Assessment of Ecosystem Sustainability and Management Measures in the Danube Floodplains in Slovakia by the Bioindicative Value of Spiders (Araneae)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
- S1, floodplain forest Salici-Populetum Kraľovská lúka (47°53′36.7″ N 17°30′32.0″ E)
- S2, flooded meadow Veľký Lél (47°44′60.0″ N 17°56′09.9″ E)
- S3, extensive pasture Veľký Lél (47°45′09.3″ N 17°56′58.8″ E)
- S4, torso of non-flooded meadow Kľúčovec (47°47′07.2″ N 17°44′11.4″ E)
- S5, newly planted forest Veľký Lél (47°44′48.3″ N 17°55′20.2″ E)
- S6, intensive pasture Bodíky (47°54′33.5″ N 17°27′52.9″ E)
2.2. Sampling
2.3. Habitat Requirements
2.4. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hughes, F.M.R.; del Tánago, M.G.; Mountford, J.O. Restoring Floodplain Forests in Europe. In A Goal-Oriented Approach to Forest Landscape Restoration; World Forests; Springer: Dordrecht, The Netherlands, 2012; Volume 16, pp. 393–422. [Google Scholar] [CrossRef]
- Lóczy, D. Flood hazard in Hungary: A reassessment. Cent. Eur. J. Geosci. 2010, 2, 537–547. [Google Scholar]
- Hein, T.; Funk, A.; Pletterbauer, F.; Graf, W.; Zsuffa, I.; Haidvogl, G.; Schinegger, R.; Weigelhofer, G. Management challenges related to long-term ecological impacts, complex stressor interactions, and different assessment approaches in the Danube River Basin. River Res. Appl. 2018, 35, 500–509. [Google Scholar] [CrossRef]
- Gergel, S.E.; Carpenter, S.R.; Stanley, E.H. Do dams and levees impact nitrogen cycling? Simulating the effects of flood alterations on floodplain denitrification. Glob. Chang. Biol. 2005, 11, 1352–1367. [Google Scholar] [CrossRef]
- Krumpálová, Z.; Šustek, Z. Coexistence of spiders in floodplain forests as an indicator of ecological stability and landscape sustainability in the inland Danube Delta. Cent. Eur. For. J. 2025, 71, 40–52. [Google Scholar] [CrossRef]
- Petrovičová, K.; David, S.; Langraf, V. The Impact of Restoration on Epigeic Arthropods in the Important European Forest Biotopes of the Danube Delta. Forests 2024, 15, 1347. [Google Scholar] [CrossRef]
- Čejka, T. Diversity and classification of the terrestrial molluscan fauna in the Danube Plain, Slovakia. Biologia 2022, 77, 739–748. [Google Scholar] [CrossRef]
- Čejka, T.; Beracko, P.; Matečný, I. The impact of the Gabčíkovo hydroelectric power barrier on the Danube floodplain environment-the results of long-term monitoring of land snail fauna. Environ. Monit. Assess. 2020, 192, 30. [Google Scholar] [CrossRef]
- Krumpálová, Z. Floods as the factor of degradation and recovery of araneocoenoses. In Contributions to Soil Zoology in Central Europe I; Tajovský, K., Schlaghamerský, J., Pižl, V., Eds.; AVČR: České Budějovice, Czech Republic, 2005; pp. 77–83. [Google Scholar]
- Matveinen-Huju, K. Habitat affinities of 228 boreal Finnish spiders: A literature review. Entomol. Fenn. 2004, 15, 149–192. [Google Scholar] [CrossRef]
- Bonte, D.; Baert, L.; Maelfait, J.P. Spider assemblage structure and stability in a heterogenous coastal dune system (Belgium). J. Arachnol. 2002, 30, 331–343. [Google Scholar] [CrossRef]
- Entling, W.; Schmidt, M.H.; Bacher, S.M.; Brandl, R.; Nentwig, W. Niche properties of Central European spiders: Shading, moisture and the evolution of the habitat niche. Glob. Ecol. Biogeogr. 2007, 16, 440–448. [Google Scholar] [CrossRef]
- Gallé, R.; Vesztergom, N.; Somogyi, T. Environmental conditions affecting spiders in grasslands at the lower reach of the River Tisza in Hungary. Entomol. Fenn. 2011, 22, 29–38. [Google Scholar] [CrossRef]
- Freiberg, J.A.; de Sales, D.C.; Rodrigues, E.N.L.; Teixeira, R.A.; Vieira, Â.D.H.N.; de Almeida, H.S.; Carvalho, P.C.d.F.; Jacques, R.J.S. Increased grazing intensity in pastures reduces the abundance and richness of ground spiders in an integrated crop-livestock system. Agron. Sustain. Dev. 2020, 40, 1. [Google Scholar] [CrossRef]
- Bell, J.; Wheater, C.; Cullen, W. The implications of grassland and heathland management for the conservation of spider communities: A review. J. Zool. 2001, 255, 377–387. [Google Scholar] [CrossRef]
- Heimer, H.; Nentwig, W. Spinnen Mitteleuropas. In Ein Bestimmungsbuch; Paul Parey: Berlin/Hamburg, Germany, 1991; p. 543. [Google Scholar]
- Nentwig, W.; Blick, T.; Bosmans, R.; Hänggi, A.; Kropf, C.; Stäubli, A. Spiders of Europe, Version 2. 2025. Available online: https://www.araneae.nmbe.ch (accessed on 28 February 2025).
- Available online: https://www.arachnology.cz/ (accessed on 28 February 2025).
- Buchar, J.; Růžička, V. Catalogue of Spiders of the Czech Republic; Peres Publishers: Praha, Czech Republic, 2002; p. 351. [Google Scholar]
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.10; Microcomputer Power: Ithaca, NY, USA, 2012; p. 536. [Google Scholar]
- Python, Version 3.12. Python Software Foundation Legal Statements Privacy Notice Rifanjani S. 2023. Available online: https://www.python.org/downloads/release/python-3120/ (accessed on 28 February 2025).
- Adis, J.; Junk, W.J. Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: A review. Freshw. Biol. 2002, 47, 711–731. [Google Scholar] [CrossRef]
- Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef] [PubMed]
- Čejka, T.; Hamerlík, L. Land snails as indicators of soil humidity in Danubian woodland (SW Slovakia). Pol. J. Ecol. 2009, 57, 741–747. [Google Scholar]
- Raschmanová, N.; Kováč, Ľ. Ekológia Pôdnych Živočíchov; Univerzita Pavla Jozefa Šafárika v: Košiciach, Slovakia, 2024; p. 99. [Google Scholar]
- Kalivoda, H.; Petrovič, F.; Kalivodová, E.; Kürthy, A. Influence of the landscape structure on the butterfly (Lepidoptera, Hesperioidea and Papilionoidea) and bird (Aves) taxocoenoses in Vel’ké Leváre (SW Slovakia). Ekologia 2010, 29, 337–359. [Google Scholar] [CrossRef]
- Fazekašová, D.; Bobuľovská, L. Soil organisms as an Indicator of Quality and Environmental Stress in the Soil Ecosystem. Zivotn. Prostr. 2012, 46, 103–106. Available online: http://publikacie.uke.sav.sk/sites/default/files/2012_2_103_106_fazekasova.pdf (accessed on 28 February 2025).
- Schindler, S.; Sebesvari, Z.; Damm, C.; Euller, K.; Mauerhofer, V.; Schneidergruber, A.; Biró, M.; Essl, F.; Kanka, R.; Lauwaars, S.G.; et al. Multifunctionality of floodplain landscapes: Relating management options to ecosystem services. Landsc. Ecol. 2014, 29, 229–244. [Google Scholar] [CrossRef]
- Hornung, E.; Vilisics, F.; Sólymos, P. Low alpha and high beta diversity in terrestrial isopod assemblages in the Transdanubian region of Hungary. In Proceedings of the International Symposium of Terrestrial Isopod Biology-ISTIB-7, Aachen, Germany, 5–8 January 2008; Shaker Verlag: Aachen, Germany, 2008; pp. 1–13. [Google Scholar]
- Bonn, A.; Hagen, K.; Reiche, D.W. The significance of flood regimes for carabid beetle and spider communities in riparian habitats—A comparison of three major rivers in Germany. River Res. Appl. 2002, 18, 43–64. [Google Scholar] [CrossRef]
- Milasowszky, N.; Hepner, M.; Waitzbauer, W.; Zulka, K.P. The epigeic spider fauna (Arachnida: Araneae) of 28 forests in eastern Austria. In Biodiversität und Naturschutz in Ostösterreich—BCBEA; Universität Wien: Vienna, Austria, 2015; Volume 1/1, pp. 135–163. [Google Scholar]
- Godoy, O.; Thompson, K. Coexistence theory as a tool to understand biological invasions in species interaction networks: Implications for the study of novel ecosystems. Funct. Ecol. 2019, 33, 1190–1201. [Google Scholar] [CrossRef]
- Krumpálová, Z.; Tuf, I.H. Circadian rhythms of ground living spiders: Mechanisms of coexistence strategy based on the body size. Pol. J. Ecol. 2013, 61, 575–586. [Google Scholar]
Taxon/Study Sites | RQ | S1 | S2 | S3 | S4 | S5 | S6 | ∑ N | D (%) |
---|---|---|---|---|---|---|---|---|---|
Agroeca brunnea (Blackwall, 1833) | s-h | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0.02 |
Agroeca cuprea Menge, 1873 | dry | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 0.03 |
Alopecosa pulverulenta (Clerck, 1757) | s-h | 0 | 1 | 16 | 60 | 0 | 0 | 77 | 1.21 |
Araeoncus humilis (Blackwall, 1841) | dry | 1 | 0 | 1 | 6 | 0 | 0 | 8 | 0.13 |
Arctosa lutetiana (Simon, 1876) | ? | 6 | 0 | 0 | 0 | 6 | 40 | 52 | 0.82 |
Aulonia albimana (Walckenaer, 1805) | dry | 0 | 1 | 0 | 0 | 8 | 0 | 9 | 0.14 |
Centromerus sp. | ? | 0 | 0 | 0 | 0 | 6 | 0 | 6 | 0.09 |
Centromerus sylvaticus (Blackwall, 1841) | h | 11 | 0 | 4 | 10 | 8 | 0 | 33 | 0.52 |
Ceratinella scabrosa (O.P. Cambr., 1871) | h | 13 | 0 | 0 | 0 | 0 | 0 | 13 | 0.20 |
Civizelotes gracilis (Canestrini, 1868) | dry | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 0.03 |
Civizelotes pygmaeus Miller, 1943 | dry | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0.03 |
Clubiona brevipes Blackwall, 1841 | dry | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0.02 |
Clubiona pallidula (Clerck, 1757) | s-h | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0.03 |
Clubiona sp. | ? | 0 | 0 | 5 | 0 | 0 | 0 | 5 | 0.08 |
Diaea dorsata (Fabricius, 1777) | s-h | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0.02 |
Diplocephalus picinus (Blackwall, 1841) | s-h | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0.02 |
Diplostyla concolor (Wider, 1834) | h | 9 | 0 | 21 | 4 | 0 | 0 | 34 | 0.54 |
Drassodes pubescens (Thorell, 1856) | dry | 0 | 4 | 2 | 0 | 1 | 0 | 7 | 0.11 |
Drassyllus praeficus (L. Koch, 1866) | dry | 0 | 0 | 0 | 0 | 12 | 0 | 12 | 0.19 |
Drassyllus pumilis (C.L. Koch, 1839) | dry | 0 | 0 | 7 | 32 | 0 | 0 | 39 | 0.61 |
Drassyllus pusillus (C.L. Koch, 1833) | s-h | 0 | 65 | 0 | 30 | 21 | 31 | 147 | 2.32 |
Drassyllus villicus (Thorell, 1875) | dry | 0 | 0 | 4 | 0 | 12 | 0 | 16 | 0.25 |
Erigone dentipalpis (Wider, 1834) | s-h | 0 | 5 | 0 | 0 | 0 | 0 | 5 | 0.08 |
Gnaphosa modestior Kulczyński, 1897 | ? | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0.02 |
Gnathonarium dentatum (Wider, 1834) | h | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 0.03 |
Gongylidium rufipes (Linnaeus, 1758) | h | 3 | 0 | 0 | 0 | 0 | 0 | 3 | 0.05 |
Hahnia pusilla C.L. Koch, 1841 | s-h | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0.02 |
Hahnia sp. | ? | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0.05 |
Haplodrassus signifer (C.L. Koch, 1839) | dry | 0 | 0 | 1 | 10 | 4 | 0 | 15 | 0.24 |
Haplodrassus sp. | ? | 0 | 0 | 0 | 3 | 14 | 0 | 17 | 0.27 |
Harpactea lepida (C.L. Koch, 1838) | s-h | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.02 |
Lepthyphantes gen. sp. | ? | 18 | 1 | 0 | 0 | 0 | 3 | 22 | 0.35 |
Liocranoeca striata (Kulczyński, 1882) | h | 80 | 5 | 7 | 7 | 4 | 0 | 103 | 1.62 |
Mermessus trilobatus (Emerton, 1882) | s-h | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0.02 |
Micrommata virescens (Clerck, 1757) | s-h | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0.02 |
Microneta viaria (Blackwall, 1841) | dry | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0.03 |
Mioxena blanda (Simon, 1884) | dry | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 0.03 |
Misumena vatia (Clerck, 1757) | s-h | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0.02 |
Moebelia penicillata (Westring, 1851) | s-h | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.02 |
Neriene clathrata (Sundevall, 1830) | h | 4 | 2 | 6 | 0 | 0 | 0 | 12 | 0.19 |
Oedothorax apicatus (Blackwall, 1850) | s-h | 0 | 69 | 0 | 0 | 0 | 2 | 71 | 1.12 |
Oedothorax retusus (Blackwall, 1850) | s-h | 0 | 3 | 0 | 0 | 0 | 0 | 3 | 0.05 |
Ozyptila simplex (O.P. Cambridge, 1862) | s-h | 0 | 1 | 0 | 2 | 0 | 0 | 3 | 0.05 |
Ozyptila praticola (C.L. Koch, 1837) | h | 113 | 4 | 47 | 0 | 6 | 0 | 170 | 2.68 |
Pachygnatha degeeri Sundevall, 1830 | dry | 42 | 268 | 10 | 10 | 0 | 0 | 330 | 5.20 |
Pachygnatha listeri Sundevall, 1830 | h | 0 | 11 | 0 | 0 | 0 | 0 | 11 | 0.17 |
Palliduphantes insignis (O.P. Cambr., 1913) | dry | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0.03 |
Palliduphantes pallidus (O.P. Cambr., 1871) | dry | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 0.06 |
Pardosa agrestis (Westring, 1861) | dry | 0 | 624 | 0 | 84 | 0 | 788 | 1496 | 23.58 |
Pardosa amentata (Clerck, 1757) | h | 3 | 2 | 0 | 0 | 0 | 0 | 5 | 0.08 |
Pardosa lugubris Walckenaer, 1802 | e-dry | 176 | 226 | 83 | 28 | 262 | 112 | 887 | 13.98 |
Pardosa prativaga (L. Koch, 1870) | h | 0 | 67 | 0 | 0 | 0 | 103 | 170 | 2.68 |
Pardosa sp. | ? | 22 | 0 | 2 | 3 | 0 | 0 | 27 | 0.43 |
Philodromus sp. | ? | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 0.03 |
Phrurolithus festivus (C.L. Koch, 1835) | dry | 8 | 2 | 0 | 1 | 6 | 0 | 17 | 0.27 |
Piratula hygrophila (Thorell, 1872) | h | 424 | 24 | 12 | 0 | 10 | 0 | 470 | 7.41 |
Pisaura mirabilis (Clerck, 1757) | dry | 9 | 0 | 3 | 1 | 14 | 0 | 27 | 0.43 |
Porrhomma oblitum (O. P.-Cambr., 1871) | h | 1 | 0 | 0 | 0 | 0 | 74 | 75 | 1.18 |
Robertus lividus (Blackwall, 1836) | s-h | 0 | 1 | 2 | 7 | 0 | 0 | 10 | 0.16 |
Tallusia experta (O.P. Cambridge, 1871) | h | 0 | 0 | 3 | 1 | 0 | 0 | 4 | 0.06 |
Tapinocyba biscissa (O.P. Cambridge, 1873) | s-h | 0 | 0 | 4 | 0 | 0 | 0 | 4 | 0.06 |
Tapinocyba pallens (O. Cambridge, 1873) | s-h | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 0.03 |
Tegenaria campestris (C. L. Koch, 1834) | s-h | 1 | 2 | 4 | 2 | 0 | 0 | 9 | 0.14 |
Tenuiphantes flavipes (Blackwall, 1854) | s-h | 0 | 0 | 13 | 1 | 0 | 0 | 14 | 0.22 |
Tenuiphantes tenebricola Kulczyński, 1887 | s-h | 0 | 0 | 6 | 0 | 0 | 0 | 6 | 0.09 |
Thanatus arenarius L. Koch, 1872 | dry | 0 | 0 | 0 | 6 | 0 | 0 | 6 | 0.09 |
Thanatus sp. | ? | 0 | 0 | 3 | 0 | 0 | 0 | 3 | 0.05 |
Thanatus striatus C.L. Koch, 1845 | h | 0 | 1 | 0 | 0 | 1 | 0 | 2 | 0.03 |
Theridion sp. | ? | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 0.06 |
Tibellus oblongus (Walckenaer, 1802) | dry | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0.02 |
Titanoeca quadriguttata (Hahn, 1833) | dry | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0.03 |
Titanoeca shineri L. Koch, 1872 | dry | 0 | 0 | 0 | 0 | 6 | 0 | 6 | 0.09 |
Tmarus piger (Walckenaer, 1802) | dry | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.02 |
Trachyzelotes pedestris (C. L. Koch, 1837) | dry | 92 | 1 | 8 | 3 | 35 | 0 | 139 | 2.19 |
Trochosa ruricola (De Geer, 1778) | h | 8 | 437 | 81 | 0 | 203 | 224 | 953 | 15.02 |
Trochosa terricola Thorell, 1856 | s-h | 20 | 22 | 0 | 161 | 91 | 0 | 294 | 4.63 |
Xerolycosa miniata (C.L. Koch, 1834) | dry | 0 | 0 | 0 | 121 | 9 | 117 | 247 | 3.89 |
Xysticus acerbus Thorell, 1872 | dry | 0 | 0 | 2 | 2 | 0 | 0 | 4 | 0.06 |
Xysticus audax (Schrank, 1803) | dry | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0.02 |
Xysticus sp. | ? | 0 | 0 | 0 | 0 | 5 | 0 | 5 | 0.08 |
Xysticus cristatus (Clerck, 1757) | s-h | 0 | 3 | 0 | 6 | 0 | 7 | 16 | 0.25 |
Xysticus kochi Thorell, 1872 | dry | 0 | 3 | 0 | 2 | 0 | 0 | 5 | 0.08 |
Zelotes apricorum (L. Koch, 1876) | dry | 5 | 0 | 14 | 41 | 4 | 0 | 64 | 1.01 |
Zelotes aurantiacus Miller, 1967 | dry | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0.02 |
Zelotes electus (C.L. Koch, 1839) | ? | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0.03 |
Zelotes sp. | ? | 25 | 15 | 12 | 0 | 13 | 10 | 75 | 1.18 |
Zelotes subterraneus (C.L. Koch, 1833) | dry | 0 | 14 | 0 | 0 | 7 | 0 | 21 | 0.33 |
Zora silvestris Kulczyński, 1897 | dry | 8 | 1 | 0 | 0 | 0 | 0 | 9 | 0.14 |
Zora spinimana (Sundevall, 1833) | s-h | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0.02 |
∑ N | 1110 | 1896 | 395 | 651 | 778 | 1514 | 6344 |
S1 | S2 | S3 | S4 | S5 | S6 | |
---|---|---|---|---|---|---|
No. taxa | 29 | 38 | 37 | 33 | 33 | 14 |
No. individuals | 1110 | 1896 | 395 | 651 | 778 | 1514 |
Shannon H’ | 2.165 | 1.989 | 2.733 | 2.443 | 2.189 | 1.612 |
Margalef | 3.993 | 4.902 | 6.021 | 4.939 | 4.807 | 1.775 |
Equitability J | 0.6429 | 0.5467 | 0.7569 | 0.6987 | 0.6262 | 0.6107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krumpálová, Z.; Langraf, V. Assessment of Ecosystem Sustainability and Management Measures in the Danube Floodplains in Slovakia by the Bioindicative Value of Spiders (Araneae). Forests 2025, 16, 1027. https://doi.org/10.3390/f16061027
Krumpálová Z, Langraf V. Assessment of Ecosystem Sustainability and Management Measures in the Danube Floodplains in Slovakia by the Bioindicative Value of Spiders (Araneae). Forests. 2025; 16(6):1027. https://doi.org/10.3390/f16061027
Chicago/Turabian StyleKrumpálová, Zuzana, and Vladimír Langraf. 2025. "Assessment of Ecosystem Sustainability and Management Measures in the Danube Floodplains in Slovakia by the Bioindicative Value of Spiders (Araneae)" Forests 16, no. 6: 1027. https://doi.org/10.3390/f16061027
APA StyleKrumpálová, Z., & Langraf, V. (2025). Assessment of Ecosystem Sustainability and Management Measures in the Danube Floodplains in Slovakia by the Bioindicative Value of Spiders (Araneae). Forests, 16(6), 1027. https://doi.org/10.3390/f16061027