Neutral Impact of SARS-CoV-2 Coinfection on the Recombination-Driven Evolution of Endemic HCoV-OC43
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Characteristics
2.2. Nucleic Acid Extraction and Human Coronavirus Molecular Detection
2.3. Complete Genome Sequencing and Genome Analysis
2.4. Genetic Characterisation and Phylogenetic Analysis
2.5. Recombination Analysis
3. Results
3.1. Case Characteristics
3.2. Phylogenetic Analysis
3.3. Recombination Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, G.; Liu, Z.; Chen, D. Human coronaviruses: Origin, host and receptor. J. Clin. Virol. 2022, 155, 105246. [Google Scholar] [CrossRef]
- Wells, H.L.; Bonavita, C.M.; Navarrete-Macias, I.; Vilchez, B.; Rasmussen, A.L.; Anthony, S.J. The coronavirus recombination pathway. Cell Host Microbe 2023, 31, 874–889. [Google Scholar] [CrossRef]
- Li, X.X.; Zhou, X.N. Co-infection of tuberculosis and parasitic diseases in humans: A systematic review. Parasit Vectors 2013, 6, 79. [Google Scholar] [CrossRef]
- Tamura, T.; Ito, J.; Uriu, K.; Zahradnik, J.; Kida, I.; Anraku, Y.; Nasser, H.; Shofa, M.; Oda, Y.; Lytras, S.; et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nat. Commun. 2023, 14, 2800. [Google Scholar] [CrossRef]
- Chakraborty, C.; Bhattacharya, M.; Sharma, A.R.; Dhama, K. Recombinant SARS-CoV-2 variants XD, XE, and XF: The emergence of recombinant variants requires an urgent call for research-Correspondence. Int. J. Surg. 2022, 102, 106670. [Google Scholar] [CrossRef]
- Wu, Q.; Xing, Y.; Shi, L.; Li, W.; Gao, Y.; Pan, S.; Wang, Y.; Wang, W.; Xing, Q. Coinfection and Other Clinical Characteristics of COVID-19 in Children. Pediatrics 2020, 146, e20200961. [Google Scholar] [CrossRef]
- Chen, X.; Liao, B.; Cheng, L.; Peng, X.; Xu, X.; Li, Y.; Hu, T.; Li, J.; Zhou, X.; Ren, B. The microbial coinfection in COVID-19. Appl. Microbiol. Biotechnol. 2020, 104, 7777–7785. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Swets, M.C.; Russell, C.D.; Harrison, E.M.; Docherty, A.B.; Lone, N.; Girvan, M.; Hardwick, H.E.; Visser, L.G.; Openshaw, P.J.M.; Groeneveld, G.H.; et al. SARS-CoV-2 co-infection with influenza viruses, respiratory syncytial virus, or adenoviruses. Lancet 2022, 399, 1463–1464. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Saed, Y.A.; Song, W.; Wang, M.; Li, Y. Prevalence of Non-SARS-CoV-2 Respiratory Pathogens and Co-Infection with SARS-CoV-2 in the Early Stage of COVID-19 Epidemic. Pathogens 2022, 11, 1292. [Google Scholar] [CrossRef]
- Zumla, A.; Chan, J.F.; Azhar, E.I.; Hui, D.S.; Yuen, K.Y. Coronaviruses-drug discovery and therapeutic options. Nat. Rev. Drug Discov. 2016, 15, 327–347. [Google Scholar] [CrossRef]
- Shao, N.; Zhang, C.; Dong, J.; Sun, L.; Chen, X.; Xie, Z.; Xu, B.; An, S.; Zhang, T.; Yang, F. Molecular evolution of human coronavirus-NL63, -229E, -HKU1 and -OC43 in hospitalized children in China. Front. Microbiol. 2022, 13, 1023847. [Google Scholar] [CrossRef]
- Fung, T.S.; Liu, D.X. Similarities and Dissimilarities of COVID-19 and Other Coronavirus Diseases. Annu. Rev. Microbiol. 2021, 75, 19–47. [Google Scholar] [CrossRef]
- Oong, X.Y.; Ng, K.T.; Takebe, Y.; Ng, L.J.; Chan, K.G.; Chook, J.B.; Kamarulzaman, A.; Tee, K.K. Identification and evolutionary dynamics of two novel human coronavirus OC43 genotypes associated with acute respiratory infections: Phylogenetic, spatiotemporal and transmission network analyses. Emerg. Microbes Infect 2017, 6, e3. [Google Scholar] [CrossRef] [PubMed]
- Alosaimi, B.; Naeem, A.; Hamed, M.E.; Alkadi, H.S.; Alanazi, T.; Al Rehily, S.S.; Almutairi, A.Z.; Zafar, A. Influenza co-infection associated with severity and mortality in COVID-19 patients. Virol J. 2021, 18, 127. [Google Scholar] [CrossRef]
- Zhu, X.; Ge, Y.; Wu, T.; Zhao, K.; Chen, Y.; Wu, B.; Zhu, F.; Zhu, B.; Cui, L. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res. 2020, 285, 198005. [Google Scholar] [CrossRef]
- Keshavarz Valian, N.; Pourakbari, B.; Asna Ashari, K.; Hosseinpour Sadeghi, R.; Mahmoudi, S. Evaluation of human coronavirus OC43 and SARS-COV-2 in children with respiratory tract infection during the COVID-19 pandemic. J. Med. Virol. 2022, 94, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Pinky, L.; Dobrovolny, H.M. Coinfections of the Respiratory Tract: Viral Competition for Resources. PLoS ONE 2016, 11, e0155589. [Google Scholar] [CrossRef] [PubMed]
- Goto, H.; Ihira, H.; Morishita, K.; Tsuchiya, M.; Ohta, K.; Yumine, N.; Tsurudome, M.; Nishio, M. Enhanced growth of influenza A virus by coinfection with human parainfluenza virus type 2. Med. Microbiol. Immunol. 2016, 205, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Dugas, M.; Grote-Westrick, T.; Merle, U.; Fontenay, M.; Kremer, A.E.; Hanses, F.; Vollenberg, R.; Lorentzen, E.; Tiwari-Heckler, S.; Duchemin, J.; et al. Lack of antibodies against seasonal coronavirus OC43 nucleocapsid protein identifies patients at risk of critical COVID-19. J. Clin. Virol. 2021, 139, 104847. [Google Scholar] [CrossRef]
- Dyrdak, R.; Hodcroft, E.B.; Wahlund, M.; Neher, R.A.; Albert, J. Interactions between seasonal human coronaviruses and implications for the SARS-CoV-2 pandemic: A retrospective study in Stockholm, Sweden, 2009–2020. J. Clin. Virol. 2021, 136, 104754. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Lau, S.K.; Lee, P.; Tsang, A.K.; Yip, C.C.; Tse, H.; Lee, R.A.; So, L.Y.; Lau, Y.L.; Chan, K.H.; Woo, P.C.; et al. Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J. Virol. 2011, 85, 11325–11337. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, W.; Zhang, S.; Wei, P.; Zhang, L.; Chen, D.; Qiu, S.; Li, X.; Zhao, J.; Shi, Y.; et al. Two novel human coronavirus OC43 genotypes circulating in hospitalized children with pneumonia in China. Emerg. Microbes Infect. 2022, 11, 168–171. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Xiao, Y.; Zhang, J.; Wang, Y.; Chen, L.; Paranhos-Baccalà, G.; Ren, L.; Wang, J. Genotype shift in human coronavirus OC43 and emergence of a novel genotype by natural recombination. J. Infect. 2015, 70, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.K.P.; Li, K.S.M.; Li, X.; Tsang, K.Y.; Sridhar, S.; Woo, P.C.Y. Fatal Pneumonia Associated with a Novel Genotype of Human Coronavirus OC43. Front. Microbiol. 2021, 12, 795449. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Zheng, Y.; Hu, L.; Chen, J.; Wu, H.; Teng, Z.; Zhou, Y.; Qiu, Q.; Lu, Y.; Pan, H. Epidemiological and co-infection characteristics of common human coronaviruses in Shanghai, 2015–2020: A retrospective observational study. Emerg. Microbes Infect. 2021, 10, 1660–1668. [Google Scholar] [CrossRef]
- Killerby, M.E.; Biggs, H.M.; Haynes, A.; Dahl, R.M.; Mustaquim, D.; Gerber, S.I.; Watson, J.T. Human coronavirus circulation in the United States 2014–2017. J. Clin. Virol. 2018, 101, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.F.; Tuo, J.L.; Huang, X.B.; Zhu, X.; Zhang, D.M.; Zhou, K.; Yuan, L.; Luo, H.J.; Zheng, B.J.; Yuen, K.Y.; et al. Epidemiology characteristics of human coronaviruses in patients with respiratory infection symptoms and phylogenetic analysis of HCoV-OC43 during 2010–2015 in Guangzhou. PLoS ONE 2018, 13, e0191789. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, Y.; Li, Q.; Lu, G.; Li, C.; Jin, R.; Li, L.; Xu, B.; Gao, L.; Yin, J.; et al. Genetic characteristics of human coronavirus HKU1 in mainland China during 2018. Arch. Virol. 2022, 167, 2173–2180. [Google Scholar] [CrossRef]
HCoV-HKU1 | HCoV-OC43 | HCoV-229E | HCoV-NL63 | |
---|---|---|---|---|
Male | 13 | 8 | 7 | 1 |
Female | 7 | 0 | 0 | 1 |
Total | 20 | 8 | 7 | 2 |
Age ± SD | 35.15 ± 14.02 | 20.88 ± 13.09 | 34.14 ± 15.75 | 26.00 ± 2.83 |
Co-infection | 0.28% | 0.11% | 0.10% | 0.03% |
HCoV | Genetic Distance (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OC43 | A | B | C | D | E | F | G | H | I | J | K | Lineage 1 | Lineage 2 | |
A | - | |||||||||||||
B | 0.92 | - | ||||||||||||
C | 0.90 | 0.74 | - | |||||||||||
D | 0.92 | 0.64 | 0.28 | - | ||||||||||
E | 1.05 | 0.84 | 1.05 | 0.84 | - | |||||||||
F | 1.04 | 0.76 | 0.44 | 0.76 | 0.47 | - | ||||||||
G | 1.08 | 0.81 | 0.50 | 0.81 | 0.35 | 0.28 | - | |||||||
H | 1.09 | 0.56 | 0.85 | 0.41 | 1.29 | 0.76 | 0.80 | - | ||||||
I | 1.16 | 0.89 | 0.59 | 0.33 | 1.20 | 0.37 | 0.27 | 0.86 | - | |||||
J | 1.09 | 0.55 | 0.44 | 0.27 | 1.16 | 0.73 | 0.74 | 0.47 | 0.66 | - | ||||
K | 1.18 | 0.88 | 0.28 | 0.88 | 1.03 | 0.44 | 0.32 | 0.87 | 0.27 | 0.71 | - | |||
Lineage 1 | 1.21 | 0.92 | 0.75 | 0.92 | 1.32 | 0.47 | 0.35 | 0.90 | 0.31 | 0.75 | 0.13 | - | ||
Lineage 2 | 1.26 | 0.97 | 0.79 | 0.97 | 1.37 | 0.52 | 0.40 | 0.95 | 0.36 | 0.79 | 0.18 | 0.15 | - | |
HKU1 | A | B | C | Hangzhou | ||||||||||
A | - | |||||||||||||
B | 5.01 | - | ||||||||||||
C | 3.85 | 2.01 | - | |||||||||||
Hangzhou | 5.06 | 0.30 | 2.06 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Zhou, Y.; Yu, Y.; Cheng, S.; Cao, F.; Sun, Z.; Li, J.; Yu, X. Neutral Impact of SARS-CoV-2 Coinfection on the Recombination-Driven Evolution of Endemic HCoV-OC43. Viruses 2025, 17, 1263. https://doi.org/10.3390/v17091263
Zheng X, Zhou Y, Yu Y, Cheng S, Cao F, Sun Z, Li J, Yu X. Neutral Impact of SARS-CoV-2 Coinfection on the Recombination-Driven Evolution of Endemic HCoV-OC43. Viruses. 2025; 17(9):1263. https://doi.org/10.3390/v17091263
Chicago/Turabian StyleZheng, Xueling, Yinyan Zhou, Yue Yu, Shi Cheng, Feifei Cao, Zhou Sun, Jun Li, and Xinfen Yu. 2025. "Neutral Impact of SARS-CoV-2 Coinfection on the Recombination-Driven Evolution of Endemic HCoV-OC43" Viruses 17, no. 9: 1263. https://doi.org/10.3390/v17091263
APA StyleZheng, X., Zhou, Y., Yu, Y., Cheng, S., Cao, F., Sun, Z., Li, J., & Yu, X. (2025). Neutral Impact of SARS-CoV-2 Coinfection on the Recombination-Driven Evolution of Endemic HCoV-OC43. Viruses, 17(9), 1263. https://doi.org/10.3390/v17091263