Understanding the Ecosystem Services of Riparian Forests: Patterns, Gaps, and Global Trends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliometric Analysis
2.2. Traditional Literature Review
3. Results
3.1. A Bibliometric Review
3.2. Literature Review
3.2.1. Ecosystem Services Provided by Forests from Riparian Areas
3.2.2. Carbon Sequestration of Riparian Forests
3.2.3. Riparian Forests and Water Quality Regulation
3.2.4. Influences of Riparian Forests on Slope Stability
3.2.5. National Perspectives on Riparian Forest Conditions and Management
Policy Frameworks, Buffers and Regulations
Restoration and Rehabilitation Initiatives
Governance and Implementation Challenges
Ecosystem Services and Community Dependence
3.2.6. Degradation and Loss of Ecosystem Services in Riparian Forests
4. Discussion
4.1. Bibliometric Review
4.2. Literature Review
4.2.1. Ecosystem Services Provided by Forests from Riparian Areas
Slope Stability and Erosion Control
Biodiversity and Habitat Connectivity
4.2.2. National Perspectives on Riparian Forest Conditions and Management
4.2.3. Degradation and Loss of Ecosystem Services in Riparian Forests
4.2.4. Gaps, Research Needs, and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naiman, R.J.; Decamps, H. The ecology of the interfaces: Riparian zones. Annu. Rev. Ecol. Syst. 1997, 28, 621–658. [Google Scholar] [CrossRef]
- Naiman, R.J.; Fetherston, K.L.; McKay, S.J.; Chen, J. Riparian forests. In River Ecology and Management: Lessons from the Pacific Coastal Ecoregion; Springer: Berlin/Heidelberg, Germany, 1998; pp. 289–383. [Google Scholar]
- Lowrance, R.; Leonard, R.; Sheridan, J. Managing riparian ecosystems to control nonpoint pollution. J. Soil Watre Conserv. 1985, 40, 87–91. [Google Scholar] [CrossRef]
- Gundersen, P.; Laurén, A.; Finér, L.; Ring, E.; Koivusalo, H.; Sætersdal, M.; Weslien, J.O.; Sigurdsson, B.D.; Högbom, L.; Laine, J.; et al. Environmental services provided from riparian forests in the Nordic countries. Ambio 2010, 39, 555–566. [Google Scholar] [CrossRef]
- Castelle, A.J.; Johnson, A.W.; Conolly, C. Wetland and stream buffer size requirements—A review. J. Environ. Qual. 1994, 23, 878–882. [Google Scholar] [CrossRef]
- Luke, S.H.; Luckai, N.J.; Burke, J.M.; Prepas, E.E. Riparian areas in the Canadian boreal forest and linkages with water quality in streams. Environ. Rev. 2007, 15, 79–97. [Google Scholar] [CrossRef]
- Lowrance, R. Groundwater nitrate and denitrification in a coastal plain riparian forest. J. Environ. Qual. 1992, 21, 401–405. [Google Scholar] [CrossRef]
- MacDonald, J.S.; MacIsaac, E.A.; Herunter, H.E. The effect of variable-retention riparian buffer zones on water temperatures in small headwater streams in sub-boreal forest ecosystems of British Columbia. Can. J. For. Res. 2003, 33, 1371–1382. [Google Scholar] [CrossRef]
- Nilsson, C.; Svedmark, M. Basic principles and ecological consequences of changing water regimes: Riparian plant communities. Environ. Manag. 2002, 30, 468–480. [Google Scholar] [CrossRef] [PubMed]
- Tagwireyi, P.; Sullivan, S.M.P. Riverine landscape patch heterogeneity drives riparian ant assemblages in the Scioto River Basin, USA. PLoS ONE 2015, 10, e0124807. [Google Scholar] [CrossRef]
- O’Hara, K.L. What is close-to-nature silviculture in a changing world? For. Int. J. For. Res. 2016, 89, 1–6. [Google Scholar] [CrossRef]
- Daily, G.C. (Ed.) Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Garrastazú, M.C.; Mendonça, S.D.; Horokoski, T.T.; Cardoso, D.J.; Rosot, M.A.; Nimmo, E.R.; Lacerda, A.E. Carbon sequestration and riparian zones: Assessing the impacts of changing regulatory practices in Southern Brazil. Land Use Policy 2015, 42, 329–339. [Google Scholar] [CrossRef]
- Chen, Y.J.; Li, W.H.; Liu, J.Z.; Yang, Y.H. Effects of water conveyance embankments on riparian forest communities at the middle reaches of the Tarim River, Northwest China. Ecohydrology 2013, 6, 937–948. [Google Scholar] [CrossRef]
- Halik, Ü.; Aishan, T.; Kurban, A.; Cyffka, B.; Opp, C. Response of crown diameter of Populus euphratica to ecological water transfer in the lower reaches of the Tarim River. J. Northeast For. Univ. 2011, 39, 82–84. [Google Scholar]
- Egoh, B.; Reyers, B.; Rouget, M.; Richardson, D.M.; Le Maitre, D.C.; van Jaarsveld, A.S. Mapping ecosystem services for planning and management. Agric. Ecosyst. Environ. 2008, 127, 135–140. [Google Scholar] [CrossRef]
- Sweeney, B.W.; Bott, T.L.; Jackson, J.K.; Kaplan, L.A.; Newbold, J.D.; Standley, L.J.; Hession, W.C.; Horwitz, R.J. Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc. Natl. Acad. Sci. USA 2004, 101, 14132–14137. [Google Scholar] [CrossRef]
- Tomscha, S.A.; Gergel, S.E.; Tomlinson, M.J. The spatial organization of ecosystem services in river-floodplains. Ecosphere 2017, 8, e01728. [Google Scholar] [CrossRef]
- Clerici, N.; Paracchini, M.L.; Maes, J. Land-cover change dynamics and insights into ecosystem services in European stream riparian zones. Ecohydrol. Hydrobiol. 2014, 14, 107–120. [Google Scholar] [CrossRef]
- Sharps, K.; Masante, D.; Thomas, A.; Jackson, B.; Redhead, J.; May, L.; Prosser, H.; Cosby, B.; Emmett, B.; Jones, L. Comparing strengths and weaknesses of three ecosystem services modelling tools in a diverse UK river catchment. Sci. Total Environ. 2017, 584, 118–130. [Google Scholar] [CrossRef]
- McVittie, A.; Norton, L.; Martin-Ortega, J.; Siameti, I.; Glenk, K.; Aalders, I. Operationalizing an ecosystem services-based approach using Bayesian Belief Networks: An application to riparian buffer strips. Ecol. Econ. 2015, 110, 15–27. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Campagne, C.S.; Roche, P.; Müller, F.; Burkhard, B. Ten years of ecosystem services matrix: Review of a (r)evolution. One Ecosyst. 2020, 5, e51103. [Google Scholar] [CrossRef]
- Milcu, A.I.; Hanspach, J.; Abson, D.; Fischer, J. Cultural ecosystem services: A literature review and prospects for future research. Ecol. Soc. 2013, 18, 16. [Google Scholar] [CrossRef]
- Dincă, L.; Crișan, V.; Ienașoiu, G.; Murariu, G.; Drasovean, R. Environmental indicator plants in mountain forests: A review. Plants 2024, 13, 3358. [Google Scholar] [CrossRef]
- Gambella, F.; Sistu, L.; Piccirilli, D.; Corposanto, S.; Caria, M.; Arcangeletti, E.; Proto, A.R.; Chessa, G.; Pazzona, A. Forest and UAV: A bibliometric review. Contemp. Eng. Sci. 2016, 9, 1359–1370. [Google Scholar] [CrossRef]
- Timiș-Gânșac, V.; Dincă, L.; Constandache, C.; Murariu, G.; Cheregi, G.; Timofte, C.S.C. Conservation biodiversity in arid areas: A review. Sustainability 2025, 17, 2422. [Google Scholar] [CrossRef]
- Dinca, L.; Marin, M.; Radu, V.; Murariu, G.; Drasovean, R.; Cretu, R.; Georgescu, L.; Timiș-Gânsac, V. Which Are the Best Site and Stand Conditions for Silver Fir (Abies alba Mill.) Located in the Carpathian Mountains? Diversity 2022, 14, 547. [Google Scholar] [CrossRef]
- Salisbury, L. Web of Science and Scopus: A comparative review of content and searching capabilities. Charleston Advisor 2009, 11, 5–18. [Google Scholar]
- Adriaanse, L.; Rensleigh, C. Web of Science, Scopus and Google Scholar: A content comprehensiveness comparison. Electron. Libr. 2013, 31, 727–744. [Google Scholar] [CrossRef]
- Clarivate.com. Web of Science Core Collection. Available online: https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/web-of-science-core-collection/ (accessed on 20 January 2025).
- Scopus. Available online: https://www.elsevier.com/products/scopus (accessed on 22 January 2025).
- Microsoft Corporation. Microsoft Excel. Available online: https://www.microsoft.com/en-us/microsoft-365/excel?legRedir=true&CorrelationId=3bb60ab0-fe13-41a4-812b-2627667cf346 (accessed on 1 February 2025).
- Geochart. Available online: https://developers.google.com/chart/interactive/docs/gallery/geochart (accessed on 13 March 2025).
- VOSviewer. Available online: https://www.vosviewer.com/ (accessed on 28 January 2025).
- Cole, L.J.; Stockan, J.; Helliwell, R. Managing riparian buffer strips to optimise ecosystem services: A review. Agric. Ecosyst. Environ. 2020, 296, 106891. [Google Scholar] [CrossRef]
- Kinnoumè, S.M.D.; Gouwakinnou, G.N.; Noulèkoun, F.; Balagueman, R.O.; Houehanou, T.D.; Natta, A.K. Trees diversity explains variations in biodiversity–ecosystem function relationships across environmental gradients and conservation status in riparian corridors. Front. For. Glob. Change 2024, 7, 1291252. [Google Scholar] [CrossRef]
- Pasion, B.O.; Barrias, C.D.; Asuncion, M.P.; Angadol, A.H.; Pabiling, R.R.; Pasion, A., Jr.; Braulio, A.A.; Baysa, A.M., Jr. Assessing tree diversity and carbon density of a riparian zone within a protected area in southern Philippines. J. Asia-Pac. Biodivers. 2021, 14, 78–86. [Google Scholar] [CrossRef]
- Tabacchi, E.; Lambs, L.; Guilloy, H.; Planty-Tabacchi, A.M.; Muller, E.; Decamps, H. Impacts of riparian vegetation on hydrological processes. Hydrol. Process. 2000, 14, 2959–2976. [Google Scholar] [CrossRef]
- Gray, C.L.; Simmons, B.I.; Fayle, T.M.; Mann, D.J.; Slade, E.M. Are riparian forest reserves sources of invertebrate biodiversity spillover and associated ecosystem functions in oil palm landscapes? Biol. Conserv. 2016, 194, 176–183. [Google Scholar] [CrossRef]
- Collier, C.A.; de Almeida Neto, M.S.; de Almeida, G.M.A.; Rosa Filho, J.S.; Severi, W.; El-Deir, A.C.A. Effects of anthropic actions and forest areas on a neotropical aquatic ecosystem. Sci. Total Environ. 2019, 691, 367–377. [Google Scholar] [CrossRef]
- de Araújo, G.J.; Monteiro, G.F.; Messias, M.C.T.B.; Antonini, Y. Restore it, and they will come: Trap-nesting bee and wasp communities (Hymenoptera: Aculeata) are recovered by restoration of riparian forests. J. Insect Conserv. 2018, 22, 245–256. [Google Scholar] [CrossRef]
- García-Martínez, M.Á.; Valenzuela-González, J.E.; Escobar-Sarria, F.; López-Barrera, F.; Castaño-Meneses, G. The surrounding landscape influences the diversity of leaf-litter ants in riparian cloud forest remnants. PLoS ONE 2017, 12, e0172464. [Google Scholar] [CrossRef]
- Guadalquiver, D.M.; Nuñeza, O.M.; Dupo, A.L. Species diversity of Lepidoptera in Mimbilisan Protected Landscape, Misamis Oriental, Philippines. Entomol. Appl. Sci. Lett. 2019, 6, 33–47. [Google Scholar]
- Almeida, P.D.; Hartmann, M.T.; Hartmann, P.A. How riparian forest integrity influences anuran species composition: A case study in the Southern Brazil Atlantic Forest. Anim. Biodivers. Conserv. 2020, 43, 209ri19. [Google Scholar] [CrossRef]
- Sanguila, M.B. Herpetological assemblages in tropical forests of the Taguibo Watershed, Butuan City, eastern Mindanao, Philippines. Philipp. J. Sci. 2020, 150, 415–431. [Google Scholar] [CrossRef]
- Hernández-Dávila, O.A.; Sosa, V.J.; Laborde, J. Effects of landscape context and vegetation attributes on under-storey bird communities of cloud forest riparian belts. Ecol. Eng. 2021, 167, 106269. [Google Scholar] [CrossRef]
- Monadjem, A.; Reside, A. The influence of riparian vegetation on the distribution and abundance of bats in an African savanna. Acta Chiropterol. 2008, 10, 339–348. [Google Scholar] [CrossRef]
- Murta, J.R.D.M.; Brito, G.Q.D.; Mendonça Filho, S.F.; Salemi, L.F. Topsoil physical properties under a riparian forest in Central Brazil: Infiltration and penetration resistance. Hoehnea 2022, 49, e332021. [Google Scholar] [CrossRef]
- Jacinthe, P.A.; Vidon, P.; Fisher, K.; Liu, X.; Baker, M.E. Soil methane and carbon dioxide fluxes from cropland and riparian buffers in different hydrogeomorphic settings. J. Environ. Qual. 2015, 44, 1080–1090. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, G.G.; Vasconcelos, V.; Salemi, L.F.; Nardoto, G.B. Factors affecting the effectiveness of riparian buffers in retaining sediment: An isotopic approach. Environ. Monit. Assess. 2020, 192, 735. [Google Scholar] [CrossRef] [PubMed]
- Kidd, K.R.; Copenheaver, C.A.; Aust, W.M. Sediment accretion rates and radial growth in natural levee and backswamp riparian forests in southwestern Alabama, USA. For. Ecol. Manag. 2015, 358, 272–280. [Google Scholar] [CrossRef]
- Saklaurs, M.; Dubra, S.; Liepa, L.; Jansone, D.; Jansons, Ā. Vegetation affecting water quality in small streams: Case study in hemiboreal forests, Latvia. Plants 2022, 11, 1316. [Google Scholar] [CrossRef]
- Brumberg, H.; Beirne, C.; Broadbent, E.N.; Zambrano, A.M.A.; Zambrano, S.L.A.; Gil, C.A.Q.; Gutierrez, B.L.; Eplee, R.; Whitworth, A. Riparian buffer length is more influential than width on river water quality: A case study in southern Costa Rica. J. Environ. Manag. 2021, 286, 112132. [Google Scholar] [CrossRef]
- De Sosa, L.L.; Glanville, H.C.; Marshall, M.R.; Abood, S.A.; Williams, A.P.; Jones, D.L. Delineating and mapping riparian areas for ecosystem service assessment. Ecohydrology 2018, 11, e1928. [Google Scholar] [CrossRef]
- Hernandez-Santana, V.; Asbjornsen, H.; Sauer, T.; Isenhart, T.; Schilling, K.; Schultz, R. Enhanced transpiration by riparian buffer trees in response to advection in a humid temperate agricultural landscape. For. Ecol. Manag. 2011, 261, 1415–1427. [Google Scholar] [CrossRef]
- Ávila-García, D.; Morató, J.; Pérez-Maussán, A.I.; Santillán-Carvantes, P.; Alvarado, J.; Comín, F.A. Impacts of alternative land-use policies on water ecosystem services in the Río Grande de Comitán–Lagos de Montebello watershed, Mexico. Ecosyst. Serv. 2020, 45, 101179. [Google Scholar] [CrossRef]
- de la Fuente, B.; Mateo-Sánchez, M.C.; Rodríguez, G.; Gastón, A.; de Ayala, R.P.; Colomina-Pérez, D.; Melero, M.; Saura, S. Natura 2000 sites, public forests and riparian corridors: The connectivity backbone of forest green infrastructure. Land Use Policy 2018, 75, 429–441. [Google Scholar] [CrossRef]
- Benez-Secanho, F.J.; Dwivedi, P. Analyzing the impacts of land use policies on selected ecosystem services in the upper Chattahoochee Watershed, Georgia, United States. Environ. Res. Commun. 2021, 3, 115001. [Google Scholar] [CrossRef]
- Hanna, D.E.; Raudsepp-Hearne, C.; Bennett, E.M. Effects of land use, cover, and protection on stream and riparian ecosystem services and biodiversity. Conserv. Biol. 2020, 34, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Lowrance, R. Riparian forest ecosystems as filters for nonpoint-source pollution. In Successes, Limitations, and Frontiers in Ecosystem Science; Springer: New York, NY, USA, 1998; pp. 113–141. [Google Scholar]
- Patten, D.T. Riparian ecosystems of semi-arid North America: Diversity and human impacts. Wetlands 1998, 18, 498–512. [Google Scholar] [CrossRef]
- Rodewald, A.D.; Bakermans, M.H. What is the appropriate paradigm for riparian forest conservation? Biol. Conserv. 2006, 128, 193–200. [Google Scholar] [CrossRef]
- Anderson, P.D.; Poage, N.J. The Density Management and Riparian Buffer Study: A large-scale silviculture experiment informing riparian management in the Pacific Northwest, USA. For. Ecol. Manag. 2014, 316, 90–99. [Google Scholar] [CrossRef]
- Bakx, T.R.; Akselsson, C.; Droste, N.; Lidberg, W.; Trubins, R. Riparian buffer zones in production forests create unequal costs among forest owners. Eur. J. For. Res. 2024, 143, 1035–1046. [Google Scholar] [CrossRef]
- Dybala, K.E.; Matzek, V.; Gardali, T.; Seavy, N.E. Carbon sequestration in riparian forests: A global synthesis and meta-analysis. Glob. Change Biol. 2019, 25, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Aishan, T.; Betz, F.; Halik, Ü.; Cyffka, B.; Rouzi, A. Biomass carbon sequestration potential by riparian forest in the Tarim River Watershed, Northwest China: Implication for the mitigation of climate change impact. Forests 2018, 9, 196. [Google Scholar] [CrossRef]
- Mendez-Estrella, R.; Romo-Leon, J.R.; Castellanos, A.E. Mapping changes in carbon storage and productivity services provided by riparian ecosystems of semi-arid environments in northwestern Mexico. ISPRS Int. J. Geo-Inf. 2017, 6, 298. [Google Scholar] [CrossRef]
- Lidman, F.; Köhler, S.J.; Mörth, C.M.; Laudon, H. Metal transport in the boreal landscape—The role of wetlands and the affinity for organic matter. Environ. Sci. Technol. 2014, 48, 3783–3790. [Google Scholar] [CrossRef] [PubMed]
- Broadmeadow, S.; Nisbet, T.R. The effects of riparian forest management on the freshwater environment: A literature review of best management practice. Hydrol. Earth Syst. Sci. 2004, 8, 286–305. [Google Scholar] [CrossRef]
- Mayer, P.M.; Reynolds, S.K.; McMutchen, M.D.; Canfield, T.J. Meta-analysis of nitrogen removal in riparian buffers. J. Environ. Qual. 2007, 36, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Goudarzian, P.; Yazdani, M.; Matinkhah, S.H. Greenhouse and field evaluation of phytoremediation for nitrogen and phosphorus in a riparian buffer strip. Appl. Ecol. Environ. Res. 2021, 19, 933–952. [Google Scholar] [CrossRef]
- Aronsson, P.; Perttu, K. Willow vegetation filters for wastewater treatment and soil remediation combined with biomass production. For. Chron. 2001, 77, 293–299. [Google Scholar] [CrossRef]
- Ericsson, T. Growth and nutrition in three Salix clones grown in low conductivity solutions. Physiol. Plant. 1981, 52, 239–244. [Google Scholar] [CrossRef]
- Osborne, L.L.; Kovacic, D.A. Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biol. 1993, 29, 243–258. [Google Scholar] [CrossRef]
- Gray, D.H.; Sotir, R.B. Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control; John Wiley & Sons: Toronto, ON, Canada, 1996; p. 365. [Google Scholar]
- Langendoen, E.J.; Lowrance, R.R.; Williams, R.G.; Pollen, N.; Simon, A. Impacts of global climate change—Modeling the impact of riparian buffer systems on bank stability of an incised stream. In Proceedings of the American Society of Civil Engineers World Water and Environmental Resources Congress 2005, Anchorage, AK, USA, 15–19 May 2005. [Google Scholar]
- Thorne, C.R. Effects of vegetation on riverbank erosion and stability. In Vegetation and Erosion; Thornes, J.B., Ed.; Wiley: Hoboken, NJ, USA, 1990; pp. 125–144. [Google Scholar]
- Wu, T.; Watson, A. In situ shear tests of soil blocks with roots. Can. Geotech. J. 1998, 35, 579–590. [Google Scholar] [CrossRef]
- Arif, M.; Petrosillo, I.; Changxiao, L. Effects of changing riparian topography on the decline of ecological indicators along the drawdown zones of long rivers in China. Front. For. Glob. Change 2024, 7, 1293330. [Google Scholar] [CrossRef]
- Mc Conigley, C.; Lally, H.; O’Callaghan, M.; O’Dea, P.; Little, D.; Kelly-Quinn, M. The vegetation communities of unmanaged aquatic buffer zones within conifer plantations in Ireland. For. Ecol. Manag. 2015, 353, 59–66. [Google Scholar] [CrossRef]
- Biggs, T.W.; Santiago, T.M.O.; Sills, E.; Caviglia-Harris, J. The Brazilian Forest Code and riparian preservation areas: Spatiotemporal analysis and implications for hydrological ecosystem services. Reg. Environ. Change 2019, 19, 2381–2394. [Google Scholar] [CrossRef]
- Xu, H.L.; Ye, M.; Li, J.M. The ecological characteristics of the riparian vegetation affected by river-overflowing disturbance in the lower Tarim River. Environ. Geol. 2009, 58, 1749–1755. [Google Scholar] [CrossRef]
- Chen, Y.N.; Ye, Z.X.; Shen, Y.J. Desiccation of the Tarim River, Xinjiang, China, and mitigation strategy. Quat. Int. 2011, 244, 264–271. [Google Scholar] [CrossRef]
- Peng, J.; Hu, X.; Wang, X.; Meersmans, J.; Liu, Y.; Qiu, S. Simulating the impact of Grain-for-Green Programme on ecosystem services trade-offs in Northwestern Yunnan, China. Ecosyst. Serv. 2019, 39, 100998. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Ouyang, Z.; Tam, C.; Chen, X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl. Acad. Sci. USA 2008, 105, 9477–9482. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Lü, Y.; He, C.; Zeng, Y.; Wu, B. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 2011, 8, 284–293. [Google Scholar] [CrossRef]
- Li, X.; Tian, Y.; Gao, T.; Jin, L.; Li, S.; Zhao, D.; Zheng, X.; Yu, L.; Zhu, J. Trade-offs analysis of ecosystem services for the grain for green program: Informing reforestation decisions in a mountainous headwater region, Northeast China. Sustainability 2020, 12, 4762. [Google Scholar] [CrossRef]
- Masiero, M.; Bottaro, G.; Righetti, C.; Nikolaidis, N.P.; Lilli, M.A.; Pettenella, D. Riparian forests as nature-based solutions within the Mediterranean context: A biophysical and economic assessment for the Koiliaris River Watershed (Crete, Greece). Forests 2024, 15, 760. [Google Scholar] [CrossRef]
- Kowalska, A.; Affek, A.; Wolski, J.; Regulska, E.; Kruczkowska, B.; Zawiska, I.; Kołaczkowska, E.; Baranowski, J. Assessment of regulating ES potential of lowland riparian hardwood forests in Poland. Ecol. Indic. 2021, 120, 106834. [Google Scholar] [CrossRef]
- Matunda, J.M. Sustainable Management of Riparian Areas in Kenya: A Critique of the Inadequacy of the Legislative Framework Governing the Protection of Sustainable Management of Riparian Zones in Kenya. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya, 2015; p. 65. [Google Scholar]
- Nzau, J.M.; Rogers, R.; Shauri, H.S.; Rieckmann, M.; Habel, J.C. Smallholder perceptions and communication gaps shape East African riparian ecosystems. Biodivers. Conserv. 2018, 27, 3745–3757. [Google Scholar] [CrossRef]
- Lalika, M.C.; Meire, P.; Ngaga, Y.M. Exploring watershed conservation and water governance along Pangani River Basin, Tanzania. Land Use Policy 2015, 48, 351–361. [Google Scholar] [CrossRef]
- Leal Filho, W.; Alam, G.M.; Nagy, G.J.; Rahman, M.M.; Roy, S.; Wolf, F.; Kovaleva, M.; Saroar, M.; Li, C. Climate change adaptation responses among riparian settlements: A case study from Bangladesh. PLoS ONE 2022, 17, e0278605. [Google Scholar] [CrossRef] [PubMed]
- Esse, C.; Santander-Massa, R.; Encina-Montoya, F.; De los Ríos, P.; Fonseca, D.; Saavedra, P. Multicriteria spatial analysis applied to identifying ecosystem services in mixed-use river catchment areas in south central Chile. For. Ecosyst. 2019, 6, 25. [Google Scholar] [CrossRef]
- Säumel, I.; Ziche, D.; Yu, R.; Kowarik, I.; Overdieck, D. Grazing as a driver for Populus euphratica woodland degradation in the semi-arid Aibi Hu region, northwestern China. J. Arid Environ. 2011, 75, 265–269. [Google Scholar] [CrossRef]
- Betz, F.; Halik, Ü.; Kuba, M.; Tayierjiang, A.; Cyffka, B. Controls on aeolian sediment dynamics by natural riparian vegetation in the eastern Tarim Basin, NW China. Aeolian Res. 2015, 18, 23–34. [Google Scholar] [CrossRef]
- Qiao, J.; Yang, W.; Gao, X. Natural diet and food habitat use of the Tarim red deer, Cervus elaphus yarkandensis. Chin. Sci. Bull. 2006, 51, 147–152. [Google Scholar] [CrossRef]
- Mazvimavi, D.; Wolski, P. Long-term variations of annual flows of the Okavango and Zambezi Rivers. Phys. Chem. Earth 2006, 31, 944–951. [Google Scholar] [CrossRef]
- Heath, A.; Heath, R. Field Guide to the Plants of Northern Botswana Including the Okavango Delta; Kew Publishing: Kew, UK, 2009; pp. 1–593. [Google Scholar]
- Ecosurv. Field Investigation into the Mokoro Industry; Kalahari Conservation Society: Gaborone, Botswana, 1988; pp. 1–22. [Google Scholar]
- Babitseng, T.M.; Teketay, D. Impact of wine tapping on the population structure and regeneration of Hyphaene petersiana Klotzsch ex Mart in Northern Botswana. Ethnobot. Res. Appl. 2013, 11, 9–27. [Google Scholar]
- Décamps, H.; Fortuné, M.; Gazelle, F.; Pautou, G. Historical influence of man on the riparian dynamics of a fluvial landscape. Landscape Ecol. 1988, 1, 163–173. [Google Scholar] [CrossRef]
- Nilsson, C.; Berggren, K. Alterations of riparian ecosystems caused by river regulation. BioScience 2000, 50, 783–792. [Google Scholar] [CrossRef]
- Kuglerová, L.; Ågren, A.; Jansson, R.; Laudon, H. Towards optimizing riparian buffer zones: Ecological and biogeochemical implications for forest management. For. Ecol. Manag. 2014, 334, 74–84. [Google Scholar] [CrossRef]
- Celentano, D.; Rousseau, G.X.; Engel, V.L.; Zelarayán, M.; Oliveira, E.C.; Araujo, A.C.M.; de Moura, E.G. Degradation of riparian forest affects soil properties and ecosystem services provision in eastern Amazon of Brazil. Land Degrad. Dev. 2017, 28, 482–493. [Google Scholar] [CrossRef]
- McClain, M.E.; Cossío, R.E. The use of riparian environments in the rural Peruvian Amazon. Environ. Conserv. 2003, 30, 242–248. [Google Scholar] [CrossRef]
- Keram, A.; Halik, Ü.; Aishan, T.; Keyimu, M.; Jiapaer, K.; Li, G. Tree mortality and regeneration of Euphrates poplar riparian forests along the Tarim River, Northwest China. For. Ecosyst. 2021, 8, 49. [Google Scholar] [CrossRef]
- Thomas, F.M.; Lang, P. Growth and water relations of riparian poplar forests under pressure in Central Asia’s Tarim River Basin. River Res. Appl. 2021, 37, 233–240. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, W.; Si, J.H.; Su, Y.H.; Zhang, Y.W.; Cang, Z.Q.; Xi, H.Y. Environmental effects of water resource development and use in the Tarim River basin of northwestern China. Environ. Geol. 2005, 48, 202–210. [Google Scholar]
- Hrkal, Z.; Gadalia, A.; Rigaudiere, P. Will the river Irtysh survive the year 2030? Impact of long-term unsuitable land use and water management of the upper stretch of the river catchment (North Kazakhstan). Environ. Geol. 2006, 50, 717–723. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, X.; Yuan, K. Effects of different restoration measures on species diversity and aboveground biomass of the gold-mining area in headwaters of the Ertix River. Arid Land Geogr. 2019, 42, 581–589. [Google Scholar]
- Popova, E. Morphological and biological characteristics of some anthropogenic plant communities in the lower Irtysh floodplain. IOP Conf. Ser. Earth Environ. Sci. 2019, 392, 012005. [Google Scholar] [CrossRef]
- Liu, S.; Liu, L.; Zhang, J.; Wang, K.; Guo, Y. Study on ecological protection and restoration path of arid area based on improvement of ecosystem service capability: A case of the ecological protection and restoration pilot project area in Irtysh River Basin. Acta Ecol. Sin. 2019, 39, 8998–9007. [Google Scholar]
- Vidal-Abarca Gutierrez, M.R.; Suarez Alonso, M.L. Which are, what is their status and what can we expect from ecosystem services provided by Spanish rivers and riparian areas? Biodivers. Conserv. 2013, 22, 2469–2503. [Google Scholar] [CrossRef]
- Hennings, N.; Becker, J.N.; Guillaume, T.; Damris, M.; Dippold, M.A.; Kuzyakov, Y. Riparian wetland properties counter the effect of land-use change on soil carbon stocks after rainforest conversion to plantations. Catena 2021, 196, 104941. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Couto, E.G.; Mund, E.E.; Amorim, R.S.S.; Siqueira, A.; Tielbörger, K.; Seifan, M. Soil carbon stocks in stream-valley-ecosystems in the Brazilian Cerrado agroscape. Agric. Ecosyst. Environ. 2012, 151, 70–79. [Google Scholar] [CrossRef]
- Rieger, I.; Kowarik, I.; Cierjacks, A. Drivers of carbon sequestration by biomass compartment of riparian forests. Ecosphere 2015, 6, 185. [Google Scholar] [CrossRef]
- Borin, M.; Passoni, M.; Thiene, M.; Tempesta, T. Multiple functions of buffer strips in farming areas. Eur. J. Agron. 2010, 32, 103–111. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Jose, S. Agroforestry strategies to sequester carbon in temperate North America. Agrofor. Syst. 2012, 86, 225–242. [Google Scholar] [CrossRef]
- Matzek, V.; Puleston, C.; Gunn, J. Can carbon credits fund riparian forest restoration? Restor. Ecol. 2015, 23, 7–14. [Google Scholar] [CrossRef]
- Sutfin, N.A.; Wohl, E.E.; Dwir, K.A. Banking carbon: A review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems. Earth Surf. Process. Landf. 2016, 41, 38–60. [Google Scholar] [CrossRef]
- Eglin, T.; Walter, C.; Nys, C.; Follain, S.; Forgeard, F.; Legout, A.; Squividant, H. Influence of waterlogging on carbon stock variability at hillslope scale in a beech forest (Fougères forest—West France). Ann. For. Sci. 2008, 65, 202p1–202p10. [Google Scholar] [CrossRef]
- Hazlett, P.W.; Gordon, A.M.; Sibley, P.K.; Buttle, J.M. Stand carbon stocks and soil carbon and nitrogen storage for riparian and upland forests of boreal lakes in northeastern Ontario. For. Ecol. Manag. 2005, 219, 56–68. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Zhang, M.; Dahlgren, R.A.; Eitzel, M. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution. J. Environ. Qual. 2010, 39, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W.M.; Stutter, M.I.; Haygarth, P.M. Phosphorus retention and remobilization in vegetated buffer strips: A review. J. Environ. Qual. 2012, 41, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Christen, B.; Dalgaard, T. Buffers for biomass production in temperate European agriculture: A review and synthesis on function, ecosystem services and implementation. Biomass Bioenergy 2013, 55, 53–67. [Google Scholar] [CrossRef]
- Rood, S.B.; Bigelow, S.G.; Polzin, M.L.; Gill, K.M.; Coburn, C.A. Biological bank protection: Trees are more effective than grasses at resisting erosion from major river floods. Ecohydrology 2015, 8, 772–779. [Google Scholar] [CrossRef]
- Johnes, P.J.; Gooddy, D.C.; Heaton, T.H.; Binley, A.; Kennedy, M.P.; Shand, P.; Prior, H. Determining the impact of riparian wetlands on nutrient cycling, storage and export in permeable agricultural catchments. Water 2020, 12, 167. [Google Scholar] [CrossRef]
- Keeton, W.S.; Kraft, C.E.; Warren, D.R. Mature and old-growth riparian forests: Structure, dynamics, and effects on Adirondack stream habitats. Ecol. Appl. 2007, 17, 852–868. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.; Sear, D.A.; Sykes, T.; Odoni, N. The effects of floodplain forest restoration and logjams on flood risk and flood hydrology. In EGU General Assembly Conference Abstracts; European Geosciences Union: Munich, Germany, 2015; p. 5104. [Google Scholar]
- Dincă, L.; Achim, F. The management of forests situated on fields susceptible to landslides and erosion from the Southern Carpathians. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2019, 19, 183–188. [Google Scholar]
- Magdaleno, F.; Blanco Garrido, F.; Bonada i Caparrós, N.; Herrera Grao, T. How are riparian plants distributed along the riverbank topographic gradient in Mediterranean rivers? Application to minimally altered river stretches in Southern Spain. Limnetica 2014, 33, 124–138. [Google Scholar] [CrossRef]
- Merritt, D.M.; Scott, M.L.; LeRoy Poff, N.; Auble, G.T.; Lytle, D.A. Theory, methods, and tools for determining environmental flows for riparian vegetation: Riparian vegetation-flow response guilds. Freshw. Biol. 2010, 55, 206–225. [Google Scholar] [CrossRef]
- Ishida, S.; Yamazaki, A.; Takanose, Y.; Kamitani, T. Off-channel temporary pools contribute to native riparian plant species diversity in a regulated river floodplain. Ecol. Res. 2010, 25, 1045–1055. [Google Scholar] [CrossRef]
- Pielech, R. Plant species richness in riparian forests: Comparison to other forest ecosystems, longitudinal patterns, role of rare species and topographic factors. For. Ecol. Manag. 2021, 496, 119400. [Google Scholar] [CrossRef]
- Hylander, K.; Nilsson, C.; Göthner, T. Effects of buffer-strip retention and clearcutting on land snails in boreal riparian forests. Conserv. Biol. 2004, 18, 1052–1062. [Google Scholar] [CrossRef]
- Stockan, J.A.; Langan, S.J.; Young, M.R. Investigating riparian margins for vegetation patterns and plant–environment relationships in northeast Scotland. J. Environ. Qual. 2012, 41, 364–372. [Google Scholar] [CrossRef]
- Maisonneuve, C.; Rioux, S. Importance of riparian habitats for small mammal and herpetofaunal communities in agricultural landscapes of southern Québec. Agric. Ecosyst. Environ. 2001, 83, 165–175. [Google Scholar] [CrossRef]
- Scott, S.J.; McLaren, G.; Jones, G.; Harris, S. The impact of riparian habitat quality on the foraging and activity of pipistrelle bats (Pipistrellus spp.). J. Zool. 2010, 280, 371–378. [Google Scholar] [CrossRef]
- Gilvear, D.J.; Spray, C.J.; Casas-Mulet, R. River rehabilitation for the delivery of multiple ecosystem services at the river network scale. J. Environ. Manag. 2013, 126, 30–43. [Google Scholar] [CrossRef]
- Nakano, S.; Murakami, M. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl. Acad. Sci. USA 2001, 98, 166–170. [Google Scholar] [CrossRef]
- Malmqvist, B. Aquatic invertebrates in riverine landscapes. Freshw. Biol. 2002, 47, 679–694. [Google Scholar] [CrossRef]
- Thomas, H.; Nisbet, T.R. An assessment of the impact of floodplain woodland on flood flows. Water Environ. J. 2007, 21, 114–126. [Google Scholar] [CrossRef]
- Bueno, A.S.; Bruno, R.S.; Pimentel, T.P.; Sanaiotti, T.M.; Magnusson, W.E. The width of riparian habitats for understory birds in an Amazonian forest. Ecol. Appl. 2012, 22, 722–734. [Google Scholar] [CrossRef]
- Rojas, I.M.; Pidgeon, A.M.; Radeloff, V.C. Restoring riparian forests according to existing regulations could greatly improve connectivity for forest fauna in Chile. Landsc. Urban Plan. 2020, 203, 103895. [Google Scholar] [CrossRef]
- Lees, A.C.; Peres, C.A. Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conserv. Biol. 2008, 22, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Swanson, A.C.; Bohlman, S. Cumulative impacts of land cover change and dams on the land-water interface of the Tocantins River. Front. Environ. Sci. 2021, 9, 662904. [Google Scholar] [CrossRef]
- Bennett, A.F. Linkages in the Landscape: The Role of Corridors and Connectivity in Wildlife Conservation (No. 1); IUCN: Fontainebleau, France, 2003. [Google Scholar]
- Frank, S.; Fürst, C.; Pietzsch, F. Cross-sectoral resource management: How forest management alternatives affect the provision of biomass and other ecosystem services. Forests 2015, 6, 533–560. [Google Scholar] [CrossRef]
- Campos Tisovec-Dufner, K.; Teixeira, L.; Marin, G.D.L.; Coudel, E.; Morsello, C.; Pardini, R. Intention of preserving forest remnants among landowners in the Atlantic Forest: The role of the ecological context via ecosystem services. People Nat. 2019, 1, 533–547. [Google Scholar] [CrossRef]
- Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 2019, 12, 7–21. [Google Scholar] [CrossRef]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef]
- Perry, L.G.; Andersen, D.C.; Reynolds, L.V.; Nelson, S.M.; Shafroth, P.B. Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America. Glob. Change Biol. 2012, 18, 821–842. [Google Scholar] [CrossRef]
- Lee, P.; Smyth, C.; Boutin, S. Quantitative review of riparian buffer width guidelines from Canada and the United States. J. Environ. Manag. 2004, 70, 165–180. [Google Scholar] [CrossRef]
- MacDonald, R.L.; Chen, H.Y.; Palik, B.P.; Prepas, E.E. Influence of harvesting on understory vegetation along a boreal riparian-upland gradient. For. Ecol. Manag. 2014, 312, 138–147. [Google Scholar] [CrossRef]
- Löfgren, S.; Ring, E.; von Brömssen, C.; Sørensen, R.; Högbom, L. Short-term effects of clear-cutting on the water chemistry of two boreal streams in northern Sweden: A paired catchment study. Ambio 2009, 38, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Kreutzweiser, D.P.; Sibley, P.K.; Richardson, J.S.; Gordon, A.M. Introduction and a theoretical basis for using disturbance by forest management activities to sustain aquatic ecosystems. Freshw. Sci. 2012, 31, 224–231. [Google Scholar] [CrossRef]
- Schelker, J.; Kuglerová, L.; Eklöf, K.; Bishop, K.; Laudon, H. Hydrological effects of clear-cutting in a boreal forest–Snowpack dynamics, snowmelt and streamflow responses. J. Hydrol. 2013, 484, 105–114. [Google Scholar] [CrossRef]
- Deng, M.; Huang, Q.; Zhang, Y.; Zhang, L. Study on ecological scheduling of multi-scale coupling of reservoir group. J. Hydraul. Eng. 2017, 48, 1387–1398. [Google Scholar]
- Gries, D.; Zeng, F.; Foetzki, A.; Arndt, S.K.; Bruelheide, H.; Thomas, F.M. Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table. Plant Cell Environ. 2003, 26, 725–736. [Google Scholar] [CrossRef]
- Zeng, F.J.; Zhang, W.J.; Liu, G.J.; Zhang, D.Y.; Li, X.Y.; Zhang, L.; Yuan, L.M.; Zhang, X.M. Stable restoration pattern and sustainable management technology of main dominant vegetation in typical desert areas of China. Bull. Chin. Acad. Sci. 2020, 214, 63–70. [Google Scholar]
- Junk, W.J.; Piedade, M.T.F.; Schöngart, J.; da Cunha, C.N.; Goncalves, S.R.A.; Wantzen, K.M.; Wittmann, F. Riparian wetlands of low-order streams in Brazil: Extent, hydrology, vegetation cover, interactions with streams and uplands, and threats. Hydrobiologia 2024, 851, 1657–1678. [Google Scholar] [CrossRef]
- Hunter, R.G.; Faulkner, S.P.; Gibson, K.A. The importance of hydrology in restoration of bottomland hardwood wetland functions. Wetlands 2008, 28, 605–615. [Google Scholar] [CrossRef]
- Kroes, D.E.; Hupp, C.R. The effect of channelization on floodplain sediment deposition and subsidence along the Pocomoke River, Maryland. JAWRA J. Am. Water Resour. Assoc. 2010, 46, 686–699. [Google Scholar] [CrossRef]
- Budeanu, M.; Besliu, E.; Pepelea, D. Testing the Radial Increment and Climate–Growth Relationship Between Swiss Stone Pine European Provenances in the Romanian Carpathians. Forests 2025, 16, 391. [Google Scholar] [CrossRef]
- Besliu, E.; Curtu, A.L.; Budeanu, M.; Apostol, E.N.; Ciocîrlan, M.I. Exploring the effects of the assisted transfer of European beech (Fagus sylvatica L.) provenances in the Romanian Carpathians. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13968. [Google Scholar] [CrossRef]
- Budeanu, M.; Apostol, E.N.; Radu, R.G.; Ioniță, L. Genetic variability and juvenile–adult correlations of Norway spruce (Picea abies) provenances, tested in multisite comparative trials. Ann. For. Res. 2021, 64, 105–122. [Google Scholar] [CrossRef]
- Murariu, G.; Dinca, L.; Tudose, N.; Crisan, V.; Georgescu, L.; Munteanu, D.; Dragu, M.D.; Rosu, B.; Mocanu, G.D. Structural Characteristics of the Main Resinous Stands from Southern Carpathians, Romania. Forests 2021, 12, 1029. [Google Scholar] [CrossRef]
- Popa, P.; Murariu, G.; Timofti, M.; Georgescu, L. Multivariate Statistical Analyses of water quality of Danube River at Galati, Romania. Environ. Eng. Manag. J. 2018, 17, 1249–1266. [Google Scholar]
Cur. No. | Ecosystem Service | Region | Citing Article |
---|---|---|---|
Biodiversity | |||
1 | Biodiversity | general | Cole et al., 2020 [36] |
Plant biodiversity | |||
2 | Tree species | Benin; Philippines | Kinnoumè et al., 2024 [37]; Pasion et al., 2021 [38]; |
3 | The amount and the potential role of dead wood | Italy | Tabacchi et al., 2000 [39] |
Animal biodiversity | |||
4 | Invertebrates | Malaysia | Gray et al., 2016 [40] |
5 | Ichthyofauna | Brazil | Collier et al., 2019 [41] |
6 | Bees and wasps | Brazil | de Araújo et al., 2018 [42] |
7 | Leaf-litter ants | Mexico | García-Martínez et al., 2017 [43] |
8 | Lepidoptera | Philippines | Guadalquiver et al., 2019 [44] |
9 | Amphibians | Brazil | Almeida et al., 2020 [45] |
10 | Reptiles | Philippine | Sanguila, 2020 [46] |
11 | Birds | Mexico; Brazil | Hernández-Dávila et al., 2021 [47] |
12 | Buts | Swaziland | Monadjem and Reside, 2008 [48] |
Soil | |||
13 | Improve soil permeability | general | Cole et al., 2020 [36] |
14 | Soil penetration resistance | Brazil | Murta et al., 2022 [49] |
Carbon sequestration | |||
15 | Carbon sequestration | Brazil | Garrastazú et al., 2015 [13] |
16 | Greenhouse gas production | USA | Jacinthe et al., 2015 [50] |
Sediments retention | |||
17 | Retain sediments | Brazil | Cordeiro et al., 2020 [51] |
18 | Trapping suspended sediment | USA | Kidd et al., 2105 [52] |
Water | |||
19 | Moderating aquatic temperatures | general | Cole et al., 2020 [36] |
20 | Water quality | Latvia; Italy; Costa Rica | Saklaurs et al., 2022 [53]; Tabacchi et al., 2000 [39]; Brumberg et al., 2021 [54] |
21 | Watercourse shading | Brazil | de Sosa et al., 2018 [55] |
22 | Transpiration of trees | USA | Hernandez-Santana et al., 2011 [56] |
Land use | |||
23 | Hydrological impacts of land-use and land-cover change | Mexico | Ávila-García et al., 2020 [57] |
24 | Connectivity across agricultural landscapes | Spain | de la Fuente et al., 2018 [58] |
25 | Impacts of land use policies on ecosystem services | USA | Benez-Secanho et al., 2021 [59] |
26 | Effects of land use, cover, and protection | Canada | Hanna et al., 2020 [60] |
Pollution | |||
27 | Intercept and remove pollutants | general | Cole et al., 2020 [36] |
28 | Filters for nonpoint-source pollution | USA | Lowrance, 1998 [61] |
Social and recreation | |||
29 | Recreational sites for humans | USA | Patten, 1998 [62] |
30 | Social and recreational values | Belgium | Rodewald and Bakermans, 2006 [63] |
31 | Economic benefits | USA, Sweden | Anderson and Poage, 2014 [64]; Bakx et al., 2024 [65] |
Biomass carbon sequestration | Dybala et al., 2019 [66], Aishan et al., 2018 [67] | ||
32 | Nature-based solutions | Mexic | Mendez Estrella et al., 2017 [68]; Lidman, F. et al., 2014 [69] |
33 | Ecosystem service bundles | England | Broadmeadow S. et al., 2004 [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinca, L.; Murariu, G.; Lupoae, M. Understanding the Ecosystem Services of Riparian Forests: Patterns, Gaps, and Global Trends. Forests 2025, 16, 947. https://doi.org/10.3390/f16060947
Dinca L, Murariu G, Lupoae M. Understanding the Ecosystem Services of Riparian Forests: Patterns, Gaps, and Global Trends. Forests. 2025; 16(6):947. https://doi.org/10.3390/f16060947
Chicago/Turabian StyleDinca, Lucian, Gabriel Murariu, and Mariana Lupoae. 2025. "Understanding the Ecosystem Services of Riparian Forests: Patterns, Gaps, and Global Trends" Forests 16, no. 6: 947. https://doi.org/10.3390/f16060947
APA StyleDinca, L., Murariu, G., & Lupoae, M. (2025). Understanding the Ecosystem Services of Riparian Forests: Patterns, Gaps, and Global Trends. Forests, 16(6), 947. https://doi.org/10.3390/f16060947