Pharmacokinetics and Novel Metabolite Identification of Tartary Buckwheat Extracts in Beagle Dogs Following Co-Administration with Ethanol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation and Analytical Conditions
2.2.1. LC-MS/MS Quantitative Analysis Conditions
2.2.2. UFLC-Q-Exactive Orbitrap HRMS Qualitative Analysis Conditions
2.3. Preparation of Stock Solutions, Calibration Standards, and Quality Control (QC) Samples
2.4. Sample Preparation
2.4.1. Sample Preparation for Quantitative Analysis
2.4.2. Sample Preparation for Qualitative Analysis
2.5. Method Validation
2.6. Pharmacokinetics and Metabolite Identification in Beagle Dogs
3. Results and Discussion
3.1. Method Development
3.2. Method Validation
3.3. Pharmacokinetic Study
3.4. Metabolite Identification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rehm, J.; Gmel, G.; Sempos, C.T.; Trevisan, M. Alcohol-related morbidity and mortality. Alcohol Res. Health J. Natl. Inst. Alcohol Abus. Alcohol. 2003, 27, 39–51. [Google Scholar]
- Ambade, A.; Mandrekar, P. Oxidative stress and inflammation: Essential partners in alcoholic liver disease. Int. J. Hepatol. 2012, 2012, 853175. [Google Scholar] [CrossRef]
- Shivashankara, A.R.; Azmidah, A.; Haniadka, R.; Rai, M.P.; Arora, R.; Baliga, M.S. Dietary agents in the prevention of alcohol-induced hepatotoxicty: Preclinical observations. Food Funct. 2012, 3, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Jing, R.; Li, H.Q.; Hu, C.L.; Jiang, Y.P.; Qin, L.P.; Zheng, C.J. Phytochemical and Pharmacological Profiles of Three Fagopyrum Buckwheats. Int. J. Mol. Sci. 2016, 17, 589. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Chemical composition and health effects of Tartary buckwheat. Food Chem. 2016, 203, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, X.; Li, Y.; Lu, K.; Yin, R.; Ming, J. Phenolics extracted from tartary (Fagopyrum tartaricum L. Gaerth) buckwheat bran exhibit antioxidant activity, and an antiproliferative effect on human breast cancer MDA-MB-231 cells through the p38/MAP kinase pathway. Food Funct. 2017, 8, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Gao, C.; Li, Y.; Wang, M. D-chiro-inositol enriched Fagopyrum tataricum (L.) Gaench extract alleviates mitochondrial malfunction and inhibits ER stress/JNK associated inflammation in the endothelium. J. Ethnopharmacol. 2018, 214, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Mullen, W.; Edwards, C.A.; Crozier, A. Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br. J. Nutr. 2006, 96, 107–116. [Google Scholar] [CrossRef]
- Zhao, G.; Zou, L.; Wang, Z.; Hu, H.; Hu, Y.; Peng, L. Pharmacokinetic profile of total quercetin after single oral dose of tartary buckwheat extracts in rats. J. Agric. Food Chem. 2011, 59, 4435–4441. [Google Scholar] [CrossRef]
- Moore, A.A.; Whiteman, E.J.; Ward, K.T. Risks of combined alcohol/medication use in older adults. Am. J. Geriatr. Pharmacother. 2007, 5, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Leo, M.A.; Lieber, C.S. Interactions between alcohol and beta-carotene in patients with alcoholic liver disease. Am. J. Clin. Nutr. 1994, 60, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Seitz, H.K.; Stickel, F. Alcoholic liver disease in the elderly. Clin. Geriatr. Med. 2007, 23, 905–921. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Peng, M.; Zhang, T.; Tao, J.S.; Cai, Z.Z.; Zhang, Y. Quantification of conjugated metabolites of drugs in biological matrices after the hydrolysis with beta-glucuronidase and sufatase: A review of bio-analytical methods. Biomed. Chromatogr. BMC 2013, 27, 1280–1295. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Mitchell, A.E. Pharmacokinetics of quercetin absorption from apples and onions in healthy humans. J. Agric. Food Chem. 2012, 60, 3874–3881. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, X.; Gu, L.; Lv, C.; He, B.; Liu, Z.; Hou, P.; Bi, K.; Chen, X. Simultaneous determination of five free and total flavonoids in rat plasma by ultra HPLC-MS/MS and its application to a comparative pharmacokinetic study in normal and hyperlipidemic rats. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 953–954, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jin, M.; Liu, Y.; Chen, Q.; Si, L.; Li, G.; Zhang, Y.; Huang, J. Oral Bioavailability of Kinsenoside in Beagle Dogs Measured by LC-MS/MS: Improvement of Ex Vivo Stability of a Lactone-Containing Compound. Pharmaceutics 2018, 10, 87. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, L.; Bao, Y.; Li, C. A sensitive method for the detection and quantification of ginkgo flavonols from plasma. Rapid Commun. Mass Spectrom. RCM 2007, 21, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Reinboth, M.; Wolffram, S.; Abraham, G.; Ungemach, F.R.; Cermak, R. Oral bioavailability of quercetin from different quercetin glycosides in dogs. Br. J. Nutr. 2010, 104, 198–203. [Google Scholar] [CrossRef] [Green Version]
- Walle, T.; Walle, U.K.; Halushka, P.V. Carbon dioxide is the major metabolite of quercetin in humans. J. Nutr. 2001, 131, 2648–2652. [Google Scholar] [CrossRef]
- Azuma, K.; Ippoushi, K.; Ito, H.; Higashio, H.; Terao, J. Combination of lipids and emulsifiers enhances the absorption of orally administered quercetin in rats. J. Agric. Food Chem. 2002, 50, 1706–1712. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, M.; Guo, Z.; Zhang, X. Pharmacokinetic evaluation of the interaction between oral kaempferol and ethanol in rats. Acta Pharm. (Zagreb Croat.) 2016, 66, 563–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, S.J.; Swaan, P.W.; Eddington, N.D. The ethanol metabolite acetaldehyde increases paracellular drug permeability in vitro and oral bioavailability in vivo. J. Pharmacol. Exp. Ther. 2010, 332, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Bruno, R.S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem. 2015, 26, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Li, Y.; Wu, C.; Wang, C.; Jin, Y.; Zhang, J. Metabolism of secondary metabolites isolated from Tartary buckwheat and its extract. Food Chem. 2014, 154, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.L.; Lin, Y.C.; Lin, Y.L.; Li, C.C.; Chuang, C.H. Comparing the metabolism of quercetin in rats, mice and gerbils. Eur. J. Nutr. 2016, 55, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Kachlicki, P.; Piasecka, A.; Stobiecki, M.; Marczak, L. Structural Characterization of Flavonoid Glycoconjugates and Their Derivatives with Mass Spectrometric Techniques. Molecules 2016, 21, 1494. [Google Scholar] [CrossRef] [PubMed]
Analyte | QC Level | Response Difference (%) | |||
---|---|---|---|---|---|
No Stabilizer | Ascorbic Acid | Sodium Bisulfite | Ascorbic Acid + Citric Acid | ||
quercetin | LQC (1.5 ng/mL) | −29.80 | −5.62 | −6.46 | −1.03 |
HQC (750 ng/mL) | −21.50 | 1.22 | −5.94 | 1.62 | |
kaempferol | LQC (1.5 ng/mL) | −19.73 | −10.50 | 5.10 | 1.28 |
HQC (750 ng/mL) | −12.45 | 0.98 | −2.70 | −1.30 |
Parameter | Unit | Oral Administration (100 mg/kg) | Intravenous Administration (5 mg/kg) | ||
---|---|---|---|---|---|
Quercetin | Kaempferol | Quercetin | Kaempferol | ||
AUC0–t | ng/mL·min | 44116 ± 7408 | 568.2 ± 269.4 | 48368 ± 8439 | 1809.6 ± 1702.6 |
t1/2 | min | 228.6 ± 140.0 | 102.1 ± 87.0 | 194.9 ± 81.5 | 47.9 ± 32.2 |
Tmax | min | 26.7 ± 17.5 | 38.2 ± 32.3 | - | - |
Cmax | ng/mL | 222.8 ± 53.1 | 9.5 ± 8.6 | - | - |
CL | L/min/kg | - | - | 0.07 ± 0.01 | 0.28 ± 0.24 |
Vd | L/kg | - | - | 19.3 ± 8.9 | 20.6 ± 12.5 |
F | % | 4.6 | 1.6 | - | - |
No. | Rt (min) | Formula | [M + H]+ (m/z) | Error (ppm) | Fragment Ions (m/z) | Source | Identification | Metabolic Pathway |
---|---|---|---|---|---|---|---|---|
M1 | 3.23 | C26H26O17 | 611.1613 | 0.6832 | 479, 303, 285, 239, 221 | U. | Quercetin xyloside glucuronide | Glucuronidation |
M2 | 8.70 | C26H28O19S | 677.3398 | −2.9961 | 465, 369, 339, 321, 302, 257, 243, 229, 213, 201,139 | P. | Quercetin xyloside glucoside sulfate | Sulfation |
M3 | 8.72 | C23H24O12 | 493.1615 | −0.5376 | 465, 303, 285, 257, 229, 219, 165 | F. | Dimethyl quercetin glucoside | Dimethylation |
M4 | 10.06 | C29H34O19S | 719.3624 | −4.4449 | 611, 465, 339, 257, 243, 229, 213, 201, 135, 126, 109 | P. | Dimethyl quercetin rhamnoside glucoside sulfate | Dimethylation, Sulfation |
M5 | 11.25 | C23H24O14S | 557.4034 | −0.1276 | 539, 521, 503, 383, 331, 303, 285, 275, 257, 229, 219, 193, 177, 165, 153 | F. | Dimethyl quercetin rhamnoside sulfate | Dimethylation, Sulfation |
M6 | 12.10 | C26H28O19S | 677.3398 | −2.9060 | 465, 369, 339, 321, 302, 257, 243, 229, 213, 201, 139 | P. | Quercetin xyloside glucoside sulfate | Sulfation |
M7 | 12.83 | C34H38O24 | 831.5027 | −0.3240 | 137, 209, 227, 243, 271, 285, 303, 317, 335, 353, 371, 389, 461, 637 | U. | Methyl quercetin glucoside diglucuronide | Methylation, Diglucuronidation |
M8 | 13.76 | C17H14O7 | 331.2061 | −0.1946 | 317, 313, 303, 289, 275, 229, 181, 135, 125 | U. | Dimethyl quercetin | Dimethylation |
M9 | 15.56 | C28H32O15 | 609.3254 | −0.2484 | 591, 577, 549, 485, 467, 449, 359, 345, 331, 317, 303, 531, 285, 275, 257, 229, 165 | F. | Trimethyl quercetin di-C-xyloside | Trimethylation |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Gan, J.; Liu, W.; Zhang, X.; Xu, J.; Wu, Y.; Yang, Y.; Si, L.; Li, G.; Huang, J. Pharmacokinetics and Novel Metabolite Identification of Tartary Buckwheat Extracts in Beagle Dogs Following Co-Administration with Ethanol. Pharmaceutics 2019, 11, 525. https://doi.org/10.3390/pharmaceutics11100525
Liu Y, Gan J, Liu W, Zhang X, Xu J, Wu Y, Yang Y, Si L, Li G, Huang J. Pharmacokinetics and Novel Metabolite Identification of Tartary Buckwheat Extracts in Beagle Dogs Following Co-Administration with Ethanol. Pharmaceutics. 2019; 11(10):525. https://doi.org/10.3390/pharmaceutics11100525
Chicago/Turabian StyleLiu, Yuancai, Jun Gan, Wanyu Liu, Xin Zhang, Jian Xu, Yue Wu, Yuejun Yang, Luqin Si, Gao Li, and Jiangeng Huang. 2019. "Pharmacokinetics and Novel Metabolite Identification of Tartary Buckwheat Extracts in Beagle Dogs Following Co-Administration with Ethanol" Pharmaceutics 11, no. 10: 525. https://doi.org/10.3390/pharmaceutics11100525
APA StyleLiu, Y., Gan, J., Liu, W., Zhang, X., Xu, J., Wu, Y., Yang, Y., Si, L., Li, G., & Huang, J. (2019). Pharmacokinetics and Novel Metabolite Identification of Tartary Buckwheat Extracts in Beagle Dogs Following Co-Administration with Ethanol. Pharmaceutics, 11(10), 525. https://doi.org/10.3390/pharmaceutics11100525