Soil Moisture (SM) plays a crucial role in agricultural production, ecology, and sustainable development. The prevailing resolution of microwave-based SM products is notably coarse, typically spanning from 10 to 50 km, which might prove inadequate for specific applications. In this research, various single-model
[...] Read more.
Soil Moisture (SM) plays a crucial role in agricultural production, ecology, and sustainable development. The prevailing resolution of microwave-based SM products is notably coarse, typically spanning from 10 to 50 km, which might prove inadequate for specific applications. In this research, various single-model machine learning algorithms have been employed to study SM downscaling, each with its own limitations. In contrast to existing methodologies, our research introduces a pioneering algorithm that amalgamates diverse individual models into an integrated Stacking framework for the purpose of downscaling SM data within the Shandian River Basin. This basin spans the southern region of Inner Mongolia and the northern area of Hebei province. In this paper, factors exerting a profound influence on SM were comprehensively integrated. Ultimately, the surface variables involved in the downscaling process were determined to be Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), Surface Reflectance (SR), Evapotranspiration (ET), Digital Elevation Model (DEM), slope, aspect, and European Space Agency-Climate Change Initiative (ESA-CCI) product. The goal is to generate a 1 km SM downscaling dataset for a 16-day period. Two distinct models are constructed for the SM downscaling process. In one case, the downscaling is followed by the inversion of SM, while in the other case, the inversion is performed after the downscaling analysis. We also employ the Categorical Features Gradient Boosting (CatBoost) algorithm, a single model, for analytical evaluation in identical circumstances. According to the results, the accuracy of the 1 km SM obtained using the inversion-followed-by-downscaling model is higher. Furthermore, it is observed that the stacking algorithm, which integrates multiple models, outperforms the single-model CatBoost algorithm in terms of accuracy. This suggests that the stacking algorithm can overcome the limitations of a single model and improve prediction accuracy. We compared the predicted SM and ESA-CCI SM; it is evident that the predicted results exhibit a strong correlation with ESA-CCI SM, with a maximum Pearson correlation coefficient (PCC) value of 0.979 and a minimum value of 0.629. The Mean Absolute Error (MAE) values range from 0.002 to 0.005 m
3/m
3, and the Root Mean Square Error (RMSE) ranges from 0.003 to 0.006 m
3/m
3. Overall, the results demonstrate that the stacking algorithm based on multi-model integration provides more accurate and consistent retrieval and downscaling of SM.
Full article