Porcine Parvovirus in China: Recent Advances, Epidemiology, and Vaccine Strategies
Abstract
1. Introduction
2. Virological Characteristics of PPV
2.1. Virus Classification
Virus Types | ICTV Current Classification | Discovery Time | Genome Size (nt *) | ORF1 (aa #) | ORF2 (aa) | 3′UTR | Global Distribution (Mainly Country) [15,17] | China Distribution (Mainly Province) [10,25] |
---|---|---|---|---|---|---|---|---|
PPV1 | Protoparvovirus ungulate1 | 1965 | 5075 | 662 | 729 | 526 | Pandemic disease worldwide | Henan, Shandong, Guangdong, Guangxi, Jiangxi Fujian, Jiangsu Sichuan, Chongqing, Hubei Hunan, Yunnan Heilongjiang, Jilin Liaoning, Tianjin Neimenggu |
PPV2 | Tetraparvovirus ungulate3 | 2001 | 5444 | 662 | 1032 | 135 | Hungary, Romania, Germany, Poland, Europe, Korea, China, Japan, Vietnam, Thailand, USA, Mexico, South Africa | Henan, Shandong Guangdong, Guangxi, Jiangxi Fujian, Jiangsu, Sichuan, Chongqing Hubei, Hunan, Hebei, Yunnan, Heilongjiang, Shanxi, Tianjin, Anhui, Gansu |
PPV3 | Tetraparvovirus ungulate2 | 2008 | 5114 | 637 | 926 | 156 | China, Thailand, Vietnam, Korea, Germany, Hungary Romania, Poland, South Africa, USA, Brazil, Mexico | Henan, Shandong Guangdong, Guangxi, Jiangxi Fujian, Jiangsu Sichuan, Chongqing, Hubei, Hunan, Hebei, Yunnan, Heilongjiang, Shangxi, Tianjin Anhui, Xijiang |
PPV4 | Copiparvovirus ungulate2 | 2010 | 5905 | 588 | 728 | 197 | China, Korea, Thailand, Vietnam, Hungary, Romania, Germany, Poland, Europe, USA, Mexico, Brazil, South Africa | Henan, Shandong Guangdong, Guangxi, Jiangxi Sichuan, Chongqing, Hubei Hunan, Yunnan, Heilongjiang, Jilin Liaoning, Shanxi Gansu, Guizhou |
PPV5 | Not yet classified | 2013 | 5805 | 601 | 991 | 9 | USA, China, Korea, Poland, Mexico | Henan, Shandong, Guangdong, Guangxi, Sichuan, Chongqing, Hubei Yunnan, Heilongjiang |
PPV6 | Copiparvovirus ungulate4 | 2014 | 6148 | 662 | 1189 | 340 | China, Korea, Poland, Russia, USA, Mexico | Henan, Shandong, Guangdong, Guangxi, Jiangxi, Sichaun, Chongqing, Hubei, Hunan, Hunan, Yunnan, Heilongjiang, Tianjin, Anhui |
PPV7 | Chaphamaparvovirus ungulate1 | 2015 | 4103 | 672 | 469 | 119 | USA, China, Korea, Poland, Brazil, Colombia | Henan, Shandong, Guangdong, Guangxi, Sichaun, Chongqing, Hubei Hunan, Hunan, Yunnan, Heilongjiang, Tianjin, Jiangsu, Jiangxi, Gansu |
PPV8 | Protoparvovirus ungulate4 | 2022 | 4380 | 601 | 701 | 240 | USA, China, Brazil Germany, Korea, Mozambique | Henan, Fujian |
2.2. PPV Genomic
2.3. PPV Virus Particle Structure and Structural Proteins
3. Epidemiology and Pathogenic Mechanism of PPV
3.1. PPV Epidemiology
3.2. Genetic Variation of PPV Genotypes
3.3. Pathogenic Mechanism of PPV
3.4. Immune Regulatory Function of Structural Proteins
4. PPV Detection Technology
4.1. Pathogen Detection
4.2. Serological Detection
4.3. Molecular Biology Diagnostic Techniques
5. PPV Vaccines
5.1. Inactivated Vaccines
5.2. Attenuated Vaccines
5.3. Viral Live-Vectored Vaccines
5.4. Recombinant Subunit Vaccines
5.5. PPV VLP Vaccines
5.6. Nucleic Acid Vaccines
6. Conclusions and Future Perspectives
6.1. Key Conclusions
6.2. Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lucas, M.H.; Cartwright, S.F.; Wrathall, A.E. Genital infection of pigs with porcine parvovirus. J. Comp. Pathol. 1974, 84, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Mengeling, W.L. Porcine parvovirus: Frequency of naturally occurring transplacental infection and viral contamination of fetal porcine kidney cell cultures. Am. J. Vet. Res. 1975, 36, 41–44. [Google Scholar] [CrossRef]
- Bachmann, P.A.; Danner, K. Porcine parvovirus infection in vitro: A study model for the replication of parvoviruses. II. Kinetics of virus and antigen production. Zentralbl. Veterinarmed. B 1976, 23, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Streck, A.F.; Truyen, U. Porcine Parvovirus. Curr. Issues Mol. Biol. 2020, 37, 33–46. [Google Scholar] [CrossRef]
- Ren, X.; Tao, Y.; Cui, J.; Suo, S.; Cong, Y.; Tijssen, P. Phylogeny and evolution of porcine parvovirus. Virus Res. 2013, 178, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Trinh, T.T.H.; Do, V.T.; Do, V.K.; Vu-Khac, H. Isolation and characterization of porcine parvovirus in Vietnam. Vet. World 2024, 17, 1530–1537. [Google Scholar] [CrossRef]
- Komina, A.; Anoyatbekova, A.; Krasnikov, N.; Yuzhakov, A. Identification and in vitro characterization of a novel porcine parvovirus 6 in Russia. Vet. Res. Commun. 2024, 48, 417–425. [Google Scholar] [CrossRef]
- Dei Giudici, S.; Mura, L.; Bonelli, P.; Ferretti, L.; Hawko, S.; Franzoni, G.; Angioi, P.P.; Ladu, A.; Puggioni, G.; Antuofermo, E.; et al. First Molecular Characterisation of Porcine Parvovirus 7 (PPV7) in Italy. Viruses 2024, 16, 932. [Google Scholar] [CrossRef]
- Noguera, M.; Vela, A.; Kraft, C.; Chevalier, M.; Goutebroze, S.; de Paz, X.; Kunze, M.; Rathkjen, P.; Schacht, E.; Garcia-Morante, B. Effects of three commercial vaccines against porcine parvovirus 1 in pregnant gilts. Vaccine 2021, 39, 3997–4005. [Google Scholar] [CrossRef]
- Chen, W.; Hu, Y.; Qin, Y.; Li, Y.; Zhang, X.; Huang, H.; Liu, M.; Zheng, Y.; Lu, X.; Wang, Q.; et al. Detection and Molecular Characterization of Novel Porcine Parvovirus 8 Strains in China. Viruses 2025, 17, 543. [Google Scholar] [CrossRef]
- Oh, W.T.; Kim, R.Y.; Nguyen, V.G.; Chung, H.C.; Park, B.K. Perspectives on the Evolution of Porcine Parvovirus. Viruses 2017, 9, 196. [Google Scholar] [CrossRef]
- Wang, L.Q.; Wang, Y.; Chen, L.B.; Fu, P.F.; Chen, H.Y.; Cui, B.A. Complete genome sequence of a porcine parvovirus strain isolated in central China. Genome Announc. 2014, 2, 10-1128. [Google Scholar] [CrossRef]
- Milek, D.; Wozniak, A.; Stadejek, T. The detection and genetic diversity of novel porcine parvovirus 7 (PPV7) on Polish pig farms. Res. Vet. Sci. 2018, 120, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Z.; Zhang, X.; Xue, S.; Yang, X.; Liu, J.; Fan, K.; Dai, A. Detection and genetic evolution analysis of porcine parvovirus type 7 (PPV7) in Fujian Province. Infect. Genet. Evol. 2023, 115, 105515. [Google Scholar] [CrossRef]
- Vargas-Ruiz, A.; Araiza-Hernandez, D.M.; Gonzalez-Diaz, F.R.; Marin-Flamand, E.; Sanchez Betancourt, J.I.; Sanchez-Mendoza, A.E.; Garcia-Camacho, L.A. Phylogenetic analysis and molecular structure of NS1 proteins of porcine parvovirus 5 isolates from Mexico. Arch. Virol. 2025, 170, 40. [Google Scholar] [CrossRef] [PubMed]
- Vereecke, N.; Kvisgaard, L.K.; Baele, G.; Boone, C.; Kunze, M.; Larsen, L.E.; Theuns, S.; Nauwynck, H. Molecular epidemiology of Porcine Parvovirus Type 1 (PPV1) and the reactivity of vaccine-induced antisera against historical and current PPV1 strains. Virus Evol. 2022, 8, veac053. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Bermudez, D.S.; Mogollon, J.D.; Franco-Rodriguez, C.; Jaime, J. The Novel Porcine Parvoviruses: Current State of Knowledge and Their Possible Implications in Clinical Syndromes in Pigs. Viruses 2023, 15, 2398. [Google Scholar] [CrossRef]
- Chen, H.; Qing, Y.; Xu, L.; Zhu, L.; Yin, W.; Li, S.; Kuang, S.; Zhou, Y.; Xu, Z. Prevalence and Molecular Characterization of Porcine Parvovirus 2 in Southwest China During 2020–2023. Vet. Sci. 2025, 12, 99. [Google Scholar] [CrossRef]
- Ni, J.; Qiao, C.; Han, X.; Han, T.; Kang, W.; Zi, Z.; Cao, Z.; Zhai, X.; Cai, X. Identification and genomic characterization of a novel porcine parvovirus (PPV6) in China. Virol. J. 2014, 11, 203. [Google Scholar] [CrossRef]
- Palinski, R.M.; Mitra, N.; Hause, B.M. Discovery of a novel Parvovirinae virus, porcine parvovirus 7, by metagenomic sequencing of porcine rectal swabs. Virus Genes 2016, 52, 564–567. [Google Scholar] [CrossRef]
- Wang, D.; He, Q.; Wang, N.; Mai, J. Epidemiology and Genetic Characterization of Porcine Parvovirus 7 Recovered from Swine in Hunan, China. Animals 2024, 14, 2222. [Google Scholar] [CrossRef]
- Guo, Y.; Yan, G.; Chen, S.; Han, H.; Li, J.; Zhang, H.; Luo, S.; Liu, M.; Wu, Q.; Li, Q.; et al. Identification and genomic characterization of a novel porcine parvovirus in China. Front. Vet. Sci. 2022, 9, 1009103. [Google Scholar] [CrossRef]
- Vargas-Bermudez, D.S.; Jaime, J. The first report of porcine parvovirus 8 (PPV8) on the American continent is associated with pigs in Colombia with porcine respiratory disease. Arch. Virol. 2024, 169, 179. [Google Scholar] [CrossRef] [PubMed]
- Lagan Tregaskis, P.; Staines, A.; Gordon, A.; Sheridan, P.; McMenamy, M.; Duffy, C.; Collins, P.J.; Mooney, M.H.; Lemon, K. Co-infection status of novel parvovirus’s (PPV2 to 4) with porcine circovirus 2 in porcine respiratory disease complex and porcine circovirus-associated disease from 1997 to 2012. Transbound. Emerg. Dis. 2021, 68, 1979–1994. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xiao, Y.; Qiu, M.; Li, X.; Li, S.; Lin, H.; Li, X.; Zhu, J.; Chen, N. A Systematic Investigation Unveils High Coinfection Status of Porcine Parvovirus Types 1 through 7 in China from 2016 to 2020. Microbiol. Spectr. 2021, 9, e0129421. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Cui, J.; Gerber, P.F.; Biernacka, K.; Stadejek, T.; Opriessnig, T. First Genome Sequences of Porcine Parvovirus 5 Strains Identified in Polish Pigs. Genome Announc. 2016, 4, 10-1128. [Google Scholar] [CrossRef]
- Campos, F.S.; Kluge, M.; Franco, A.C.; Giongo, A.; Valdez, F.P.; Saddi, T.M.; Brito, W.M.; Roehe, P.M. Complete Genome Sequence of Porcine Parvovirus 2 Recovered from Swine Sera. Genome Announc. 2016, 4, 10-1128. [Google Scholar] [CrossRef]
- Streck, A.F.; Canal, C.W.; Truyen, U. Molecular epidemiology and evolution of porcine parvoviruses. Infect. Genet. Evol. 2015, 36, 300–306. [Google Scholar] [CrossRef]
- Cui, J.; Wang, X.; Ren, Y.; Cui, S.; Li, G.; Ren, X. Genome sequence of Chinese porcine parvovirus strain PPV2010. J. Virol. 2012, 86, 2379. [Google Scholar] [CrossRef]
- Simpson, A.A.; Hebert, B.; Sullivan, G.M.; Parrish, C.R.; Zadori, Z.; Tijssen, P.; Rossmann, M.G. The structure of porcine parvovirus: Comparison with related viruses. J. Mol. Biol. 2002, 315, 1189–1198. [Google Scholar] [CrossRef]
- Du, Q.; Zhang, X.; Xu, N.; Ma, M.; Miao, B.; Huang, Y.; Tong, D. Chaperonin CCT5 binding with porcine parvovirus NS1 promotes the interaction of NS1 and COPE to facilitate viral replication. Vet. Microbiol. 2022, 274, 109574. [Google Scholar] [CrossRef]
- Chen, S.; Chen, N.; Miao, B.; Peng, J.; Zhang, X.; Chen, C.; Zhang, X.; Chang, L.; Du, Q.; Huang, Y.; et al. Coatomer protein COPE, a novel NS1-interacting protein, promotes the replication of Porcine Parvovirus via attenuation of the production of type I interferon. Vet. Microbiol. 2021, 261, 109188. [Google Scholar] [CrossRef]
- Jin, X.; Yuan, Y.; Zhang, C.; Zhou, Y.; Song, Y.; Wei, Z.; Zhang, G. Porcine parvovirus nonstructural protein NS1 activates NF-kappaB and it involves TLR2 signaling pathway. J. Vet. Sci. 2020, 21, e50. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Miao, B.; Chen, N.; Chen, C.; Shao, T.; Zhang, X.; Chang, L.; Zhang, X.; Du, Q.; Huang, Y.; et al. SYNCRIP facilitates porcine parvovirus viral DNA replication through the alternative splicing of NS1 mRNA to promote NS2 mRNA formation. Vet. Res. 2021, 52, 73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fan, J.; Li, Y.; Liang, S.; Huo, S.; Wang, X.; Zuo, Y.; Cui, D.; Li, W.; Zhong, Z.; et al. Porcine Parvovirus Infection Causes Pig Placenta Tissue Damage Involving Nonstructural Protein 1 (NS1)-Induced Intrinsic ROS/Mitochondria-Mediated Apoptosis. Viruses 2019, 11, 389. [Google Scholar] [CrossRef] [PubMed]
- Meszaros, I.; Olasz, F.; Csagola, A.; Tijssen, P.; Zadori, Z. Biology of Porcine Parvovirus (Ungulate parvovirus 1). Viruses 2017, 9, 393. [Google Scholar] [CrossRef]
- Velez, M.; Mietzsch, M.; Hsi, J.; Bell, L.; Chipman, P.; Fu, X.; McKenna, R. Structural Characterization of Canine Minute Virus, Rat and Porcine Bocavirus. Viruses 2023, 15, 1799. [Google Scholar] [CrossRef]
- Xie, H.L.; Wang, Z.; Cui, S.J.; Zhang, C.F.; Cui, Y.D. The epitope of the VP1 protein of porcine parvovirus. Virol. J. 2010, 7, 161. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Chen, Y.; Wang, A.; Wei, Q.; Yang, S.; Feng, H.; Chai, S.; Liu, D.; Zhang, G. Identification of a dominant linear epitope on the VP2 capsid protein of porcine parvovirus and characterization of two monoclonal antibodies with neutralizing abilities. Int. J. Biol. Macromol. 2020, 163, 2013–2022. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Chen, Y.; Zhang, T.; Wang, A.; Wei, Q.; Liu, D.; Wang, F.; Zhang, G. Capsid assembly is regulated by amino acid residues asparagine 47 and 48 in the VP2 protein of porcine parvovirus. Vet. Microbiol. 2021, 253, 108974. [Google Scholar] [CrossRef]
- Franzo, G.; Zerbo, H.L.; Ouoba, B.L.; Dji-Tombo, A.D.; Kindo, M.G.; Sawadogo, R.; Chang’a, J.; Bitanyi, S.; Kamigwe, A.; Mayenga, C.; et al. A Phylogeographic Analysis of Porcine Parvovirus 1 in Africa. Viruses 2023, 15, 207. [Google Scholar] [CrossRef]
- Deng, H.; Wang, M.; Cong, G.; Fu, F.; Feng, L. Genetic characteristics and pathogenicity of variant porcine parvovirus 1 in northern China. Vet. Microbiol. 2024, 298, 110274. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.; Zeeuw, E.J.; Selbitz, H.J.; Truyen, U. Tissue distribution of two field isolates and two vaccine strains of porcine parvovirus in foetal organs after experimental infection of pregnant sows as determined by real-time PCR. J. Vet. Med. B Infect. Dis. Vet. Public Health 2005, 52, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Rajkhowa, S.; Choudhury, M.; Pegu, S.R.; Sarma, D.K.; Gupta, V.K. Development of a novel one-step triplex PCR assay for the simultaneous detection of porcine circovirus type 2, porcine parvovirus and classical swine fever virus in a single tube. Lett. Appl. Microbiol. 2022, 75, 338–344. [Google Scholar] [CrossRef]
- Mai, J.; Wang, D.; Zou, Y.; Zhang, S.; Meng, C.; Wang, A.; Wang, N. High Co-infection Status of Novel Porcine Parvovirus 7 with Porcine Circovirus 3 in Sows that Experienced Reproductive Failure. Front. Vet. Sci. 2021, 8, 695553. [Google Scholar] [CrossRef]
- Serena, M.S.; Dibarbora, M.; Olivera, V.; Metz, G.E.; Aspitia, C.G.; Pereda, A.; Echeverria, M.G.; Cappuccio, J. Evidence of porcine circovirus type 2 and co-infection with ungulate protoparvovirus 1 (porcine parvovirus) in mummies and stillborn piglets in subclinically infected farm. Infect. Genet. Evol. 2021, 89, 104735. [Google Scholar] [CrossRef] [PubMed]
- Sliz, I.; Vlasakova, M.; Jackova, A.; Vilcek, S. Characterization of Porcine Parvovirus Type 3 and Porcine Circovirus Type 2 in Wild Boars (Sus scrofa) in Slovakia. J. Wildl. Dis. 2015, 51, 703–711. [Google Scholar] [CrossRef]
- Quan, F.; Geng, Y.; Wu, Y.; Jiang, F.; Li, X.; Yu, C. Development and application of a quadruplex real-time PCR method for Torque teno sus virus 1, Porcine circovirus type 2, pseudorabies virus, and porcine parvovirus. Front. Cell. Infect. Microbiol. 2024, 14, 1461448. [Google Scholar] [CrossRef]
- Bolin, S.R.; Turek, J.J.; Runnels, L.J.; Gustafson, D.P. Pseudorabies virus, porcine parvovirus, and porcine enterovirus interactions with the zona pellucida of the porcine embryo. Am. J. Vet. Res. 1983, 44, 1036–1039. [Google Scholar] [CrossRef]
- Caruso, C.; Gobbi, E.; Biosa, T.; Andra, M.; Cavallazzi, U.; Masoero, L. Evaluation of viral inactivation of pseudorabies virus, encephalomyocarditis virus, bovine viral diarrhea virus and porcine parvovirus in pancreatin of porcine origin. J. Virol. Methods 2014, 208, 79–84. [Google Scholar] [CrossRef]
- Kim, S.C.; Kim, J.H.; Kim, J.Y.; Park, G.S.; Jeong, C.G.; Kim, W.I. Prevalence of porcine parvovirus 1 through 7 (PPV1-PPV7) and co-factor association with PCV2 and PRRSV in Korea. BMC Vet. Res. 2022, 18, 133. [Google Scholar] [CrossRef] [PubMed]
- Ritzmann, M.; Wilhelm, S.; Zimmermann, P.; Etschmann, B.; Bogner, K.H.; Selbitz, H.J.; Heinritzi, K.; Truyen, U. Prevalence and association of porcine circovirus type 2 (PCV2), porcine parvovirus (PPV) and porcine reproductive and respiratory syndrome virus (PRRSV) in aborted fetuses, mummified fetuses, stillborn and nonviable neonatal piglets. Dtsch. Tierarztl. Wochenschr. 2005, 112, 348–351. [Google Scholar]
- Wang, Y.; Yang, K.K.; Wang, J.; Wang, X.P.; Zhao, L.; Sun, P.; Li, Y.D. Detection and molecular characterization of novel porcine parvovirus 7 in Anhui province from Central-Eastern China. Infect. Genet. Evol. 2019, 71, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Bermudez, D.S.; Prandi, B.A.; Souza, U.J.B.; Duraes-Carvalho, R.; Mogollon, J.D.; Campos, F.S.; Roehe, P.M.; Jaime, J. Molecular Epidemiology and Phyloevolutionary Analysis of Porcine Parvoviruses (PPV1 through PPV7) Detected in Replacement Gilts from Colombia. Int. J. Mol. Sci. 2024, 25, 10354. [Google Scholar] [CrossRef]
- Vargas-Bermudez, D.S.; Rendon-Marin, S.; Ruiz-Saenz, J.; Mogollon, D.; Jaime, J. The first report of porcine parvovirus 7 (PPV7) in Colombia demonstrates the presence of variants associated with modifications at the level of the VP2-capsid protein. PLoS ONE 2021, 16, e0258311. [Google Scholar] [CrossRef] [PubMed]
- Boisvert, M.; Fernandes, S.; Tijssen, P. Multiple pathways involved in porcine parvovirus cellular entry and trafficking toward the nucleus. J. Virol. 2010, 84, 7782–7792. [Google Scholar] [CrossRef]
- Canaan, S.; Zadori, Z.; Ghomashchi, F.; Bollinger, J.; Sadilek, M.; Moreau, M.E.; Tijssen, P.; Gelb, M.H. Interfacial enzymology of parvovirus phospholipases A2. J. Biol. Chem. 2004, 279, 14502–14508. [Google Scholar] [CrossRef]
- Zhou, Y.; Jin, X.H.; Jing, Y.X.; Song, Y.; He, X.X.; Zheng, L.L.; Wang, Y.B.; Wei, Z.Y.; Zhang, G.P. Porcine parvovirus infection activates inflammatory cytokine production through Toll-like receptor 9 and NF-kappaB signaling pathways in porcine kidney cells. Vet. Microbiol. 2017, 207, 56–62. [Google Scholar] [CrossRef]
- Lu, T.; Ma, X.; Song, X.; Zhao, L. Identification of signaling pathways induced by porcine parvovirus in porcine kidney-15 cells based on weighted correlation network analysis. J. Vet. Med. Sci. 2024, 86, 1265–1272. [Google Scholar] [CrossRef]
- Lu, T.; Song, X.; Zhao, L.; Ma, X. Analysis of differentially expressed genes related to cell death in porcine kidney-15 cells at 24 and 48 hours post porcine parvovirus infection. Am. J. Vet. Res. 2024, 85, 12. [Google Scholar] [CrossRef]
- Xu, N.; Du, Q.; Cheng, Y.; Nie, L.; Ma, P.; Feng, D.; Huang, Y.; Tong, D. Porcine parvovirus infection induces necroptosis of porcine placental trophoblast cells via a ZBP1-mediated pathway. Vet. Res. 2024, 55, 156. [Google Scholar] [CrossRef]
- Ma, X.; Guo, Z.; Zhang, Z.; Li, X.; Wang, X.; Liu, Y.; Wang, X. Ferulic acid isolated from propolis inhibits porcine parvovirus replication potentially through Bid-mediate apoptosis. Int. Immunopharmacol. 2020, 83, 106379. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Xu, Y.; Xu, W.; Cao, S.; Yan, Q.; Huang, X.; Wen, Y.; Zhao, Q.; Du, S.; Lang, Y.; et al. CD38 Enhances TLR9 Expression and Activates NLRP3 Inflammasome after Porcine Parvovirus Infection. Viruses 2022, 14, 1136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ma, P.; Shao, T.; Xiong, Y.; Du, Q.; Chen, S.; Miao, B.; Zhang, X.; Wang, X.; Huang, Y.; et al. Porcine parvovirus triggers autophagy through the AMPK/Raptor/mTOR pathway to promote viral replication in porcine placental trophoblasts. Vet. Res. 2022, 53, 33. [Google Scholar] [CrossRef]
- Wang, L.; Song, Y.; Xu, M.; Zhang, C.; Zhang, L.; Xia, L.; Wei, Z. Proteomics analysis of PK-15 cells infected with porcine parvovirus and the effect of PCBP1 on PPV replication. Microbiol. Spectr. 2024, 12, e0391423. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.S.; Zhou, Z.K.; Xiong, R.Y.; Zhang, L.B.; Yu, C.Q.; Liu, Q. CpG islands: Features and distribution in the genomes of porcine parvovirus. Pol. J. Vet. Sci. 2024, 27, 407–418. [Google Scholar] [CrossRef]
- Ling, Z.; Zhang, H.; Chen, Y.; Sun, L.; Zhao, J. A Subunit Vaccine Based on the VP2 Protein of Porcine Parvovirus 1 Induces a Strong Protective Effect in Pregnant Gilts. Vaccines 2023, 11, 1692. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Chen, Y.; Wang, A.; Wei, Q.; Liu, D.; Zhang, G. Large-scale manufacture of VP2 VLP vaccine against porcine parvovirus in Escherichia coli with high-density fermentation. Appl. Microbiol. Biotechnol. 2020, 104, 3847–3857. [Google Scholar] [CrossRef]
- de Souza, A.R.; Yamin, M.; Gava, D.; Zanella, J.R.C.; Gatti, M.S.V.; Bonafe, C.F.S.; de Lima Neto, D.F. Porcine parvovirus VP1/VP2 on a time series epitope mapping: Exploring the effects of high hydrostatic pressure on the immune recognition of antigens. Virol. J. 2019, 16, 75. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Y.; Du, Q.; Luo, X.; Zhang, L.; Zhao, X.; Tong, D. Porcine parvovirus infection induces apoptosis in PK-15 cells through activation of p53 and mitochondria-mediated pathway. Biochem. Biophys. Res. Commun. 2015, 456, 649–655. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Li, F.; Li, Q.; Wu, R.; Zhu, Y.; Xu, L.; Liu, Y. Preparation and identification of antigen, positive serum, and negative serum for porcine parvovirus hemagglutination inhibition test. Chin. J. Vet. Drug 2024, 58, 14–19. [Google Scholar]
- Qi, D.; Han, X.C.; Wang, R.Z. Rapid detection of porcine parvovirus antigen using indirect immunofluorescence technology. Chin. J. Prev. Vet. Med. 1999, 21, 56. [Google Scholar]
- Kamstrup, S.; Langeveld, J.; Botner, A.; Nielsen, J.; Schaaper, W.M.; Boshuizen, R.S.; Casal, J.I.; Hojrup, P.; Vela, C.; Meloen, R.; et al. Mapping the antigenic structure of porcine parvovirus at the level of peptides. Virus Res. 1998, 53, 163–173. [Google Scholar] [CrossRef]
- He, Q.; Chen, H. Establishment and Preliminary Application of Latex Agglutination Test for Detecting Serum Antibodies against Porcine Parvovirus. Chin. J. Prev. Vet. Med. 1999, 21, 3. [Google Scholar]
- Joo, H.S.; Donaldson-Wood, C.R.; Johnson, R.H. A standardised haemagglutination inhibition test for porcine parvovirus antibody. Aust. Vet. J. 1976, 52, 422–424. [Google Scholar] [CrossRef]
- Kong, M.; Peng, Y.; Cui, Y.; Chang, T.; Wang, X.; Liu, Z.; Liu, Y.; Zhu, Y.; Luo, Y.; Tang, Q.; et al. Development and evaluation of the rVP-ELISA for detection of antibodies against porcine parvovirus. J. Virol. Methods 2014, 206, 115–118. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, X.Y.; Bian, C.Z. Eukaryotic expression of NS1 major antigen region of PPV and development of an indirect ELISA based on the expressed protein. Bing Du Xue Bao 2012, 28, 628–632. [Google Scholar]
- Oravainen, J.; Hakala, M.; Rautiainen, E.; Veijalainen, P.; Heinonen, M.; Tast, A.; Virolainen, J.V.; Peltoniemi, O.A. Parvovirus antibodies in vaccinated gilts in field conditions--results with HI and ELISA tests. Reprod. Domest. Anim. 2006, 41, 91–93. [Google Scholar] [CrossRef]
- Antonis, A.F.; Bruschke, C.J.; Rueda, P.; Maranga, L.; Casal, J.I.; Vela, C.; Hilgers, L.A.; Belt, P.B.; Weerdmeester, K.; Carrondo, M.J.; et al. A novel recombinant virus-like particle vaccine for prevention of porcine parvovirus-induced reproductive failure. Vaccine 2006, 24, 5481–5490. [Google Scholar] [CrossRef]
- Fu, L.; Wang, H.; Cao, G.; Zhou, S.; Zhai, S. Detection of the antibodies against porcine parvovirus by indirect Dot-PPA-ELISA. Chin. J. Vet. Med. 2003, 39, 4. [Google Scholar] [CrossRef]
- Krell, P.J.; Salas, T.; Johnson, R.P. Mapping of porcine parvovirus DNA and development of a diagnostic DNA probe. Vet. Microbiol. 1988, 17, 29–43. [Google Scholar] [CrossRef]
- Oraveerakul, K.; Choi, C.S.; Molitor, T.W. Detection of porcine parvovirus using nonradioactive nucleic acid hybridization. J. Vet. Diagn. Investig. 1990, 2, 85–91. [Google Scholar] [CrossRef]
- Molitor, T.W.; Oraveerakul, K.; Zhang, Q.Q.; Choi, C.S.; Ludemann, L.R. Polymerase chain reaction (PCR) amplification for the detection of porcine parvovirus. J. Virol. Methods 1991, 32, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Belak, S.; Rivera, E.; Ballagi-Pordany, A.; Hanzhong, W.; Widen, F.; Soos, T. Detection of challenge virus in fetal tissues by nested PCR as a test of the potency of a porcine parvovirus vaccine. Vet. Res. Commun. 1998, 22, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Hu, R.; Ni, J.; Liang, J.; He, X.; Du, Y.; Xu, Y.; Zhao, B.; Zhang, Q.; Li, C. Establishment of a porcine parvovirus (PPV) LAMP visual rapid detection method. J. Virol. Methods 2020, 284, 113924. [Google Scholar] [CrossRef]
- Kim, J.; Chae, C. Simultaneous detection of porcine circovirus 2 and porcine parvovirus in naturally and experimentally coinfected pigs by double in situ hybridization. J. Vet. Diagn. Investig. 2002, 14, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Lv, W.; Li, A.; Yang, L.; Zhou, F.; Wen, F.; Yuan, S.; Huang, S.; Li, Z.; Guo, J. A SYBR green I-based multiplex real-time PCR for simultaneous detection of pseudorabies virus, porcine circovirus 3 and porcine parvovirus. BMC Vet. Res. 2025, 21, 10. [Google Scholar] [CrossRef]
- Wen, S.; She, L.; Dang, S.; Liao, A.; Li, X.; Zhang, S.; Song, Y.; Li, X.; Zhai, J. Development of a RPA-CRISPR/Cas12a based rapid visual detection assay for Porcine Parvovirus 7. Front. Vet. Sci. 2024, 11, 1440769. [Google Scholar] [CrossRef]
- Wei, J.; Li, Y.; Cao, Y.; Liu, Q.; Yang, K.; Song, X.; Shao, Y.; Qi, K.; Tu, J. Rapid and Visual Detection of Porcine Parvovirus Using an ERA-CRISPR/Cas12a System Combined With Lateral Flow Dipstick Assay. Front. Cell. Infect. Microbiol. 2022, 12, 879887. [Google Scholar] [CrossRef]
- Huang, Y.; Gan, M.H.; Liu, S.G. Research on Silver Enhanced Colloidal Gold Technology for Detecting Porcine Parvovirus. Acta Vet. Zootech. Sin. 1995, 26, 239. [Google Scholar]
- Wu, F.; Lv, Y.; Liu, L.; Zhao, D.; Li, W. Research of Gene Chip Method for Detecting Porcine parvovirus. Chin. J. Vet. Med. 2018, 54, 3. [Google Scholar]
- Ji, C.; Zhou, L.; Chen, Y.; Fang, X.; Liu, Y.; Du, M.; Lu, X.; Li, Q.; Wang, H.; Sun, Y.; et al. Microfluidic-LAMP chip for the point-of-care detection of gene-deleted and wild-type African swine fever viruses and other four swine pathogens. Front. Vet. Sci. 2023, 10, 1116352. [Google Scholar] [CrossRef]
- Zhou, M.; Qu, W.; Sun, Y.; Liang, L.; Jin, Z.; Cui, S.; Zhao, K. Water-soluble N-2-Hydroxypropyl trimethyl ammonium chloride chitosan enhanced the immunogenicity of inactivated porcine parvovirus vaccine vaccination on sows against porcine parvovirus infection. Immunol. Lett. 2020, 223, 26–32. [Google Scholar] [CrossRef]
- Sanchez-Matamoros, A.; Camprodon, A.; Maldonado, J.; Pedrazuela, R.; Miranda, J. Safety and long-lasting immunity of the combined administration of a modified-live virus vaccine against porcine reproductive and respiratory syndrome virus 1 and an inactivated vaccine against porcine parvovirus and Erysipelothrix rhusiopathiae in breeding pigs. Porc. Health Manag. 2019, 5, 11. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, X.; Hou, W.; Guo, C.; Zhang, J.; Zhang, W.; Ma, L.; Song, X. The adjuvanticity of ophiopogon polysaccharide liposome against an inactivated porcine parvovirus vaccine in mice. Int. J. Biol. Macromol. 2016, 82, 264–272. [Google Scholar] [CrossRef]
- Opriessnig, T.; Karuppannan, A.K.; Halbur, P.G.; Calvert, J.G.; Nitzel, G.P.; Matzinger, S.R.; Meng, X.J. Porcine circovirus type 2a or 2b based experimental vaccines provide protection against PCV2d/porcine parvovirus 2 co-challenge. Vaccine 2020, 38, 1975–1981. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, J.; Hebert, B.; Tijssen, P. Genome organization of the Kresse strain of porcine parvovirus: Identification of the allotropic determinant and comparison with those of NADL-2 and field isolates. J. Virol. 1996, 70, 2508–2515. [Google Scholar] [CrossRef]
- Bergeron, J.; Menezes, J.; Tijssen, P. Genomic organization and mapping of transcription and translation products of the NADL-2 strain of porcine parvovirus. Virology 1993, 197, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Izumida, A.; Furukawa, M.; Kubota, M.; Takuma, H.; Tawara, K.; Kodama, K.; Koda, Y. Establishment of the attenuated strain of porcine parvovirus for the live vaccine and its biological-immunological characteristics. Nihon Juigaku Zasshi 1986, 48, 293–303. [Google Scholar] [CrossRef]
- Opriessnig, T.; Shen, H.G.; Pal, N.; Ramamoorthy, S.; Huang, Y.W.; Lager, K.M.; Beach, N.M.; Halbur, P.G.; Meng, X.J. A live-attenuated chimeric porcine circovirus type 2 (PCV2) vaccine is transmitted to contact pigs but is not upregulated by concurrent infection with porcine parvovirus (PPV) and porcine reproductive and respiratory syndrome virus (PRRSV) and is efficacious in a PCV2b-PRRSV-PPV challenge model. Clin. Vaccine Immunol. 2011, 18, 1261–1268. [Google Scholar] [CrossRef]
- Hong, Q.; Qian, P.; Li, X.M.; Yu, X.L.; Chen, H.C. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus: A trivalent vaccine candidate. Biotechnol. Lett. 2007, 29, 1677–1683. [Google Scholar] [CrossRef]
- Maranga, L.; Rueda, P.; Antonis, A.F.; Vela, C.; Langeveld, J.P.; Casal, J.I.; Carrondo, M.J. Large scale production and downstream processing of a recombinant porcine parvovirus vaccine. Appl. Microbiol. Biotechnol. 2002, 59, 45–50. [Google Scholar] [CrossRef]
- Garcia-Morante, B.; Noguera, M.; Klocke, S.; Sommer, K.; Bridger, P. Duration of immunity against heterologous porcine parvovirus 1 challenge in gilts immunized with a novel subunit vaccine based on the viral protein 2. BMC Vet. Res. 2020, 16, 184. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Gao, Y.; Hu, G.; Wang, L.; Cui, S.; Jin, Z. N-2-Hydroxypropyl Trimethyl Ammonium Chloride Chitosan as Adjuvant Enhances the Immunogenicity of a VP2 Subunit Vaccine against Porcine Parvovirus Infection in Sows. Vaccines 2021, 9, 1027. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.; Liu, Y.; Chen, Y.; Wang, A.; Jiang, D.; Zhao, B.; Wang, J.; Chai, S.; Zhou, E.; Zhang, G. Porcine parvovirus capsid protein expressed in Escherichia coli self-assembles into virus-like particles with high immunogenicity in mice and guinea pigs. Antivir. Res. 2017, 139, 146–152. [Google Scholar] [CrossRef]
- Tian, W.; Qiu, Z.; Cui, Y.; Zhang, J.; Ma, X.; Cui, S.; Zheng, S. Comparison of immune responses induced by porcine parvovirus virus-like particles and inactivated vaccine. Pak. J. Pharm. Sci. 2019, 32, 377–382. [Google Scholar] [PubMed]
- Rodriguez, D.; Gonzalez-Aseguinolaza, G.; Rodriguez, J.R.; Vijayan, A.; Gherardi, M.; Rueda, P.; Casal, J.I.; Esteban, M. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium. PLoS ONE 2012, 7, e34445. [Google Scholar] [CrossRef]
- Shen, X.; Yang, Y.B.; Gao, Y.; Wang, S.; Wang, H.; Sun, M.; Meng, F.; Tang, Y.D.; Tu, Y.; Kong, Q.; et al. Lipid A-modified Escherichia coli can produce porcine parvovirus virus-like particles with high immunogenicity and minimal endotoxin activity. Microb. Cell. Fact. 2024, 23, 222. [Google Scholar] [CrossRef]
- Cho, K.N.; Ouh, I.O.; Park, Y.M.; Park, M.H.; Min, K.M.; Kang, H.J.; Yun, S.Y.; Song, J.Y.; Hyun, B.H.; Park, C.K.; et al. A Plant-Produced Porcine Parvovirus 1-82 VP2 Subunit Vaccine Protects Pregnant Sows against Challenge with a Genetically Heterologous PPV1 Strain. Vaccines 2022, 11, 54. [Google Scholar] [CrossRef]
- Mei, M.; Chen, Y.; Zhu, L.; Xiong, D.; Guo, W.; Wang, Y.; Wu, Y.; Xu, Z. Construction and immunogenicity of eukaryotic plasmid expressing B lymphocyte epitope gene of ORF2 of porcine circovirus type 2 fused with VP2 gene of porcine parvovirus. Vet. Sci. China 2012, 42, 39–44. [Google Scholar]
- Wei, Z.; Wang, X.; Cui, B.; Huang, K.; Jin, X.; Wang, Y.; Chen, H. Construction of Porcine parvovirus VP2 Nucleic Acid Vaccine and Analysis of Its Immunogenicity in Mice. J. Chin. Biotechnol. 2006, 26, 63–67. [Google Scholar]
- Chen, Y.; Xu, Z.; Guo, W.; Zhu, L.; Xu, K.; Tang, Y. Co-expression of Porcine INF-gamma Gene and Its Molecular Adjuvant Effects on the PPV VP2-PCV2 ORF2 Eukaryotic Plasmid. Acta Vet. Zootech. Sin. 2010, 41, 1274–1280. [Google Scholar]
- Wei, H.; Xu, Z.; Xu, K.; Guo, W.; Zhu, L.; Tang, Y.; Chen, Y. Effects of recombination of swine IL2 gene on the immunogenic of the PPV VP2-PCV2 ORF2 eukaryotic expression plasmid. Chin. J. Vet. Sci. 2011, 31, 315. [Google Scholar]
- Zhu, L.; Guo, W.; Xu, K.; Wang, Y.; Chen, Y.; Tang, Y. Effects of combined intramuscular injection of the swine IL2 eukaryon plasmid on the immune responses of PPV VP2-PCV2 ORF2 DNA vaccine. Chin. J. Vet. Sci. 2011, 31, 145–150. [Google Scholar]
- Joo, H.S.; Johnson, R.H. Serological responses in pigs vaccinated with inactivated porcine parvovirus. Aust. Vet. J. 1977, 53, 550–552. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Guo, Z.; Shen, Z.; Wang, J.; Hu, Y.; Wang, D. The immune enhancement of propolis adjuvant on inactivated porcine parvovirus vaccine in guinea pig. Cell. Immunol. 2011, 270, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.N.; Wang, Y.B.; Geng, J.W.; Guo, D.H.; Liu, F.; Chen, H.Y.; Zhang, H.Y.; Cui, B.A.; Wei, Z.Y. Enhancing immune responses to inactivated porcine parvovirus oil emulsion vaccine by co-inoculating porcine transfer factor in mice. Vaccine 2012, 30, 5246–5252. [Google Scholar] [CrossRef] [PubMed]
- Fujisaki, Y.; Murakami, Y.; Suzuki, H. Establishment of an attenuated strain of porcine parvovirus by serial passage at low temperature. Natl. Inst. Anim. Health Q. 1982, 22, 1–7. [Google Scholar]
- Wang, J.; Shen, Z.; Guan, Y.; Qu, G.; Tang, N. Construction and identification of recombinant adenovirus containing porcine parvovirus PPV-SD1 strain VP2 gene. J. Northeast. Agric. Univ. 2008, 39, 100–103. [Google Scholar]
- Hua, T.; Zhang, D.; Tang, B.; Chang, C.; Liu, G.; Zhang, X. The immunogenicity of the virus-like particles derived from the VP2 protein of porcine parvovirus. Vet. Microbiol. 2020, 248, 108795. [Google Scholar] [CrossRef]
- Yang, D.; Chen, L.; Duan, J.; Yu, Y.; Zhou, J.; Lu, H. Investigation of Kluyveromyces marxianus as a novel host for large-scale production of porcine parvovirus virus-like particles. Microb. Cell. Fact. 2021, 20, 24. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Guo, W. Construction and immunogenicity of nucleic acid vaccine of porcine parvovirus VP2 gene. Chin. J. Vet. Sci. 2009, 29, 533–536. [Google Scholar]
- Sun, Y.; Zuo, Y.; Li, J.; Fan, J.; Hui, P.; Hua, Y.; Wang, C. Construction and immunogenicity of nucleic acid vaccine expressing porcine parvovirus VP2 fused with porcine circovirus T cell epitope. Chin. J. Prev. Vet. Med. 2013, 35, 5. [Google Scholar]
Method | Target | Sensitivity | Utility | Ref. | |
---|---|---|---|---|---|
Pathogen detection | Virus isolation (CPE) | Virus | -- | Discovery of new strains; Analysis of virulence genes; Research and traceability | [70] |
HA | Antigen | 103 copies/μL | [71] | ||
IFA | Antigen | 102 copies/μL | [4,72] | ||
Immunoelectron microscopy | virions | 102 copies/μL | [73] | ||
Serological detection techniques | IFA | Antigen | 102 copies/μL | Tissue localization | [4,71] |
LAT | IgM antibodies | 102 copies/μL | Applicable for qualitative IgM antibody screening, suitable for on-site initial screening | [74] | |
* HI | Antibody | 103 copies/μL | OIE-standardized monitoring | [75] | |
ELISA | Antibody Antigen | 102 copies/μL | High-throughput screening | [76,77,78] | |
VN | Neutralizing Ab | 102 copies/μL | Gold standard | [79] | |
Dot-PPA-ELISA | Antibody Antigen | 103 copies/μL | [80] | ||
Immunochromatographic strip | Antibody | 102 copies/μL | Realize rapid on-site detection within 15 min | ||
Molecular biology diagnostic techniques | Nucleic acid probe | nucleic acid | DNA probes: 102 copies/μL RNA probes: 102 copies/μL | Population screening; Epidemiological investigation | [81] |
[82] | |||||
PCR | nucleic acid | 102 copies/μL | [83] | ||
nest-PCR | nucleic acid | 10 copies/μL | [84] | ||
LAMP | nucleic acid | 10 copies/μL | [85] | ||
qPCR | nucleic acid | 10 copies/μL | [23,43] | ||
multiplex PCR | nucleic acid | 10 copies/μL | For co-infections with PCV2/PRV | [44,54,86] | |
Multiplex qPCR | nucleic acid | 10 copies/μL | Rapid identification of PPV and other pathogens (such as PCV2, CSFV) | [48,87] | |
Emerging detection technologies | CRISPR-RPA-LFT | nucleic acid | 100 copies/μL | POCT technology innovation; Grassroots on-site testing | [88] |
CRISPR-ERA-LFT | nucleic acid | 102 copies/μL | [89] | ||
SECGA | Antigen | 102 copies/μL | Grassroots on-site testing | [90] | |
Gene chips | nucleic acid | 102 copies/μL | 100% consistency with PCR | [91] | |
Next genome sequencing (NGS) | nucleic acid | 102 copies/μL | Discovery of new strains; Analysis of virulence genes; Transcriptome screening for novel biomarkers | [54] |
Platform | Patterns | Cross-Protection | Development Time | Cross-Protection | Field Stability | Ref. |
---|---|---|---|---|---|---|
Inactivated (Chemical or physical methods) | Formaldehyde inactivation PPV NADL-2 | Titer of neutralizing antibodies in pregnant sows ≥ 1:64; Protection rate against fetal vertical infection > 90%; | 6–8 months | Moderate | Excellent | [16,67,93,94,95,96] |
Adjuvant: CpG-ODN | The cytokine (IFN—γ) level increased by 2 times, and the antibody affinity was enhanced | |||||
Inactivated PPV + Porcine Circovirus Type 2 (PCV2) bivalent vaccine | The protection rates for PPV and PCV2 are 92% and 88%, respectively | |||||
Attenuated vaccine | PPV NADL-2 | Reduce virus virulence, preserve replication ability and immunogenicity through continuous passage or genetic modification | 12 months or langer | Moderate | Good | [97,98,99] |
Viral live-vector vaccine | Adenovirus 5 Ad5-VP2 | After virus attack, the viral load decreased by 80–85% in mice; | 6–8 months | Moderate | Thermal stability, multivalent potential | [100,101] |
PRV-vectored trivalents | Vector-delivered VP2 expression humoral/cellular immunity; | |||||
SPV-VP2 | The fetal protection rate of sows after immunization is greater than 95%, and there is no pre-existing immune interference against porcine pox virus vectors | |||||
Subunit | (Bac-to-Bac) VP2 | After immunization with sows, the neutralizing antibody titer is ≥1:128, and the vertical transmission protection rate is >90%; | 3–6 months | Limited | Good | [67,102] |
VP2/Carbomer (ParvoFLEX) | ReproCyc® Prevents viremia; 6-month heterologous protection | [103] | ||||
VP2/N-2-HACC | Water-soluble chitosan 100% protection; HI titers; | [104] | ||||
VP2/E. coli | The antibody titer is lower than that of the insect cell system and requires the use of Freund’s adjuvant, with a protection rate of about 80% | [40,105] | ||||
VLP | (Bac-to-Bac) VP2 (VLP) | The titer of neutralizing antibodies is three times higher than that of inactivated vaccines | 6–8 months | High | Moderate | [106,107] |
E. coli: Endotoxin-free VLPs | (HA = 219; Shen et al., 2024) | [68,108] | ||||
Nicotiana benthamiana VP2 (VLP) | [109] | |||||
Nucleic acid * | PPV VP2 DNA + IL-2 | The antibody response of the mouse model is good, and the protection rate in pig experiments is only the same as that of inactivated vaccines 60–70% | 2–4 months | Theoretical | Poor (LNPs require −80 °C) | [110,111,112,113,114] |
PEI-nanoparticles encapsulate VP2 plasmid | Improve transfection efficiency, 2-fold increase in antibody titers and protection rate in pig experiments is 75% |
Name | Strain | Vaccine Type | Main Research Institutions | Release Time | |
---|---|---|---|---|---|
1 | Porcine parvovirus baculovirus vector inactivated vaccine (Strain rPP03) | rPP03 | inactivated virus vector vaccine | Yangzhou Youbang Biopharmaceutical Co., Ltd. Hangzhou, China | 2025/8 |
2 | Porcine parvovirus baculovirus vector inactivated vaccine (Strain HP-SC-VP2) | HP-SC-VP2 | inactivated virus vector vaccine | Huapai Biotechnology (Group) Co., Ltd. Chengdu, China | 2025/7 |
3 | Porcine parvovirus baculovirus vector inactivated vaccine (PPV-VP2) | -- | inactivated virus vector vaccine | Pulike Bioengineering Co., Ltd. Luoyang, China | 2023/6 |
4 | Porcine parvovirus disease inactivated vaccine (Strain SC1) | SC1 | inactivated vaccine | Huapai Biotechnology (Group) Co., Ltd. Chengdu, China | 2020/10 |
5 | Porcine parvovirus disease inactivated vaccine (Strain CG-05) | CG-05 | inactivated vaccine | Guangdong Wenshi Dahua Nong Biotechnology Co., Ltd. Guangzhou, China | 2019/6 |
6 | Porcine parvovirus disease inactivated vaccine (Strain NJ) | NJ | inactivated vaccine | National Engineering Technology Research Center for Animal Biological Products Luoyang, China | 2016/07 |
7 | Porcine parvovirus disease inactivated vaccine (Strain BJ-2) | BJ-2 | inactivated vaccine | Yangzhou Youbang Biopharmaceutical Co., Ltd. Yangzhou, China | 2012/03 |
8 | Porcine parvovirus disease inactivated vaccine (Strain YBF01) | YBF01 | inactivated vaccine | Qingdao Yibang Bioengineering Co., Ltd. Qingdao, China | 2011/08 |
9 | Porcine parvovirus disease inactivated vaccine (Strain L) | L | inactivated vaccine | Harbin Pharmaceutical Group Biological Vaccine Co., Ltd. Harbin, China | 2010/09 |
10 | Porcine parvovirus disease inactivated vaccine (Strain WH-1) | WH-1 | inactivated vaccine (Suspension cultured cells) | Huazhong Agricultural University Wuhan, China | 2024/5/7 (Production process change) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Chen, Y.; Shang, Y.; Deng, X.; Hao, H. Porcine Parvovirus in China: Recent Advances, Epidemiology, and Vaccine Strategies. Viruses 2025, 17, 1262. https://doi.org/10.3390/v17091262
Liu Y, Chen Y, Shang Y, Deng X, Hao H. Porcine Parvovirus in China: Recent Advances, Epidemiology, and Vaccine Strategies. Viruses. 2025; 17(9):1262. https://doi.org/10.3390/v17091262
Chicago/Turabian StyleLiu, Yunchao, Yumei Chen, Yanli Shang, Xiuli Deng, and Huifang Hao. 2025. "Porcine Parvovirus in China: Recent Advances, Epidemiology, and Vaccine Strategies" Viruses 17, no. 9: 1262. https://doi.org/10.3390/v17091262
APA StyleLiu, Y., Chen, Y., Shang, Y., Deng, X., & Hao, H. (2025). Porcine Parvovirus in China: Recent Advances, Epidemiology, and Vaccine Strategies. Viruses, 17(9), 1262. https://doi.org/10.3390/v17091262