Evaluating the Wood Quality of Conifer Species in the Greek Forest Sector Using an Integrated Multi-Criteria Decision Analysis (MCDA) Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Analytic Hierarchy Process (AHP)
2.2. Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE)
2.3. Description of the Methodology
Evaluations | Dry Density (g/cm3) | Modulus of Rupture (MPa) | Elasticity (GPa) | Toughness (Impact Bending, Nmm/mm2) | Shrinkage T/R Ratio (Coefficient of Anisotropy) | Splitting (Resistance to Cleavage) (N/mm Width) | Resistance/Durability | Workability (5-Point) | Permeability (5-Point) |
---|---|---|---|---|---|---|---|---|---|
Abies sp. | 0.41 | 66.1 | 1789 | 38.8 | 2.2 | 11 | 2 | 5 | 3 |
Cupressus sempervirens | 0.55 | 44.6 | 3468 | 43.4 | 1.4 | 15.3 | 1 | 5 | 3 |
Picea abies | 0.41 | 63 | 1426 | 28 | 2.1 | 9.2 | 2 | 5 | 2 |
Pinus brutia | 0.57 | 104 | 3128 | 37 | 1.5 | 14 | 2 | 5 | 2 |
Pinus halepensis | 0.71 | 119 | 3748 | 46.3 | 1.44 | 15.1 | 4 | 5 | 2 |
Pinus nigra | 0.52 | 64.4 | 2210 | 40.3 | 1.8 | 12.9 | 5 | 4 | 2 |
Pinus pinea | 0.52 | 56 | 3397 | 40.5 | 1.6 | 15.3 | 5 | 4 | 2 |
Pinus sylvestris | 0.49 | 83.3 | 1717 | 31.4 | 1.6 | 10.6 | 5 | 4 | 2 |
Criteria | Density | Rupture | Elasticity | Toughness | Shrinkage | Permeability | Workability | Resistance | Splitting |
---|---|---|---|---|---|---|---|---|---|
(g/cm3) | (MPa) | (GPa) | (Nmm/mm2) | (T/R Ratio) | 5-Point | 5-Point | 5-Point | N/mm | |
Min/Max | Max | Max | Max | Max | Min | Max | Max | Max | Max |
Weight | 0.16 | 0.11 | 0.11 | 0.09 | 0.10 | 0.08 | 0.11 | 0.16 | 0.08 |
Preference function | Linear | Linear | Linear | Linear | Linear | Usual | Usual | Usual | Linear |
Thresholds | Absolute | Absolute | Absolute | Absolute | Absolute | Absolute | Absolute | Absolute | Absolute |
q: Indifference | 0.08 | 20.3 | 703 | 4.6 | 0.24 | n/a | n/a | n/a | 1.8 |
p: Preference | 0.19 | 49.7 | 1.801 | 11.8 | 0.59 | n/a | n/a | n/a | 4.7 |
Species | Picea abies (Norway Spruce) | Abies sp. (Fir) | Pinus nigra (Austrian pine, European Black Pine) | Pinus sylvestris (Scotch Pine) | Cupressus sempervirens (Mediterranean Cypress, Italian Cypress | Pinus brutia (Calabrian Pine) | Pinus halepenisis (Aleppo Pine) | Pinus pinea (Stone Pine) |
---|---|---|---|---|---|---|---|---|
Paper (pulpwood) | * | * | * | * | ||||
Construction/mine lumber | * | * | * | * | * | * | * | * |
Veneer, plywood | * | |||||||
Christmas trees | * | |||||||
Musical instruments | * | * | ||||||
Boxes/crates | * | * | * | * | * | * | ||
Poles/ posts | * | * | * | * | ||||
Flooring | * | * | ||||||
Furniture | * | * | * | |||||
Boat building | * | * | * | * |
Criteria | Weight |
---|---|
1. Dry density | 0.16323912 |
2. Modulus of rupture | 0.11093987 |
3. Elasticity | 0.10850402 |
4. Toughness | 0.08668352 |
5. Shrinkage | 0.09771894 |
6. Splitting | 0.07778059 |
7. Resistance/durability | 0.16325611 |
8. Workability | 0.10903984 |
9. Permeability | 0.08283799 |
3. Results
3.1. Sensitivity Analysis
3.2. Sensitivity Analysis for the Criterion Workability
3.3. Sensitivity Analysis for the Criterion Permeability
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.T. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef]
- Seth, M.K. Trees and their economic importance. Bot. Rev. 2003, 69, 321–376. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Dafis, S.; Kotroni, V.; Kyros, G.; Giannaros, C. Exploring recent (1991–2020) trends of essential climate variables in Greece. Atmosphere 2024, 15, 1104. [Google Scholar] [CrossRef]
- Mitsopoulos, I.; Raftoyannis, Y.; Bakaloudis, D. Climate change, wildfires and fir forests in Greece: Perceptions of forest managers. SEEFOR 2015, 6, 143–157. [Google Scholar] [CrossRef]
- Stephens, S. Evaluation of the effects of silvicultural and fuels treatments on potential fire behavior in Sierra Nevada mixed conifer forests. For. Ecol. Manag. 1998, 105, 21–35. [Google Scholar] [CrossRef]
- Dale, V.H.; Joyce, L.A.; McNulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J.; et al. Climate change and forest disturbances. BioScience 2001, 51, 723–734. [Google Scholar] [CrossRef]
- Tsakaldimi, M.; Ganatsas, P. Forest land management and the role of ecological silviculture on the sustainability of Greek forests. J. Degrad. Min. Lands Manag. 2024, 11, 5307–5317. [Google Scholar] [CrossRef]
- D’Amato, A.W. and Palik. B.J. Building on the last “new” thing: Exploring the compatibility of ecological and adaptation silviculture. Can. J. For. Res. 2020, 51, 172–180. [Google Scholar] [CrossRef]
- Palik, B.J.; D’Amato, A.W.; Franklin, J.F.; Johnson, K.N. Ecological Silviculture: Foundations and Applications; Waveland Press: Long Grove, IL, USA, 2020. [Google Scholar]
- Koulelis, P.; Fassouli, V.; Petrakis, P.; Ioannidis, K.; Alexandris, S. The impact of selected climatic factors on the growth of Greek fir on Mount Giona in mainland Greece based on tree ring analysis. Austrian J. For. Sci. 2022, 139, 1–30. [Google Scholar]
- Koulelis, P.P.; Tsiaras, S.; Andreopoulou, Z.S. Greece’s forest sector from the perspective of timber production: Evolution or decline? Forests 2023, 14, 2331. [Google Scholar] [CrossRef]
- Koulelis, P. Greek timber industries and wood product markets over the last century. Development constraints and future directions. Ann. For. Res. 2011, 54, 229–240. [Google Scholar]
- Kazana, V.; Kazaklis, A.; Raptis, D.; Stamatiou, C. A combined multi-criteria approach to assess forest management sustainability: An application to the forests of Eastern Macedonia & Thrace Region in Greece. Ann. Oper. Res. 2020, 294, 321–343. [Google Scholar]
- Civitarese, V.; Faugno, S.; Picchio, R.; Assirelli, A.; Sperandio, G.; Saulino, L.; Crimaldi, M.; Sannino, M. Production of selected short-rotation wood crop species and quality of obtained biomass. Eur. J. For. Res. 2018, 137, 541–552. [Google Scholar] [CrossRef]
- Voulgaridis, H. Quality and Uses of Wood; Kallipos, Open Academic Editions: Athens, Greece, 2015. (In Greek) [Google Scholar]
- Barrette, J.; Achim, A.; Auty, D. Impact of intensive forest management practices on wood quality from conifers: Literature review and reflection on future challenges. Curr. For. Rep. 2023, 9, 101–130. [Google Scholar] [CrossRef]
- Kennedy, R.W. Coniferous wood quality in the future: Concerns and strategies. Wood Sci. Technol. 1995, 29, 321–338. [Google Scholar] [CrossRef]
- Campion, J.M. The effects of mid- and late-rotation fertiliser application on tree growth and wood quality in softwood saw-timber stands: A critical review. South. For. 2009, 70, 7–17. [Google Scholar] [CrossRef]
- EFSA Panel on Plant Health (PLH); Jeger, M.; Bragard, C.; Caffier, D.; Candresse, T.; Chatzivassiliou, E.; Dehnen-Schmutz, K.; Gilioli, G.; Miret, J.A.J.; MacLeod, A.; et al. Pest categorisation of Dendrolimus sibiricus. EFSA J. 2018, 16, e05301. [Google Scholar]
- Tsiaras, S.; Chavenetidou, M.; Koulelis, P.P. A multiple criteria decision analysis approach for assessing the quality of hardwood species used by Greek timber industries. Fol. Oecol. 2024, 51, 109–119. [Google Scholar] [CrossRef]
- Šuhajdová, E.; Novotný, M.; Pěnčík, J.; Šuhajda, K.; Schmid, P.; Straka, B. Evaluation of suitability of selected hardwood in civil engineering. Build. Mater. Struct. 2018, 61, 73–82. [Google Scholar] [CrossRef]
- Uhde, B.; Hahn, W.A.; Griess, V.C.; Knoke, T. Hybrid MCDA methods to integrate multiple ecosystem services in forest management planning: A critical review. Environ. Manag. 2015, 56, 373–388. [Google Scholar] [CrossRef]
- Kpadé, C.P.; Tamini, L.D.; Pepin, S.; Khasa, D.P.; Abbas, Y.; Lamhamedi, M.S. Evaluating multi-criteria decision-making methods for sustainable management of forest ecosystems: A systematic review. Forests 2024, 15, 1728. [Google Scholar] [CrossRef]
- Küçükarslan, A.B.; Köksal, M.; Ekmekci, I. A model proposal for measuring performance in occupational health and safety in forest fires. Sustainability 2023, 15, 14729. [Google Scholar] [CrossRef]
- Çalişkan, E.; Bediroglu, Ş.; Yildirim, V. Determination forest road routes via GIS-based spatial multi-criterion decision methods. Appl. Ecol. Environ. Res. 2019, 17, 759–779. [Google Scholar] [CrossRef]
- Nikolić Jokanović, V.; Vulević, T.; Lazarević, K. Risk assessment of forest decline by application of geostatistics and multi-criteria analysis. J. Hydrol. Hydromech. 2020, 68, 285–292. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Vaidya, O.S.; Kumar, S. Analytic Hierarchy Process, an overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Odu, G.O. Weighting methods for multi-criteria decision making technique. J. Appl. Sci. Environ. Manag. 2019, 23, 1449–1457. [Google Scholar] [CrossRef]
- Özcan, Z.; Caglayan, İ.; Kabak, Ö.; Kılıç Gül, F. Integrated risk mapping for forest fire management using the analytical hierarchy process and ordered weighted average: A case study in southern Turkey. Nat. Hazards 2025, 121, 959–1001. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process; Springer: New York, NY, USA, 2012. [Google Scholar]
- Saaty, T.L.; Özdemir, M.S. How many judges should there be in a group? Ann. Data Sci. 2014, 1, 359–368. [Google Scholar] [CrossRef]
- Harker, P.T. Alternative modes of questioning in the analytic hierarchy process. Math. Model. 1987, 9, 353–360. [Google Scholar] [CrossRef]
- Cho, F. ahpsurvey: Analytic Hierarchy Process for Survey Data in R, version 0.4.0; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Brans, J.-P. L’ingénierie de la décision: L’élaboration d’instruments d’aide a la décision. In L’aide à la Décision; Presses de l’Université Laval: Québec, QC, Canada, 1982; pp. 183–213. [Google Scholar]
- Brans, J.P.; Mareschal, B. Promethee V: MCDM problems with segmentation constraints. INFOR Inf. Sys. Oper. Res. 1992, 30, 85–96. [Google Scholar] [CrossRef]
- Brans, J.P.; Mareschal, B. The PROMCALC & GAIA decision support system for multicriteria decision aid. Decis. Support Syst. 1994, 12, 297–310. [Google Scholar]
- Brans, J.P.; Vincke, P.; Mareschal, B. How to select and how to rank projects: The Promethee method. Eur. J. Oper. Res. 1986, 24, 228–238. [Google Scholar] [CrossRef]
- Brans, J.P.; Mareschal, B. PROMETHEE methods. In Multiple Criteria Decision Analysis: State of the Art Surveys; Figueira, J., Greco, S., Ehrgott, M., Eds.; Springer: Boston, MA, USA, 2005; pp. 163–196. [Google Scholar]
- Mareschal, B. Visual PROMETHEE 1.4 Manual; VPSolutions: Brussels, Belgium, 2013. [Google Scholar]
- Meier, E.W. Wood! Identifying and Using Hundreds of Woods Worldwide; The Wood Database: Madison, WI, USA, 2015. [Google Scholar]
- Niemz, P.; Teischinger, A.; Sandberg, D. Springer Handbook of Wood Science and Technology; Springer: Heidelberg, Germany, 2023. [Google Scholar]
- Bektaş, İ.; Ramazan, K. Principal mechanical properties of cypress wood (Cupressus Sempervirens L.) naturally grown in (Kahramanmaraş) Eastern Mediterranean of Turkey. Gazi Univ. J. Sci. 2010, 23, 357–362. [Google Scholar]
- Steffenrem, A.; Kvaalen, H.; Høibø, O.A.; Edvardsen, Ø.M.; Skrøppa, T. Genetic variation of wood quality traits and relationships with growth in Picea abies. Scand. J. For. Res. 2009, 24, 15–27. [Google Scholar] [CrossRef]
- Pasho, E.; Camarero, J.J.; Vicente-Serrano, S.M. Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Trees Struct. Funct. 2012, 26, 1875–1886. [Google Scholar] [CrossRef]
- Chambel, M.R.; Climent, J.; Pichot, C.; Ducci, F. Mediterranean pines (Pinus halepensis Mill. and brutia Ten.). In Forest Tree Breeding in Europe; Managing Forest Ecosystems 25; Springer: Dordrecht, The Netherlands, 2013; pp. 229–265. [Google Scholar]
- Dias, A.; Carvalho, A.; Silva, M.E.; Lima-Brito, J.; Gaspar, M.J.; Alves, A.; Rodrigues, J.C.; Pereira, F.; Morais, J.; Lousada, J.L. Physical, chemical and mechanical wood properties of Pinus nigra growing in Portugal. Ann. For. Sci. 2020, 77, 72. [Google Scholar] [CrossRef]
- De Angelis, M.; Romagnoli, M.; Vek, V.; Poljanšek, I.; Oven, P.; Thaler, N.; Lesar, B.; Kržišnik, D.; Humar, M. Chemical composition and resistance of Italian stone pine (Pinus pinea L.) wood against fungal decay and wetting. Ind. Crop. Prod. 2018, 117, 187–196. [Google Scholar] [CrossRef]
- Fernandes, C.; Gaspar, M.J.; Pires, J.; Alves, A.; Simões, R.; Rodrigues, J.C.; Silva, M.E.; Carvalho, A.; Brito, J.E.; Lousada, J.L. Physical, chemical and mechanical properties of Pinus sylvestris wood at five sites in Portugal. iForest 2017, 10, 669–679. [Google Scholar] [CrossRef]
- Raptis, D.I.; Papadopoulou, D.; Psarra, A.; Fallias, A.A.; Tsitsanis, A.G.; Kazana, V. Height-diameter models for King Boris fir (Abies borisii regis Mattf.) and Scots pine (Pinus sylvestris L.) in Olympus and Pieria Mountains, Greece. J. Mt. Sci. 2024, 21, 1475–1490. [Google Scholar] [CrossRef]
- Alizoti, P.G.; Fady, B.; Prada, M.A.; Vendramin, G.G. EUFORGEN Technical Guidelines for Genetic Conservation and Use of Mediterranean firs (Abies spp.); Biodiversity International: Rome, Italy, 2011. [Google Scholar]
- Kakaras, I. Wood as Raw Material. Types of Wood Properties; Applications; University of Thessaly: Karditsa, Greece, 2008. (In Greek) [Google Scholar]
- Macharis, C.; Springael, J.; de Brucker, K.; Verbeke, A. PROMETHEE and AHP: The design of operational synergies in multicriteria analysis. Eur. J. Oper. Res. 2004, 153, 307–317. [Google Scholar] [CrossRef]
- Tsoumis, G. Science and Technology of Wood: Structure, Properties, Utilization; Van Nostrand Reinhold: New York, NY, USA, 1991. [Google Scholar]
- Larjavaara, M.; Muller-Landau, H.C. Rethinking the value of high wood density. Funct. Ecol. 2010, 24, 701–705. [Google Scholar] [CrossRef]
- Kretschmann, D.E. Mechanical properties of wood. In Wood Handbook: Wood as an Engineering Material; General Technical Report FPL, GTR–190; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; pp. 5-1–5-46. [Google Scholar]
- Rohanová, A.; Nunez, E. Prediction models of Slovakian structural timber. Wood Res. 2014, 59, 757–767. [Google Scholar]
- Grigoriou, A. Chemistry and Chemical Technology of Wood. Teaching Material; Publications Office of Aristotle University of Thessaloniki: Thessaloniki, Greece, 1992. (In Greek) [Google Scholar]
- Zobel, B.; van Buijtenen, J.P. Wood Variation: Its Causes and Control; Springer: Berlin, Germany, 1989. [Google Scholar]
- Steffenrem, A.; Saranpää, P.; Lundqvist, S.-O.; Skrøppa, T. Variation in wood properties among five full-sib families of Norway spruce (Picea abies). Ann. For. Sci. 2007, 64, 799–806. [Google Scholar] [CrossRef]
- Palanti, S.; Alves, A.; Rodrigues, J.; Danti, R. Determination of extractive content in Cupressus sempervirens wood through a NIRS-PLSR model and its correlation with durability. Int. Biodeterior. Biodegrad. 2021, 162, 105247. [Google Scholar] [CrossRef]
- Chavenetidou, M.; Pantazi, C.; Parasoglou, S.; Tsioras, P.; Ganatsas, P. Quantitative determination of extractives, inorganic ingredients and pH of cypress trees (Cupressus sempervirens L.) from different provenances. Agric. For. 2023, 69, 19–29. [Google Scholar] [CrossRef]
- Martín, J.A.; Esteban, L.G.; de Palacios, P.; García Fernández, F. Variation in wood anatomical traits of Pinus sylvestris L. between Spanish regions of provenance. Trees 2010, 24, 1017–1028. [Google Scholar] [CrossRef]
- Aussenac, G. Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change. Ann. For. Sci. 2002, 59, 823–832. [Google Scholar] [CrossRef]
- Hannrup, B.; Cahalan, C.; Chantre, G.; Grabner, M.; Karlsson, B.; Bayon, I.L.; Jones, G.L.; Müller, U.; Pereira, H.; Rodrigues, J.C. Genetic parameters of growth and wood quality traits in Picea abies. Scand. J. For. Res. 2004, 19, 14–29. [Google Scholar] [CrossRef]
- Hellenic Ministry of Agriculture, General Secretariat for Forest and the Natural Environment. The Results of the First National Forest Inventory (NFI) of Greece; Hellenic Ministry of Agriculture: Athens, Greece, 1992. (In Greek) [Google Scholar]
- Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 2019, 221, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Dieler, J.; Uhl, E.; Bieber, P.; Müller, J.; Rötzer, T.; Pretzsch, H. Effect of forest stand management on species composition, structural diversity, and productivity in the temperate zone of Europe. Eur. J. For. Res. 2017, 136, 739–766. [Google Scholar] [CrossRef]
- Duncker, P.S.; Barreiro, S.M.; Hengeveld, G.M.; Lind, T.; Mason, W.L.; Ambrozy, S.; Spiecker, H. Classification of forest management approaches: A new conceptual framework and its applicability to European forestry. Ecol. Soc. 2012, 17, 51. [Google Scholar] [CrossRef]
Ranking | Conifers | Phi | Phi+ | Phi− |
---|---|---|---|---|
1 | Pinus halepensis | 0.4351 | 0.5365 | 0.1014 |
2 | Cupressus sempervirens | 0.3024 | 0.4067 | 0.1042 |
3 | Pinus brutia | 0.2061 | 0.3316 | 0.1255 |
4 | Pinus pinea | 0.0051 | 0.2343 | 0.2293 |
5 | Pinus nigra | −0.0928 | 0.1230 | 0.2158 |
6 | Pinus sylvestris | −0.1819 | 0.1085 | 0.2904 |
7 | Abies sp. | −0.2859 | 0.1324 | 0.4183 |
8 | Picea abies | −0.3882 | 0.0700 | 0.4582 |
WSI | ||
---|---|---|
1. Dry density | 0.34% | 62.43% |
2. Modulus of rupture | 0.00% | 19.27% |
3. Elasticity | 0.00% | 67.11% |
4. Toughness | 0.00% | 21.43% |
5. Shrinkage | 0.00% | 30.73% |
6. Splitting | 0.00% | 55.23% |
7. Resistance/durability | 0.00% | 28.75% |
8. Workability | 2.81% | 18.02% |
9. Permeability | 0.00% | 15.67% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavenetidou, M.; Tsiaras, S.; Koulelis, P.P.; Raptis, D.I. Evaluating the Wood Quality of Conifer Species in the Greek Forest Sector Using an Integrated Multi-Criteria Decision Analysis (MCDA) Approach. Forests 2025, 16, 1028. https://doi.org/10.3390/f16061028
Chavenetidou M, Tsiaras S, Koulelis PP, Raptis DI. Evaluating the Wood Quality of Conifer Species in the Greek Forest Sector Using an Integrated Multi-Criteria Decision Analysis (MCDA) Approach. Forests. 2025; 16(6):1028. https://doi.org/10.3390/f16061028
Chicago/Turabian StyleChavenetidou, Marina, Stefanos Tsiaras, Panagiotis P. Koulelis, and Dimitrios I. Raptis. 2025. "Evaluating the Wood Quality of Conifer Species in the Greek Forest Sector Using an Integrated Multi-Criteria Decision Analysis (MCDA) Approach" Forests 16, no. 6: 1028. https://doi.org/10.3390/f16061028
APA StyleChavenetidou, M., Tsiaras, S., Koulelis, P. P., & Raptis, D. I. (2025). Evaluating the Wood Quality of Conifer Species in the Greek Forest Sector Using an Integrated Multi-Criteria Decision Analysis (MCDA) Approach. Forests, 16(6), 1028. https://doi.org/10.3390/f16061028