Insect-Specific Viruses and Their Emerging Role in Plant Disease Mitigation
Abstract
1. Introduction
2. Molecular Mechanisms of Plant Virus Transmission by Insect Vectors
3. Discovery and Limitations of ISVs Research
4. ISVs Shaping Insect Biology and Virus Transmission
4.1. Physiological Modulation of Insects by ISVs
4.2. ISVs Regulation of Arbovirus Transmission
5. Toward Application: Challenges and Innovative Strategies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blanc, S.; Drucker, M.; Uzest, M. Localizing Viruses in Their Insect Vectors. Annu. Rev. Phytopathol. 2014, 52, 403–425. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, A.E.; Falk, B.W.; Rotenberg, D. Insect Vector-Mediated Transmission of Plant Viruses. Virology 2015, 479–480, 278–289. [Google Scholar] [CrossRef]
- Wei, T.; Li, Y. Rice Reoviruses in Insect Vectors. Annu. Rev. Phytopathol. 2016, 54, 99–120. [Google Scholar] [CrossRef]
- Hogenhout, S.A.; Ammar, E.-D.; Whitfield, A.E.; Redinbaugh, M.G. Insect Vector Interactions with Persistently Transmitted Viruses. Annu. Rev. Phytopathol. 2008, 46, 327–359. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.C.K.; Falk, B.W. Virus-Vector Interactions Mediating Nonpersistent and Semipersistent Transmission of Plant Viruses. Annu. Rev. Phytopathol. 2006, 44, 183–212. [Google Scholar] [CrossRef] [PubMed]
- Xavier, C.A.D.; Whitfield, A.E. Plant Virology. Curr. Biol. 2023, 33, R478–R484. [Google Scholar] [CrossRef]
- Fu, Y.; Deshoux, M.; Cayrol, B.; Le Blaye, S.; Achard, E.; Hudaverdian, S.; Cloteau, R.; Pichon, E.; Strozyk, E.; Prunier-Leterme, N.; et al. Stylet Cuticular Gene-Directed Mutagenesis Impairs the Pea Aphid Vector Capacity to Transmit a Plant Virus. PLoS Pathog. 2025, 21, e1013192. [Google Scholar] [CrossRef]
- Mutti, N.S.; Louis, J.; Pappan, L.K.; Pappan, K.; Begum, K.; Chen, M.-S.; Park, Y.; Dittmer, N.; Marshall, J.; Reese, J.C.; et al. A Protein from the Salivary Glands of the Pea Aphid, Acyrthosiphon pisum, Is Essential in Feeding on a Host Plant. Proc. Natl. Acad. Sci. USA 2008, 105, 9965–9969. [Google Scholar] [CrossRef]
- Wei, J.; Jia, D.; Mao, Q.; Zhang, X.; Chen, Q.; Wu, W.; Chen, H.; Wei, T. Complex Interactions between Insect-Borne Rice Viruses and Their Vectors. Curr. Opin. Virol. 2018, 33, 18–23. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Chen, B.; Zhou, G.; Zhang, T. Trans-kingdom interactions between viruses-plants-vector insects and viral disease epidemics. Sci. Sin. Vitae 2024, 54, 769–788. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Q.; Wei, T. Complex Interactions among Insect Viruses-insect Vector-arboviruses. Insect Sci. 2023, 31, 683–693. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, H.; Mao, Q.; Liu, Q.; Shimizu, T.; Uehara-Ichiki, T.; Wu, Z.; Xie, L.; Omura, T.; Wei, T. Tubular Structure Induced by a Plant Virus Facilitates Viral Spread in Its Vector Insect. PLoS Pathog. 2012, 8, e1003032. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Y.; Ren, J.; Zhong, P.; Chen, M.; Jia, D.; Chen, H.; Wei, T. Exosomes Mediate Horizontal Transmission of Viral Pathogens from Insect Vectors to Plant Phloem. Elife 2021, 10, e64603. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, L.; Chen, H.; Xie, L.; Wei, T. Nonstructural Protein Pns4 of Rice Dwarf Virus Is Essential for Viral Infection in Its Insect Vector. Virol. J. 2015, 12, 211. [Google Scholar] [CrossRef]
- Wei, T.; Chen, H.; Ichiki-Uehara, T.; Hibino, H.; Omura, T. Entry of Rice Dwarf Virus into Cultured Cells of Its Insect Vector Involves Clathrin-Mediated Endocytosis. J. Virol. 2007, 81, 7811–7815. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Kikuchi, A.; Moriyasu, Y.; Tomaru, M.; Jin, Y.; Suga, H.; Hagiwara, K.; Akita, F.; Shimizu, T.; Netsu, O.; et al. Rice Dwarf Viruses with Dysfunctional Genomes Generated in Plants Are Filtered Out in Vector Insects: Implications for the Origin of the Virus. J. Virol. 2011, 85, 2975–2979. [Google Scholar] [CrossRef]
- Kingsolver, M.B.; Huang, Z.; Hardy, R.W. Insect Antiviral Innate Immunity: Pathways, Effectors, and Connections. J. Mol. Biol. 2013, 425, 4921–4936. [Google Scholar] [CrossRef]
- Gammon, D.B.; Mello, C.C. RNA Interference-Mediated Antiviral Defense in Insects. Curr. Opin. Insect Sci. 2015, 8, 111–120. [Google Scholar] [CrossRef]
- Wang, S.; Guo, H.; Zhu-Salzman, K.; Ge, F.; Sun, Y. PEBP Balances Apoptosis and Autophagy in Whitefly upon Arbovirus Infection. Nat. Commun. 2022, 13, 846. [Google Scholar] [CrossRef]
- He, Y.-J.; Lu, G.; Xu, B.-J.; Mao, Q.-Z.; Qi, Y.-H.; Jiao, G.-Y.; Weng, H.-T.; Tian, Y.-Z.; Huang, H.-J.; Zhang, C.-X.; et al. Maintenance of Persistent Transmission of a Plant Arbovirus in Its Insect Vector Mediated by the Toll-Dorsal Immune Pathway. Proc. Natl. Acad. Sci. USA 2024, 121, e2315982121. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Hussain, S.; Merchant, A.; Xu, B.; Xie, W.; Wang, S.; Zhang, Y.; Zhou, X.; Wu, Q. Tomato Spotted Wilt Orthotospovirus Influences the Reproduction of Its Insect Vector, Western Flower Thrips, Frankliniella occidentalis, to Facilitate Transmission. Pest Manag. Sci. 2020, 76, 2406–2414. [Google Scholar] [CrossRef]
- Stafford, C.A.; Walker, G.P.; Ullman, D.E. Infection with a Plant Virus Modifies Vector Feeding Behavior. Proc. Natl. Acad. Sci. USA 2011, 108, 9350–9355. [Google Scholar] [CrossRef]
- Cobbin, J.C.; Charon, J.; Harvey, E.; Holmes, E.C.; Mahar, J.E. Current Challenges to Virus Discovery by Meta-Transcriptomics. Curr. Opin. Virol. 2021, 51, 48–55. [Google Scholar] [CrossRef]
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A Comprehensive Update on Curation, Resources and Tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef] [PubMed]
- Nouri, S.; Matsumura, E.E.; Kuo, Y.-W.; Falk, B.W. Insect-Specific Viruses: From Discovery to Potential Translational Applications. Curr. Opin. Virol. 2018, 33, 33–41. [Google Scholar] [CrossRef]
- Dance, A. The Incredible Diversity of Viruses. Nature 2021, 595, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, P.; Adams, M.J.; Benkő, M.; Breitbart, M.; Brister, J.R.; Carstens, E.B.; Davison, A.J.; Delwart, E.; Gorbalenya, A.E.; Harrach, B.; et al. Virus Taxonomy in the Age of Metagenomics. Nat. Rev. Microbiol. 2017, 15, 161–168. [Google Scholar] [CrossRef]
- Qi, Y.-H.; Ye, Z.-X.; Zhang, C.-X.; Chen, J.-P.; Li, J.-M. Diversity of RNA Viruses in Agricultural Insects. Comput. Struct. Biotechnol. J. 2023, 21, 4312–4321. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Holmes, E.C. Endogenous RNA Viruses of Plants in Insect Genomes. Virology 2012, 427, 77–79. [Google Scholar] [CrossRef]
- Holmes, E.C. The Evolution of Endogenous Viral Elements. Cell Host Microbe 2011, 10, 368–377. [Google Scholar] [CrossRef]
- Bonning, B.C. The Insect Virome: Opportunities and Challenges. In Insect Molecular Virology: Advances and Emerging Trends; Caister Academic Press: Poole, UK, 2019; ISBN 978-1-912530-08-3. [Google Scholar]
- Mao, Q.; Ye, Z.-X.; Yuan, J.-N.; Ning, C.; Chen, M.-N.; Xu, Z.-T.; Qi, Y.-H.; Zhang, Y.; Li, T.; He, Y.-J.; et al. Diversity and Transmissibility of RNA Viruses in the Small Brown Planthopper, Laodelphax striatellus. J. Virol. 2024, 98, e00191-24. [Google Scholar] [CrossRef]
- Bronkhorst, A.W.; Van Rij, R.P. The Long and Short of Antiviral Defense: Small RNA-Based Immunity in Insects. Curr. Opin. Virol. 2014, 7, 19–28. [Google Scholar] [CrossRef]
- Airs, P.M.; Bartholomay, L.C. RNA Interference for Mosquito and Mosquito-Borne Disease Control. Insects 2017, 8, 4. [Google Scholar] [CrossRef]
- Hou, X.; He, Y.; Fang, P.; Mei, S.-Q.; Xu, Z.; Wu, W.-C.; Tian, J.-H.; Zhang, S.; Zeng, Z.-Y.; Gou, Q.-Y.; et al. Using Artificial Intelligence to Document the Hidden RNA Virosphere. Cell 2024, 187, 6929–6942.e16. [Google Scholar] [CrossRef]
- Obbard, D.J.; Shi, M.; Roberts, K.E.; Longdon, B.; Dennis, A.B. A New Lineage of Segmented RNA Viruses Infecting Animals. Virus Evol. 2020, 6, vez061. [Google Scholar] [CrossRef]
- Ning, C.; Ye, Z.-X.; Xu, Z.-T.; Li, T.; Zhang, C.-X.; Chen, J.-P.; Li, J.-M.; Mao, Q. Complete Genome Sequence and Genetic Characterization of a Novel Segmented RNA Virus Infecting Nilaparvata Lugens. Arch. Virol. 2024, 169, 141. [Google Scholar] [CrossRef]
- Lefkowitz, E.J.; Dempsey, D.M.; Hendrickson, R.C.; Orton, R.J.; Siddell, S.G.; Smith, D.B. Virus Taxonomy: The Database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018, 46, D708–D717. [Google Scholar] [CrossRef]
- Kuhn, J.H.; Dheilly, N.M.; Junglen, S.; Paraskevopoulou, S.; Shi, M.; Di Paola, N. ICTV Virus Taxonomy Profile: Jingchuvirales 2023: This Article Is Part of the ICTV Virus Taxonomy Profiles Collection. J. Gen. Virol. 2023, 104, 001924. [Google Scholar] [CrossRef]
- Li, C.-X.; Shi, M.; Tian, J.-H.; Lin, X.-D.; Kang, Y.-J.; Chen, L.-J.; Qin, X.-C.; Xu, J.; Holmes, E.C.; Zhang, Y.-Z. Unprecedented Genomic Diversity of RNA Viruses in Arthropods Reveals the Ancestry of Negative-Sense RNA Viruses. eLife 2015, 4, e05378. [Google Scholar] [CrossRef]
- Käfer, S.; Paraskevopoulou, S.; Zirkel, F.; Wieseke, N.; Donath, A.; Petersen, M.; Jones, T.C.; Liu, S.; Zhou, X.; Middendorf, M.; et al. Re-Assessing the Diversity of Negative Strand RNA Viruses in Insects. PLoS Pathog. 2019, 15, e1008224. [Google Scholar] [CrossRef]
- Di Paola, N.; Dheilly, N.M.; Junglen, S.; Paraskevopoulou, S.; Postler, T.S.; Shi, M.; Kuhn, J.H. Jingchuvirales: A New Taxonomical Framework for a Rapidly Expanding Order of Unusual Monjiviricete Viruses Broadly Distributed among Arthropod Subphyla. Appl. Environ. Microbiol. 2022, 88, e01954-21. [Google Scholar] [CrossRef]
- Clem, R.J.; Passarelli, A.L. Baculoviruses: Sophisticated Pathogens of Insects. PLoS Pathog. 2013, 9, e1003729. [Google Scholar] [CrossRef]
- Wang, F.; Fang, Q.; Wang, B.; Yan, Z.; Hong, J.; Bao, Y.; Kuhn, J.H.; Werren, J.H.; Song, Q.; Ye, G. A Novel Negative-Stranded RNA Virus Mediates Sex Ratio in Its Parasitoid Host. PLoS Pathog. 2017, 13, e1006201. [Google Scholar] [CrossRef]
- Palmer, W.H.; Medd, N.C.; Beard, P.M.; Obbard, D.J. Isolation of a Natural DNA Virus of Drosophila Melanogaster, and Characterisation of Host Resistance and Immune Responses. PLoS Pathog. 2018, 14, e1007050. [Google Scholar] [CrossRef] [PubMed]
- Nagamine, K.; Kanno, Y.; Sahara, K.; Fujimoto, T.; Yoshido, A.; Ishikawa, Y.; Terao, M.; Kageyama, D.; Shintani, Y. Male-Killing Virus in a Noctuid Moth Spodoptera litura. Proc. Natl. Acad. Sci. USA 2023, 120, e2312124120. [Google Scholar] [CrossRef] [PubMed]
- Edson, K.M.; Vinson, S.B.; Stoltz, D.B.; Summers, M.D. Virus in a Parasitoid Wasp: Suppression of the Cellular Immune Response in the Parasitoid’s Host. Science 1981, 211, 582–583. [Google Scholar] [CrossRef] [PubMed]
- Jagdale, S.S.; Joshi, R.S. Facilitator Roles of Viruses in Enhanced Insect Resistance to Biotic Stress. Curr. Opin. Insect Sci. 2019, 33, 111–116. [Google Scholar] [CrossRef]
- Dheilly, N.M.; Maure, F.; Ravallec, M.; Galinier, R.; Doyon, J.; Duval, D.; Leger, L.; Volkoff, A.-N.; Missé, D.; Nidelet, S.; et al. Who Is the Puppet Master? Replication of a Parasitic Wasp-Associated Virus Correlates with Host Behaviour Manipulation. Proc. R. Soc. B Biol. Sci. 2015, 282, 20142773. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, F.; Yuan, B.; Yang, L.; Yang, Y.; Fang, Q.; Kuhn, J.H.; Song, Q.; Ye, G. A Novel Cripavirus of an Ectoparasitoid Wasp Increases Pupal Duration and Fecundity of the Wasp’s Drosophila Melanogaster Host. ISME J. 2021, 15, 3239–3257. [Google Scholar] [CrossRef]
- Wan, J. Arboviruses and Symbiotic Viruses Cooperatively Hijack Insect Sperm-Specific Proteins for Paternal Transmission. Nat. Commun. 2023, 14, 1289. [Google Scholar] [CrossRef]
- Lu, H.; Zhu, J.; Yu, J.; Chen, X.; Kang, L.; Cui, F. A Symbiotic Virus Facilitates Aphid Adaptation to Host Plants by Suppressing Jasmonic Acid Responses. Mol. Plant Microbe Interact. 2020, 33, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Ryabov, E.V.; Keane, G.; Naish, N.; Evered, C.; Winstanley, D. Densovirus Induces Winged Morphs in Asexual Clones of the Rosy Apple Aphid, Dysaphis plantaginea. Proc. Natl. Acad. Sci. USA 2009, 106, 8465–8470. [Google Scholar] [CrossRef]
- Xu, P.; Yang, L.; Yang, X.; Li, T.; Graham, R.I.; Wu, K.; Wilson, K. Novel Partiti-like Viruses Are Conditional Mutualistic Symbionts in Their Normal Lepidopteran Host, African Armyworm, but Parasitic in a Novel Host, Fall Armyworm. PLoS Pathog. 2020, 16, e1008467. [Google Scholar] [CrossRef]
- De Faria, I.J.S.; De Almeida, J.P.P.; Marques, J.T. Impact of Symbiotic Insect-Specific Viruses on Mosquito Vector Competence for Arboviruses. Curr. Opin. Insect Sci. 2024, 63, 101194. [Google Scholar] [CrossRef]
- Dong, Y.; Li, T.; Hou, Y.; Wilson, K.; Wang, X.; Su, C.; Li, Y.; Ren, G.; Xu, P. Densovirus Infection Facilitates Plant–Virus Transmission by an Aphid. New Phytol. 2024, 243, 1539–1553. [Google Scholar] [CrossRef]
- Gadhave, K.R.; Gautam, S.; Rasmussen, D.A.; Srinivasan, R. Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus. Viruses 2020, 12, 773. [Google Scholar] [CrossRef]
- Olmo, R.P.; Todjro, Y.M.H.; Aguiar, E.R.G.R.; de Almeida, J.P.P.; Ferreira, F.V.; Armache, J.N.; de Faria, I.J.S.; Ferreira, A.G.A.; Amadou, S.C.G.; Silva, A.T.S.; et al. Mosquito Vector Competence for Dengue Is Modulated by Insect-Specific Viruses. Nat. Microbiol. 2023, 8, 135–149. [Google Scholar] [CrossRef]
- Li, S.; Ge, S.; Wang, X.; Sun, L.; Liu, Z.; Zhou, Y. Facilitation of Rice Stripe Virus Accumulation in the Insect Vector by Himetobi P Virus VP1. Viruses 2015, 7, 1492–1504. [Google Scholar] [CrossRef] [PubMed]
- Goenaga, S.; Kenney, J.; Duggal, N.; Delorey, M.; Ebel, G.; Zhang, B.; Levis, S.; Enria, D.; Brault, A. Potential for Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in Mosquitoes. Viruses 2015, 7, 5801–5812. [Google Scholar] [CrossRef] [PubMed]
- Kenney, J.L.; Solberg, O.D.; Langevin, S.A.; Brault, A.C. Characterization of a Novel Insect-Specific Flavivirus from Brazil: Potential for Inhibition of Infection of Arthropod Cells with Medically Important Flaviviruses. J. Gen. Virol. 2014, 95, 2796–2808. [Google Scholar] [CrossRef]
- Baidaliuk, A.; Miot, E.F.; Lequime, S.; Moltini-Conclois, I.; Delaigue, F.; Dabo, S.; Dickson, L.B.; Aubry, F.; Merkling, S.H.; Cao-Lormeau, V.-M.; et al. Cell-Fusing Agent Virus Reduces Arbovirus Dissemination in Aedes Aegypti Mosquitoes In Vivo. J. Virol. 2019, 93, e00705-19. [Google Scholar] [CrossRef]
- Jia, W.; Wang, F.; Li, J.; Chang, X.; Yang, Y.; Yao, H.; Bao, Y.; Song, Q.; Ye, G. A Novel Iflavirus Was Discovered in Green Rice Leafhopper Nephotettix Cincticeps and Its Proliferation Was Inhibited by Infection of Rice Dwarf Virus. Front. Microbiol. 2021, 11, 621141. [Google Scholar] [CrossRef]
- Joseph, R.E.; Bozic, J.; Werling, K.L.; Krizek, R.S.; Urakova, N.; Rasgon, J.L. Eilat Virus (EILV) Causes Superinfection Exclusion against West Nile Virus (WNV) in a Strain-Specific Manner in Culex Tarsalis Mosquitoes. J. Gen. Virol. 2024, 105, 002017. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, D.; Shi, P.; Li, J.; Niu, J.; Chen, J.; Wang, G.; Wu, L.; Chen, L.; Yang, Z.; et al. A Naturally Isolated Symbiotic Bacterium Suppresses Flavivirus Transmission by Aedes Mosquitoes. Science 2024, 384, eadn9524. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Gao, H.; Cui, C.; Wang, L.; Wang, Y.; Li, Y.; Li, F.; Zheng, Y.; Xia, T.; Wang, S. Harnessing Engineered Symbionts to Combat Concurrent Malaria and Arboviruses Transmission. Nat. Commun. 2025, 16, 2104. [Google Scholar] [CrossRef] [PubMed]
- Kolliopoulou, A.; Taning, C.N.T.; Smagghe, G.; Swevers, L. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges. Front. Physiol. 2017, 8, 399. [Google Scholar] [CrossRef]
- Kim, D.S.; Zhang, J. Strategies to Improve the Efficiency of RNAi-Mediated Crop Protection for Pest Control. Entomol. Gen. 2023, 43, 5–19. [Google Scholar] [CrossRef]
- Jiang, J.; Erickson, A.; Qiao, W.; Matsumura, E.E.; Falk, B.W. Flock House Virus as a Vehicle for Aphid Virus-Induced Gene Silencing and a Model for Aphid Biocontrol Approaches. J. Pest Sci. 2023, 96, 225–239. [Google Scholar] [CrossRef]
- Adelman, Z.N.; Blair, C.D.; Carlson, J.O.; Beaty, B.J.; Olson, K.E. Sindbis Virus-induced Silencing of Dengue Viruses in Mosquitoes. Insect Mol. Biol. 2001, 10, 265–273. [Google Scholar] [CrossRef]
- Öhlund, P.; Lundén, H.; Blomström, A.-L. Insect-Specific Virus Evolution and Potential Effects on Vector Competence. Virus Genes 2019, 55, 127–137. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, J.; Yuan, J.; Chen, M.; Mao, Q. Insect-Specific Viruses and Their Emerging Role in Plant Disease Mitigation. Viruses 2025, 17, 1269. https://doi.org/10.3390/v17091269
Lei J, Yuan J, Chen M, Mao Q. Insect-Specific Viruses and Their Emerging Role in Plant Disease Mitigation. Viruses. 2025; 17(9):1269. https://doi.org/10.3390/v17091269
Chicago/Turabian StyleLei, Jianing, Jingna Yuan, Mengnan Chen, and Qianzhuo Mao. 2025. "Insect-Specific Viruses and Their Emerging Role in Plant Disease Mitigation" Viruses 17, no. 9: 1269. https://doi.org/10.3390/v17091269
APA StyleLei, J., Yuan, J., Chen, M., & Mao, Q. (2025). Insect-Specific Viruses and Their Emerging Role in Plant Disease Mitigation. Viruses, 17(9), 1269. https://doi.org/10.3390/v17091269