remotesensing-logo

Journal Browser

Journal Browser

Satellite Navigation and Signal Processing (Second Edition)

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Engineering Remote Sensing".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 5768

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Navigation, Polish Air Force University, 08-521 Dęblin, Poland
Interests: GNSS surveying; GNSS navigation; SBAS; measurement; estimation; advanced statistical analysis; mapping; earth observation; Kalman filtering
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Navigation, Polish Naval Academy, 81-127 Gdynia, Poland
Interests: marine navigation; shipping; ship design; ECDIS; land navigation; measurement; DTM; maritime; topography; geomatics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Thank you all for the effort and support that led to the success of our previous Special Issue, “Satellite Navigation and Signal Processing” (https://www.mdpi.com/journal/remotesensing/special_issues/satellite_navigation_signal_processing). We have published numerous instances of excellent literature in Remote Sensing; now, we are pleased to announce the release of the second volume of this Special Issue.

Satellite navigation is an extremely important subject of many studies worldwide. Users of satellite navigation are familiar with global and regional navigation satellite systems, such as GPS, GLONASS, BeiDou, Galileo, QZSS, and IRNSS/NavIC, as well as satellite local augmentation systems, such as WAAS (USA), EGNOS (Europe), SDCM (Russia), MSAS (Japan), GAGAN (India), BDSBAS (China), KASS (South Korea), A-SBAS (Africa and Indian Ocean), and SPAN (Australia and New Zealand). All providers have offered the use of their systems to the international community. Satellite signals contain data that a GNSS receiver uses to compute the locations needed for accurate satellite navigation. Plenty of research has been carried out to achieve accurate satellite positioning, but more is still needed. In this Special Issue of Remote Sensing, we will collect a wide range of articles covering many aspects of satellite navigation and signal processing, theoretical studies, and practical applications.

Dr. Mieczysław Bakuła
Dr. Krzysztof Naus
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • GNSS systems
  • SBAS systems
  • aircraft/UAV navigation systems
  • marine navigation systems
  • land navigation systems
  • multi-GNSS-integrated navigation systems
  • GNSS algorithms
  • GNSS signal processing
  • multi-GNSS applications
  • real-time kinematics
  • smartphone GNSS surveying and navigation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

27 pages, 7925 KiB  
Article
A Distributed Collaborative Navigation Strategy Based on Adaptive Extended Kalman Filter Integrated Positioning and Model Predictive Control for Global Navigation Satellite System/Inertial Navigation System Dual-Robot
by Wanqiang Chen, Yunpeng Jing, Shuo Zhao, Lei Yan, Quancheng Liu and Zichang He
Remote Sens. 2025, 17(4), 721; https://doi.org/10.3390/rs17040721 - 19 Feb 2025
Viewed by 578
Abstract
In the field of multi-robot cooperative localization and task planning, traditional filtering algorithms encounter synchronization and consistency issues during multi-source data fusion. These challenges result in cumulative localization errors and inefficient information sharing, which limits the system’s collaborative capabilities and control accuracy. To [...] Read more.
In the field of multi-robot cooperative localization and task planning, traditional filtering algorithms encounter synchronization and consistency issues during multi-source data fusion. These challenges result in cumulative localization errors and inefficient information sharing, which limits the system’s collaborative capabilities and control accuracy. To overcome these limitations, a distributed cooperative navigation strategy is introduced. Initially, a Distributed Adaptive Extended Kalman Filter (DAEKF) is implemented, which adaptively adjusts the noise covariance matrix to effectively manage nonlinearities and multi-source noise conditions. Subsequently, a Distributed Model Predictive Control (DMPC) framework is introduced. This framework predicts and optimizes each robot’s kinematic model, thereby improving the system’s collaborative operations and dynamic decision-making capabilities. Finally, the efficacy of this strategy is confirmed through detailed simulations and robotic experiments. The simulation results for cooperative localization demonstrate that DAEKF outperforms Kalman Filter (KF) and Extended Kalman Filter (EKF) in terms of localization accuracy. In the straight-line path-tracking experiments, DAEKF effectively reduced both lateral and heading errors for both robots. For Robot 1, DAEKF reduced the lateral error Root Mean Squared Error (RMSE) by 68.87%, 27.80%, and 25.76%, compared to No Filtering, KF, and EKF. In heading error, DAEKF reduced the RMSE by 52.29%, 41.89%, and 36.47%. For Robot 2, DAEKF reduced the lateral error RMSE by 51.30%, 22.88%, and 11.60%, compared to No Filtering, KF, and EKF. In heading error, DAEKF reduced the RMSE by 39.55%, 37.15%, and 26.00%. In the curved path-tracking experiments, both robots demonstrated high trajectory conformity while traveling along a predefined path combining straight-line and circular arc segments, with lateral errors in the straight-line segments all below 0.05 m. The strategy proposed in this study significantly enhanced the precision and stability of multi-robot collaborative navigation, demonstrating strong practicality and scalability. Full article
(This article belongs to the Special Issue Satellite Navigation and Signal Processing (Second Edition))
Show Figures

Figure 1

23 pages, 729 KiB  
Article
CCE-OMBOC: A Simple and Efficient Constant-Envelope Technology for Multicarrier Navigation Modulation by Clipping
by Lingyu Deng, Yikang Yang, Xingyou Qian, Jiangang Ma, Yanxiang Feng and Hengnian Li
Remote Sens. 2024, 16(21), 4016; https://doi.org/10.3390/rs16214016 - 29 Oct 2024
Viewed by 705
Abstract
Multicarrier navigation modulation is a trend within next-generation global navigation satellite systems (GNSS) aiming to enhance navigation performance, but it forces amplifiers to work in nonsaturation zones, resulting in low power efficiency. This paper presents constant-envelope multiplexing (CEM) based on clipping to overcome [...] Read more.
Multicarrier navigation modulation is a trend within next-generation global navigation satellite systems (GNSS) aiming to enhance navigation performance, but it forces amplifiers to work in nonsaturation zones, resulting in low power efficiency. This paper presents constant-envelope multiplexing (CEM) based on clipping to overcome the low transmission efficiency of orthogonal multi-binary offset carriers (OMBOCs). The clip constant-envelope OMBOC (CCE-OMBOC) features a hard limit for the original OMBOC signal, and its cross-correlation function (CCF) has a fixed ratio with the CCF of the original OMBOC. Thus, the clipping process has no adverse effect on navigation performance. Additionally, the expression of transmission and multiplexing efficiency is presented according to OMBOC’s amplitude distribution. A low sampling rate is suggested for the CCE-OMBOC, which reduces the cost of signal generation. For OMBOC, the CCE-OMBOC provides multiplexing efficiency comparable to that of constant-envelope multiplexing via intermodulation construction (CEMIC). CCE-OMBOC has a straightforward generation process; in contrast, the complexity of CEMIC rises significantly with increasing subcarriers. Moreover, the CCE-OMBOC is a multicarrier CEM modulation tool that has good tracking performance and excellent compatibility. The greater the number of subcarriers, the more navigation services and the higher the navigation data rate. The CCE-OMBOC can be used in next-generation GNSS and integrated communication and navigation systems. Full article
(This article belongs to the Special Issue Satellite Navigation and Signal Processing (Second Edition))
Show Figures

Figure 1

11 pages, 3680 KiB  
Communication
DOA Estimation of GNSS Signals Based on Deconvolved Conventional Beamforming
by Jian Wu, Chenglong Li, Honglei Lin, Xiaomei Tang and Feixue Wang
Remote Sens. 2024, 16(20), 3856; https://doi.org/10.3390/rs16203856 - 17 Oct 2024
Viewed by 957
Abstract
The Direction of Arrival (DOA) parameter is a key parameter in directional channel modeling for GNSS systems and multipath suppression. However, achieving high-precision, low-complexity DOA estimation of multiple signal sources without requiring a known source number is still a challenge. This paper introduces [...] Read more.
The Direction of Arrival (DOA) parameter is a key parameter in directional channel modeling for GNSS systems and multipath suppression. However, achieving high-precision, low-complexity DOA estimation of multiple signal sources without requiring a known source number is still a challenge. This paper introduces a satellite navigation DOA parameter estimation method based on deconvolution beamforming. By exploiting the translational invariance property of the uniform linear array pattern, the deconvolution process is applied to the de-spread array pattern of satellite navigation signals, achieving high-precision estimation of DOA parameters. This method can achieve high-precision blind DOA estimation of multiple signal sources while significantly reducing the estimation complexity. Compared with traditional methods, precise DOA estimation can be achieved even in low-signal-to-noise-ratio conditions and with a small number of elements in the array. The theoretical analysis and simulation results verify the effectiveness of the proposed algorithm. Full article
(This article belongs to the Special Issue Satellite Navigation and Signal Processing (Second Edition))
Show Figures

Figure 1

24 pages, 1952 KiB  
Article
Fast Exclusion Candidate Identification Based on Sparse Estimation for ARAIM Fault Exclusion Process
by Hangtian Qi, Xiaowei Cui and Mingquan Lu
Remote Sens. 2024, 16(18), 3537; https://doi.org/10.3390/rs16183537 - 23 Sep 2024
Cited by 1 | Viewed by 919
Abstract
Advanced receiver autonomous integrity monitoring (ARAIM) is an integrity technique for a global navigation satellite system (GNSS), centered on the multiple hypothesis solution separation (MHSS) test, which assesses the consistency between a subset and the all-in-view solution. Successful fault exclusion (FE) in ARAIM [...] Read more.
Advanced receiver autonomous integrity monitoring (ARAIM) is an integrity technique for a global navigation satellite system (GNSS), centered on the multiple hypothesis solution separation (MHSS) test, which assesses the consistency between a subset and the all-in-view solution. Successful fault exclusion (FE) in ARAIM relies on identifying exclusion candidates that ensure no faults among the remaining satellites, a process requiring computationally expensive MHSS tests. The existing methods guide exclusion candidate searches based on the size of the normalized solution separation statistics, i.e., the normalized absolute difference between the subset solution and the all-in-view solution. However, in scenarios involving more than one satellite fault, these statistics can become unreliable due to fault diversity and interactions, perhaps misleading the FE process and causing its failure. To overcome this issue, our study proposes employing sparse estimation to simply identify satellite faults in one go, leveraging the sparsity of faulty satellites compared to the total number of observations in civil aviation GNSSs. Unlike the existing methods, which infer the fault likelihood indirectly through solution separation statistics, our approach represents an improvement that directly indicates potential exclusion candidates. Our experiments demonstrate that this method is fast and accurate. As a fundamentally different approach, it serves as a valuable complement or an alternative to the existing methods, enhancing the success and efficiency of the ARAIM FE process. Full article
(This article belongs to the Special Issue Satellite Navigation and Signal Processing (Second Edition))
Show Figures

Figure 1

19 pages, 6239 KiB  
Article
Robust Wideband Interference Suppression Method for GNSS Array Antenna Receiver via Hybrid Beamforming Technique
by Zhenxing Xu, Qijia Dong, Shenyang Li, Fuzhan Yue, Meng Wang, Zhenghuan Xia, Xiao Chen, Shuangna Zhang, Guoji Zou and Huizheng Wang
Remote Sens. 2024, 16(11), 1913; https://doi.org/10.3390/rs16111913 - 26 May 2024
Cited by 2 | Viewed by 1657
Abstract
Global navigation satellite system (GNSS) array antenna receivers are widely used to suppress wideband interference in navigation countermeasures. However, existing array antenna receivers all adopt a digital array structure and digital beamforming technique, and they have limited analog-front-end (AFE) dynamic range. In strong [...] Read more.
Global navigation satellite system (GNSS) array antenna receivers are widely used to suppress wideband interference in navigation countermeasures. However, existing array antenna receivers all adopt a digital array structure and digital beamforming technique, and they have limited analog-front-end (AFE) dynamic range. In strong interference scenarios, AFE saturation will occur, which limits the maximum interference suppression ability of the array receiver. Aiming at this issue, this paper proposes a robust wideband interference suppression method for GNSS array antenna receivers based on a hybrid beamforming technique. Firstly, a novel, fully connected hybrid array receiver structure is proposed. Secondly, the corresponding hybrid beamforming method is proposed at the same time, and it realizes the complete elimination of the strong wideband interference by joint suppression in the analog domain and digital domain. After mathematical simulations, it is verified that, compared to the digital beamforming-based anti-jamming technique, the proposed method can effectively suppress strong wideband interference, and the maximum interference suppression ability is improved by 36 dB. Full article
(This article belongs to the Special Issue Satellite Navigation and Signal Processing (Second Edition))
Show Figures

Figure 1

Back to TopTop