossRef]
- Wu, L.; Luthringer, B.J.C.; Feyerabend, F.; Schilling, A.F.; Willumeit, R. Effects of Extracellular Magnesium on the Differentiation and Function of Human Osteoclasts. Acta Biomater. 2014, 10, 2843–2854. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Lu, Q.; Qin, J.; Shi, H.; Zhang, P.; Yan, H.; Shi, H.; Wang, X. A View of Magnesium Alloy Modification and Its Application in Orthopedic Implants. J. Mater. Res. Technol. 2025, 36, 1536–1561. [Google Scholar] [CrossRef]
- Mizoguchi, F.; Murakami, Y.; Saito, T.; Miyasaka, N.; Kohsaka, H. miR-31 Controls Osteoclast Formation and Bone Resorption by Targeting RhoA. Arthritis. Res. Ther. 2013, 15, R102. [Google Scholar] [CrossRef]
- Inoue, K.; Ng, C.; Xia, Y.; Zhao, B. Regulation of Osteoclastogenesis and Bone Resorption by miRNAs. Front. Cell Dev. Biol. 2021, 9, 651161. [Google Scholar] [CrossRef]
- Ji, X.; Chen, X.; Yu, X. MicroRNAs in Osteoclastogenesis and Function: Potential Therapeutic Targets for Osteoporosis. Int. J. Mol. Sci. 2016, 17, 349. [Google Scholar] [CrossRef]
- Mammoli, F.; Castiglioni, S.; Parenti, S.; Cappadone, C.; Farruggia, G.; Iotti, S.; Davalli, P.; Maier, J.A.M.; Grande, A.; Frassineti, C. Magnesium Is a Key Regulator of the Balance between Osteoclast and Osteoblast Differentiation in the Presence of Vitamin D3. Int. J. Mol. Sci. 2019, 20, 385. [Google Scholar] [CrossRef]
- Huber, J.; Longaker, M.T.; Quarto, N. Circulating and Extracellular Vesicle-Derived microRNAs as Biomarkers in Bone-Related Diseases. Front. Endocrinol. 2023, 14, 1168898. [Google Scholar] [CrossRef]
- Della Bella, E.; Menzel, U.; Naros, A.; Kubosch, E.J.; Alini, M.; Stoddart, M.J. Identification of Circulating miRNAs as Fracture-Related Biomarkers. PLoS ONE 2024, 19, e0303035. [Google Scholar] [CrossRef]
- Lin, Z.; Xiong, Y.; Sun, Y.; Zeng, R.; Xue, H.; Hu, Y.; Chen, L.; Liu, G.; Panayi, A.C.; Zhou, W.; et al. Circulating MiRNA-21-Enriched Extracellular Vesicles Promote Bone Remodeling in Traumatic Brain Injury Patients. Exp. Mol. Med. 2023, 55, 587–596. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, T.; Chen, M.; Yao, K.; Huang, X.; Zhang, B.; Li, Y.; Liu, J.; Wang, Y.; Zhao, Z. Bone Physiological Microenvironment and Healing Mechanism: Basis for Future Bone-Tissue Engineering Scaffolds. Bioact. Mater. 2021, 6, 4110–4140. [Google Scholar] [CrossRef] [PubMed]
- Nakkala, J.R.; Li, Z.; Ahmad, W.; Wang, K.; Gao, C. Immunomodulatory Biomaterials and Their Application in Therapies for Chronic Inflammation-Related Diseases. Acta Biomater. 2021, 123, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, H.; Lai, M. Non-coding RNAs and Their Epigenetic Regulatory Mechanisms. Biol. Cell 2010, 102, 645–655. [Google Scholar] [CrossRef]
- Rondanelli, M.; Faliva, M.A.; Tartara, A.; Gasparri, C.; Perna, S.; Infantino, V.; Riva, A.; Petrangolini, G.; Peroni, G. An Update on Magnesium and Bone Health. Biometals 2021, 34, 715–736. [Google Scholar] [CrossRef]
- Barbagallo, M.; Veronese, N.; Dominguez, L.J. Magnesium in Aging, Health and Diseases. Nutrients 2021, 13, 463. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Wang, W.; Yang, X.; Ran, C.; Zhang, T.; Huang, S.; Yang, J.; Wang, F.; Wang, H.; Wan, P.; et al. Research Progress on Osteoclast Regulation by Biodegradable Magnesium and Its Mechanism. Regen. Biomater. 2025, 12, rbaf026. [Google Scholar] [CrossRef] [PubMed]
- Ding, W. Opportunities and Challenges for the Biodegradable Magnesium Alloys as Next-Generation Biomaterials. Regen. Biomater. 2016, 3, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Costa, V.; Raimondi, L.; Scilabra, S.D.; Pinto, M.L.; Bellavia, D.; De Luca, A.; Guglielmi, P.; Cusanno, A.; Cattini, L.; Pulsatelli, L.; et al. Effect of Hydrothermal Coatings of Magnesium AZ31 Alloy on Osteogenic Differentiation of hMSCs: From Gene to Protein Analysis. Materials 2025, 18, 1254. [Google Scholar] [CrossRef]
- Knecht, R.S.; Bucher, C.H.; Van Linthout, S.; Tschöpe, C.; Schmidt-Bleek, K.; Duda, G.N. Mechanobiological Principles Influence the Immune Response in Regeneration: Implications for Bone Healing. Front. Bioeng. Biotechnol. 2021, 9, 614508. [Google Scholar] [CrossRef]
- Niu, Q.; Gao, J.; Wang, L.; Liu, J.; Zhang, L. Regulation of Differentiation and Generation of Osteoclasts in Rheumatoid Arthritis. Front. Immunol. 2022, 13, 1034050. [Google Scholar] [CrossRef]
- Ueta, M.; Takaoka, K.; Yamamura, M.; Maeda, H.; Tamaoka, J.; Nakano, Y.; Noguchi, K.; Kishimoto, H. Effects of TGF-β1 on the Migration and Morphology of RAW264.7 Cells in Vitro. Mol. Med. Rep. 2019. [Google Scholar] [CrossRef]
- Karst, M.; Gorny, G.; Galvin, R.J.S.; Oursler, M.J. Roles of Stromal Cell RANKL, OPG, and M-CSF Expression in Biphasic TGF-β Regulation of Osteoclast Differentiation. J. Cell. Physiol. 2004, 200, 99–106. [Google Scholar] [CrossRef]
- Chiba-Ohkuma, R.; Karakida, T.; Yamamoto, R.; Yamakoshi, Y. Direct and Indirect Effects of Transforming Growth Factor-Beta on Osteoclast-Mediated Bone Remodeling Using a New in Vitro Bone Matrix Model. JBMR Plus 2025, 9, ziaf104. [Google Scholar] [CrossRef] [PubMed]
- Takai, H.; Kanematsu, M.; Yano, K.; Tsuda, E.; Higashio, K.; Ikeda, K.; Watanabe, K.; Yamada, Y. Transforming Growth Factor-Beta Stimulates the Production of Osteoprotegerin/Osteoclastogenesis Inhibitory Factor by Bone Marrow Stromal Cells. J. Biol. Chem. 1998, 273, 27091–27096. [Google Scholar] [CrossRef]
- Boraschi-Diaz, I.; Mort, J.S.; Brömme, D.; Senis, Y.A.; Mazharian, A.; Komarova, S.V. Collagen Type I Degradation Fragments Act through the Collagen Receptor LAIR-1 to Provide a Negative Feedback for Osteoclast Formation. Bone 2018, 117, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Chao, R.; Xie, X.; Mao, Y.; Chen, X.; Chen, X.; Zhang, S. IL13Rα2 as a Crucial Receptor for Chi3l1 in Osteoclast Differentiation and Bone Resorption through the MAPK/AKT Pathway. Cell Commun. Signal. 2024, 22, 81. [Google Scholar] [CrossRef] [PubMed]
- Carvalheiro, T.; Garcia, S.; Pascoal Ramos, M.I.; Giovannone, B.; Radstake, T.R.D.J.; Marut, W.; Meyaard, L. Leukocyte Associated Immunoglobulin Like Receptor 1 Regulation and Function on Monocytes and Dendritic Cells During Inflammation. Front. Immunol. 2020, 11, 1793. [Google Scholar] [CrossRef]
- Durdan, M.M.; Azaria, R.D.; Weivoda, M.M. Novel Insights into the Coupling of Osteoclasts and Resorption to Bone Formation. Semin. Cell Dev. Biol. 2022, 123, 4–13. [Google Scholar] [CrossRef]
- Salman, H.D.; Kadhim, M.M. MiRNA-133a and MiRNA-25 3p and Their Relationship with Some Variables in Serum of Patients with Osteoporosis. Arch. Venez. De Farmacol. Y Ter. 2021, 40. [Google Scholar] [CrossRef]
- Sheng, W.; Jiang, H.; Yuan, H.; Li, S. miR-148a-3p Facilitates Osteogenic Differentiation of Fibroblasts in Ankylosing Spondylitis by Activating the Wnt Pathway and Targeting DKK1. Exp. Ther. Med. 2022, 23, 365. [Google Scholar] [CrossRef]
- Hou, Q.; Huang, Y.; Luo, Y.; Wang, B.; Liu, Y.; Deng, R.; Zhang, S.; Liu, F.; Chen, D. MiR-351 Negatively Regulates Osteoblast Differentiation of MSCs Induced by (+)-Cholesten-3-One through Targeting VDR. Am. J. Transl. Res. 2017, 9, 4963–4973. [Google Scholar]
- Lu, Z.; Wang, D.; Wang, X.; Zou, J.; Sun, J.; Bi, Z. MiR-206 Regulates the Progression of Osteoporosis via Targeting HDAC4. Eur. J. Med. Res. 2021, 26, 8. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, Y.-R.; Fan, X.-L.; Lin, P.; Yang, H.; Chen, X.-Z.; Xu, X.-D. miR-206 Inhibits Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by Targetting Glutaminase. Biosci. Rep. 2019, 39, BSR20181108. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Feng, Y.; Xu, H.; Huang, H.; Zhao, S.; Wang, Y.; Li, H.; Cao, J.; Xu, G.; Huang, S. Synergistic Effects of miR-708-5p and miR-708-3p Accelerate the Progression of Osteoporosis. J. Int. Med. Res. 2020, 48, 300060520978015. [Google Scholar] [CrossRef] [PubMed]
miRNAs ↓ Mg AZ31+SPF+HT vs. Untreated | 2−ΔCt | miRNAs ↓ Mg AZ31+SPF vs. Untreated | 2−ΔCt |
---|---|---|---|
hsa-miR-122-5p | −3.54 | hsa-miR-122-5p | −7.38 |
hsa-miR-133a-3p | −3.54 | hsa-miR-144-3p | −35.31 |
hsa-miR-134-5p | −38.89 | hsa-miR-145-5p | −35.31 |
hsa-miR-143-3p | −14.15 | hsa-miR-148a-3p | −35.31 |
hsa-miR-144-3p | −38.89 | hsa-miR-153-3p | −35.31 |
hsa-miR-145-5p | −38.89 | hsa-miR-181c-5p | −2.03 |
hsa-miR-148a-3p | −7.07 | hsa-miR-181d-5p | −35.31 |
hsa-miR-153-3p | −7.07 | hsa-miR-1-3p | −35.31 |
hsa-miR-181d-5p | −38.89 | hsa-miR-203a-3p | −6.56 |
hsa-miR-1-3p | −38.89 | hsa-miR-204-5p | −35.31 |
hsa-miR-203a-3p | −14.15 | hsa-miR-205-5p | −13.58 |
hsa-miR-204-5p | −38.89 | hsa-miR-206 | −35.31 |
hsa-miR-205-5p | −38.89 | hsa-miR-708-5p | −3.98 |
hsa-miR-206 | −38.89 | hsa-miR-9-5p | −4.73 |
hsa-miR-218-5p | −38.89 | ||
mmu-miR-298-5p | −3.54 | ||
mmu-miR-31-5p | −38.89 | ||
hsa-miR-409-3p | −38.89 | ||
mmu-miR-466l-3p | −14.15 | ||
hsa-miR-708-5p | −38.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, V.; Raimondi, L.; Bellavia, D.; De Luca, A.; Guglielmi, P.; Cusanno, A.; Cattini, L.; Pulsatelli, L.; Pavarini, M.; Chiesa, R.; et al. Hydrothermal Magnesium Alloy Extracts Modulate MicroRNA Expression in RAW264.7 Cells: Implications for Bone Remodeling. J. Funct. Biomater. 2025, 16, 303. https://doi.org/10.3390/jfb16080303
Costa V, Raimondi L, Bellavia D, De Luca A, Guglielmi P, Cusanno A, Cattini L, Pulsatelli L, Pavarini M, Chiesa R, et al. Hydrothermal Magnesium Alloy Extracts Modulate MicroRNA Expression in RAW264.7 Cells: Implications for Bone Remodeling. Journal of Functional Biomaterials. 2025; 16(8):303. https://doi.org/10.3390/jfb16080303
Chicago/Turabian StyleCosta, Viviana, Lavinia Raimondi, Daniele Bellavia, Angela De Luca, Pasquale Guglielmi, Angela Cusanno, Luca Cattini, Lia Pulsatelli, Matteo Pavarini, Roberto Chiesa, and et al. 2025. "Hydrothermal Magnesium Alloy Extracts Modulate MicroRNA Expression in RAW264.7 Cells: Implications for Bone Remodeling" Journal of Functional Biomaterials 16, no. 8: 303. https://doi.org/10.3390/jfb16080303
APA StyleCosta, V., Raimondi, L., Bellavia, D., De Luca, A., Guglielmi, P., Cusanno, A., Cattini, L., Pulsatelli, L., Pavarini, M., Chiesa, R., & Giavaresi, G. (2025). Hydrothermal Magnesium Alloy Extracts Modulate MicroRNA Expression in RAW264.7 Cells: Implications for Bone Remodeling. Journal of Functional Biomaterials, 16(8), 303. https://doi.org/10.3390/jfb16080303