The rapid adoption of generative artificial intelligence (AI) in higher education has intensified a pedagogical dilemma: while AI tools can increase immediate classroom engagement, they do not necessarily foster the self-regulated learning (SRL) capacities required for ethical and reflective professional practice, particularly in
[...] Read more.
The rapid adoption of generative artificial intelligence (AI) in higher education has intensified a pedagogical dilemma: while AI tools can increase immediate classroom engagement, they do not necessarily foster the self-regulated learning (SRL) capacities required for ethical and reflective professional practice, particularly in human-service fields. In this two-time-point, pre-post cohort-level (repeated cross-sectional) evaluation, we examined a six-week AI-integrated curriculum incorporating explicit SRL scaffolding among social work undergraduates at a Taiwanese university (pre-test
N = 37; post-test
N = 35). Because the surveys were administered anonymously and individual responses could not be linked across time, pre-post comparisons were conducted at the cohort level using independent samples. The participating students completed the AI-Enhanced Learning Attitude Scale (AILAS); this is a 30-item instrument grounded in the Technology Acceptance Model, Attitude Theory and SRL frameworks, assessing six dimensions of AI-related learning attitudes. Prior pilot evidence suggested an engagement regulation gap, characterized by relatively strong learning process engagement but weaker learning planning and learning habits. Accordingly, the curriculum incorporated weekly goal-setting activities, structured reflection tasks, peer accountability mechanisms, explicit instructor modeling of SRL strategies and simple progress tracking tools. The conducted psychometric analyses demonstrated excellent internal consistency for the total scale at the post-test stage (Cronbach’s
α = 0.95). The independent-samples
t-tests indicated that, at the post-test stage, the cohorts reported higher mean scores across most dimensions, with the largest cohort-level differences in Learning Habits (Cohen’s
d = 0.75,
p = 0.003) and Learning Process (Cohen’s
d = 0.79,
p = 0.002). After Bonferroni adjustment, improvements in the Learning Desire, Learning Habits and Learning Process dimensions and the Overall Attitude scores remained statistically robust. In contrast, the Learning Planning dimension demonstrated only marginal improvement (
d = 0.46,
p = 0.064), suggesting that higher-order planning skills may require longer or more sustained instructional support. No statistically significant gender differences were identified at the post-test stage. Taken together, the findings presented in this study offer preliminary, design-consistent evidence that SRL-oriented pedagogical scaffolding, rather than AI technology itself, may help narrow the engagement regulation gap, while the consolidation of autonomous planning capacities remains an ongoing instructional challenge.
Full article