Next Issue
Volume 17, April-1
Previous Issue
Volume 17, March-1
 
 
energies-logo

Journal Browser

Journal Browser

Energies, Volume 17, Issue 6 (March-2 2024) – 240 articles

Cover Story (view full-size image): The EU focuses on renewable energy development, local energy self-sufficiency, and citizen involvement. Energy cooperatives support local energy communities, harnessing renewable potential. Previous studies examined viable energy cooperative configurations for prosumers. Critical changes in prosumer conditions and accounting methods prompted further analysis. Three scenarios were evaluated until 2045: consumers without generation sources, net billing prosumers, and cooperative prosumers under net metering. Findings confirm that energy independence in cooperative communities significantly reduces electricity costs and speeds up investment payback. This research opens avenues for further exploration, indicating that energy cooperatives effectively reduce local energy poverty in Poland. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
30 pages, 15348 KiB  
Article
Comparison of Floating Offshore Wind Turbine Tower Deflection Mitigation Methods Using Nonlinear Optimal-Based Reduced-Stroke Tuned Vibration Absorber
by Paweł Martynowicz, Georgios M. Katsaounis and Spyridon A. Mavrakos
Energies 2024, 17(6), 1507; https://doi.org/10.3390/en17061507 - 21 Mar 2024
Cited by 1 | Viewed by 966
Abstract
Tower fatigue and strength are crucial operational concerns of floating offshore wind turbines (FOWTs) due to the escalation of the vibration phenomena observed on these structures as compared to land-based ones. FOWT towers are excited by wave and wind polyperiodic disturbances yielding continual [...] Read more.
Tower fatigue and strength are crucial operational concerns of floating offshore wind turbines (FOWTs) due to the escalation of the vibration phenomena observed on these structures as compared to land-based ones. FOWT towers are excited by wave and wind polyperiodic disturbances yielding continual transient states of structural vibration that are challenging for vibration mitigation systems. Thus, the paper investigates a novel implementation of nonlinear optimal-based vibration control solutions for the full-scale, tension leg platform (TLP)-based, NREL 5MW wind turbine tower-nacelle model with a 10-ton tuned vibration absorber (TVA), equipped with a magnetorheological (MR) damper, located at the nacelle. The structure is subjected to excessive wave and wind excitations, considering floating platform motions derived from model experiments in a wave tank. The MR damper operates simultaneously with an electromagnetic force actuator (forming a hybrid TVA) or independently (a semiactive TVA). The study includes both actuators’ nonlinearities and dynamics, whereby the former are embedded in the Hamilton-principle-based nonlinear control solutions. The TVA is tuned either to the NREL 5MW tower-nacelle 1st bending mode frequency (TVA-TN) or to the TLP surge frequency (TVA-TLP). The optimal control task was redeveloped concerning the TVA stroke and transient vibration minimisation, including the implementation of the protected structure’s acceleration and relative displacement terms, as well as the nonzero velocity term in the quality index. The regarded model is embedded in a MATLAB/Simulink environment. On the basis of the obtained results, the TVA-TN solution is by far superior to the TVA-TLP one. All the regarded TVA-TN solutions provide a tower deflection safety factor of ca. 2, while reference systems without any vibration reduction solutions or with a passive TVA-TLP are at risk of tower structural failure as well as the hybrid TVA-TLP system. The obtained TVA stroke reductions of 25.7%/22.0% coincide with 3.6%/10.3% maximum tower deflection reductions for the semiactive/hybrid TVA-TN case (respectively) with regard to the previously developed approaches. Moreover, these reductions are obtained due to the sole control algorithm enhancement; thus, no additional resources are necessary, while this attainment is accompanied by a reduction in the required MR damper force. The lowest obtained TVA stroke amplitude of 1.66 m is guaranteed by the newly introduced semiactive control. Its hybrid equivalent ensures 8% lower primary structure deflection amplitude and reduced nacelle acceleration levels thanks to the utilisation of the force actuator of the relatively low power (ca. 6 kW); the trade-off is an increased TVA stroke amplitude of 2.19 m, which, however, is the lowest among all the tested hybrid solutions. The analysed reference passive TVA systems, along with a modified ground-hook hybrid solution, can hardly be implemented in the nacelle (especially along the demanding side–side direction). The latter, being the well-proven hybrid solution for steady-state tower deflection minimisation, yielded unsatisfactory results. The achievements of the study may be used for an effective design of a full-scale vibration reduction system for the TLP-based floating wind turbine structure. Full article
(This article belongs to the Special Issue Advances in Wind Turbine Vibration Modelling and Control)
Show Figures

Figure 1

11 pages, 4907 KiB  
Article
Molecular Dynamics Simulations of Thermal Transport of Carbon Nanotube Interfaces
by Shijun Zhou, Shan Qing, Xiaohui Zhang, Haoming Huang and Menglin Hou
Energies 2024, 17(6), 1506; https://doi.org/10.3390/en17061506 - 21 Mar 2024
Viewed by 767
Abstract
In this paper, non-equilibrium molecular dynamics simulations are used to study the interfacial heat exchange capacity of one-dimensional carbon nanotube nested structures. When the radius of the CNT substrate is increased from 1.356 to 2.712 nm, the ITC has a great enhancement from [...] Read more.
In this paper, non-equilibrium molecular dynamics simulations are used to study the interfacial heat exchange capacity of one-dimensional carbon nanotube nested structures. When the radius of the CNT substrate is increased from 1.356 to 2.712 nm, the ITC has a great enhancement from 1.340 to 2.949 nw/k. After this, we investigate the effects of overlap length, CNT length, and van der Waals interaction strength on the thermal resistance of the interface between carbon nanotubes. Firstly, we found that the nesting depth can significantly increase the ITC, and the increase in ITC is more obvious at an overlap length of 40 Å than at 30 Å. After this, the effect of length on the interfacial thermal conductivity is investigated, and the interfacial thermal conductivity is enhanced by 33.8% when the length is increased to 30 nm. Finally, the effect of van der Waals interaction strength was investigated, and the ITC increased from 1.60 nW/K to 2.71 nW/K when the scale factor was increased from 1 to 2. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

19 pages, 9133 KiB  
Article
Experimental Study on Improving Oil Recovery Mechanism of Injection–Production Coupling in Complex Fault-Block Reservoirs
by Zhe Zhang, Hongjun Gan, Chao Zhang, Shengbin Jia, Xianzheng Yu, Kejian Zhang, Xinyu Zhong, Xiaolei Zheng, Tao Shen, Le Qu and Rongjun Zhang
Energies 2024, 17(6), 1505; https://doi.org/10.3390/en17061505 - 21 Mar 2024
Cited by 1 | Viewed by 629
Abstract
In order to improve the effect of injection–production coupling development to improve crude oil recovery in complex fault-block reservoirs, we carried out a physical simulation experiment based on a sandpack model of transforming water-driven development into injection–production coupling development and quantitatively evaluated the [...] Read more.
In order to improve the effect of injection–production coupling development to improve crude oil recovery in complex fault-block reservoirs, we carried out a physical simulation experiment based on a sandpack model of transforming water-driven development into injection–production coupling development and quantitatively evaluated the influence of rounds of injection pressure coupling on the crude oil mobilization in reservoirs with different permeability levels and on oil recovery. Meanwhile, the characteristics of residual oil were studied via a numerical simulation method. The mechanism of increased oil production via injection–production coupling development was revealed by analyzing the water and oil contents, formation pressure, and streamline fields through the establishment of mechanism models. The results of the physical experiment show that injection–production coupling can improve the recovery effect of medium- and low-permeability reservoirs by 55.66%. With an increase in the injection pressure, the oil recovery percentage of the low-permeability sandpack model at 20 MPa is 100%, and this study finds that injection–production coupling is the main way to develop the recoverable oil in a low-permeability reservoir. The numerical simulation results show that among the four remaining oil distribution types (interwell-enriched, low-permeability zone-enriched, well network imperfection, and mismatch between injection and production), the interwell-enriched type of the remaining oil reserves accounts for the highest proportion (48.52%). The simulation results of the mechanism model show that water-driven development easily leads to streamline solidification, resulting in ineffective circulation of the injected water. Compared with conventional water-driven development, the pressure propagation range is significantly increased in injection–production coupling development. The reservoir streamline distribution is more continuous and uniform, and the flooding wave is wider in volume and range. This research provides a theoretical basis for the injection–production coupling technology policy in complex fault-block reservoirs. Full article
(This article belongs to the Special Issue Fundamentals of Enhanced Oil Recovery II)
Show Figures

Figure 1

30 pages, 4474 KiB  
Review
The Application of an Upflow Anaerobic Sludge Blanket Reactor in the Treatment of Brewery and Dairy Wastewater: A Critical Review
by German Smetana and Anna Grosser
Energies 2024, 17(6), 1504; https://doi.org/10.3390/en17061504 - 21 Mar 2024
Cited by 3 | Viewed by 1239
Abstract
Brewery (BW) and dairy (DW) wastewater are two types of agro-industrial wastewater that are generated in large amounts and, therefore, should be treated effectively and in an environmentally beneficial manner. Both these wastewater types are characterized by a high COD, BOD5, [...] Read more.
Brewery (BW) and dairy (DW) wastewater are two types of agro-industrial wastewater that are generated in large amounts and, therefore, should be treated effectively and in an environmentally beneficial manner. Both these wastewater types are characterized by a high COD, BOD5, and nutrient content, and conventional wastewater treatment methods such as an activated sludge process may prove to be inefficient due to the possibility of foaming, large biomass production, low activity at low temperatures, and risk of overloading the reactor with a load of organic pollutants. In the context of the described difficulties, anaerobic processes seem to be the best alternative. An interesting research area is the co-digestion of these wastewaters. However, this research direction, so far, has not been frequently reported. Given the gap in the current knowledge, this literature review aims to assess the possibility of BW and DW digestion in anaerobic reactors and provide up-to-date data on the post-treatment methods of effluent generated after the anaerobic digestion process. Despite numerous advantages, anaerobic treatment often requires post-effluent treatment to complete the treatment cycle. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

15 pages, 3975 KiB  
Article
Experimental Investigation of Injection and Production Cycles for Limestone Reservoirs via Micro-CT: Implications for Underground Gas Storage
by Mengyu Wang, Guanqun Wang, Yong Hu, Yuan Zhou, Wei Li, Dan Han, Zihan Zhao, Xia Wang, Longxin Li and Wei Long
Energies 2024, 17(6), 1503; https://doi.org/10.3390/en17061503 - 21 Mar 2024
Viewed by 637
Abstract
Global demand for underground gas storage (UGS) is steadily increasing, with the limestone-based UGS system situated in the Sichuan Basin of China gathering considerable interest in recent years. However, studies focusing on the fundamental mechanisms of the injection-production process in these systems are [...] Read more.
Global demand for underground gas storage (UGS) is steadily increasing, with the limestone-based UGS system situated in the Sichuan Basin of China gathering considerable interest in recent years. However, studies focusing on the fundamental mechanisms of the injection-production process in these systems are limited. Moreover, existing studies utilizing physical experimental methods frequently fall short in effectively visualizing micro-flow or incorporating real core samples from the reservoir. To address these gaps, we performed a coreflood experiment, integrating micro-Computed Tomography (CT) scanning to investigate mechanisms of fluid flow and storage capacity during the injection and production cycles in limestone reservoirs. Our approach involved utilizing core plugs with artificially engraved fracture-vuggy structures, which mimic the characteristics of the reservoir. Micro-CT scans were performed to visualize the microscopic changes in fractured-vuggy structures and the distribution of irreducible water during each cycle. This study reveals that increased cycles correspondingly affect gas storage capacity, particularly by expanding it in relative larger vuggy structures while reducing it in finer fissure network structures. The amount of irreducible water decreases after injection-production cycles, likely being expelled alongside the extracted dry gas. This plays a critical role in expanding the storage capacity in larger vuggy systems. Conversely, there is a decrease in storage capacity within fissure network systems, as the irreducible water is replaced by gas. This leads to a reduction in the opening force of the fine conduit. The dense matrix has a very limited effect on the flow mechanism and its influence on storage capacity. Overall, these findings offer practical insights for optimizing injection and production strategies in limestone UGS systems within the Sichuan Basin, contributing to a deeper understanding and efficient utilization of this vital infrastructure. Full article
Show Figures

Figure 1

27 pages, 2832 KiB  
Article
Field Trial Evaluation of a Hybrid Heat Pump in an Existing Multi-Family House before and after Renovation
by Daniel Neubert, Christian Glück, Jeannette Wapler, Armin Marko, Constanze Bongs and Clemens Felsmann
Energies 2024, 17(6), 1502; https://doi.org/10.3390/en17061502 - 21 Mar 2024
Viewed by 986
Abstract
Renovation of existing buildings is fundamental to reduce greenhouse gas emissions of the building sector and to ensure the efficient operation of renewable heating systems. In multi-family houses, the suitability of heat pumps is limited by high required temperatures for the hot water [...] Read more.
Renovation of existing buildings is fundamental to reduce greenhouse gas emissions of the building sector and to ensure the efficient operation of renewable heating systems. In multi-family houses, the suitability of heat pumps is limited by high required temperatures for the hot water preparation, which can be mitigated by hybrid heat pump systems. In this study, the energetic performance of a hybrid heat pump in a multi-family house, built in 1964, is investigated based on field data before and after a renovation. Multiple months are measured and mapped to a full year period. The combination of different renovation measures in the heating system and building envelope is rated w.r.t. their ecological and economical impact by taking into account the actual investment costs. The evaluation shows that the installation of a hybrid heat pump can achieve an accumulated greenhouse gas emissions reduction of 45%, which is similar to a building renovation to a new-build standard, which reduces the space heating demand by up to 62%. Nevertheless, only a combination of both measures can substantially reduce the emissions, which in this case are 81% lower compared to a gas boiler in 1990, which is still below the German climate target for 2040. Due to the low investment costs of a hybrid heat pump system, tenants are more likely to profit from a renting costs reduction, while a building renovation is especially economically beneficial at high energy prices. The results therefore emphasize that the insulation level should be selected carefully, as heat pumps already prepare space heating efficiently and that the heat pump must be able to support the hot water preparation to reach high emission reduction targets. Full article
(This article belongs to the Special Issue Advances in Energy-Efficient Buildings II)
Show Figures

Figure 1

30 pages, 6063 KiB  
Article
Empowering Active Users: A Case Study with Economic Analysis of the Electric Energy Cost Calculation Post-Net-Metering Abolition in Slovenia
by Eva Tratnik and Miloš Beković
Energies 2024, 17(6), 1501; https://doi.org/10.3390/en17061501 - 21 Mar 2024
Cited by 1 | Viewed by 720
Abstract
This paper addresses the issue of the abolition of annual net metering in Slovenia and compares the electric energy costs for the studied active user after the abolition. The article also provides an exploration of the role played by an aggregator, which serves [...] Read more.
This paper addresses the issue of the abolition of annual net metering in Slovenia and compares the electric energy costs for the studied active user after the abolition. The article also provides an exploration of the role played by an aggregator, which serves as a central entity that enables individuals to participate in the electric energy market. An analysis of the case study of an active user was made, where an analysis was made of the measurements of household consumption and photovoltaic plant production for the year 2022. This article presents an economic analysis with and without net metering and an analysis of the aggregator involvement strategies. In addition, a battery energy storage system was also considered in the analysis. An important part of the article is the identification of the flexibility potential for shiftable loads, which enable an aggregator to acquire insight into the energy consumption profile and energy production profile of active users. The following indicators were used to compare the strategies: annual electric energy cost and the indicators including self-sufficiency, self-consumption, and grid dependency. The findings indicate that, even in the absence of annual net metering, the active user can lower their costs for electric energy with the help of an aggregator. Full article
(This article belongs to the Special Issue Climate Changes and the Impacts on Power and Energy Systems)
Show Figures

Figure 1

31 pages, 8161 KiB  
Article
A Novel Supercapacitor Model Parameters Identification Method Using Metaheuristic Gradient-Based Optimization Algorithms
by Ahmad Yasin, Rached Dhaouadi and Shayok Mukhopadhyay
Energies 2024, 17(6), 1500; https://doi.org/10.3390/en17061500 - 21 Mar 2024
Cited by 2 | Viewed by 923
Abstract
This paper addresses the critical role of supercapacitors as energy storage systems with a specific focus on their modeling and identification. The lack of a standardized and efficient method for identifying supercapacitor parameters has a definite effect on widespread adoption of supercapacitors, especially [...] Read more.
This paper addresses the critical role of supercapacitors as energy storage systems with a specific focus on their modeling and identification. The lack of a standardized and efficient method for identifying supercapacitor parameters has a definite effect on widespread adoption of supercapacitors, especially in high-power density applications like electric vehicle regenerative braking. The study focuses on parameterizing the Zubieta model for supercapacitors, which involves identifying seven parameters using a hybrid metaheuristic gradient-based optimization (MGBO) approach. The effectiveness of the MGBO method is compared to the existing particle swarm optimization (PSO) and to the following algorithms proposed and developed in this work: ‘modified MGBO’ (M-MGBO) and two PSO variations—one combining PSO and M-MGBO and the other incorporating a local escaping operator (LCEO) with PSO. Metaheuristic- and gradient-based algorithms are both affected by problems associated with locally optimal results and with issues related to enforcing constraints/boundaries on solution values. This work develops the above-mentioned innovations to the MGBO and PSO algorithms for addressing such issues. Rigorous experimentation considering various types of input excitation provides results indicating that hybrid PSO-MGBO and PSO-LCEO outperform traditional PSO, showing improvements of 51% and 94%, respectively, while remaining comparable to M-MGBO. These hybrid approaches effectively estimate Zubieta model parameters. The findings highlight the potential of hybrid optimization strategies in enhancing precision and effectiveness in supercapacitor model parameterization. Full article
Show Figures

Figure 1

16 pages, 5697 KiB  
Article
An Efficient and Robust ILU(k) Preconditioner for Steady-State Neutron Diffusion Problem Based on MOOSE
by Yingjie Wu, Han Zhang, Lixun Liu, Huanran Tang, Qinrong Dou, Jiong Guo and Fu Li
Energies 2024, 17(6), 1499; https://doi.org/10.3390/en17061499 - 21 Mar 2024
Viewed by 637
Abstract
Jacobian-free Newton Krylov (JFNK) is an attractive method to solve nonlinear equations in the nuclear engineering community, and has been successfully applied to steady-state neutron diffusion k-eigenvalue problems and multi-physics coupling problems. Preconditioning technique plays an important role in the JFNK algorithm, significantly [...] Read more.
Jacobian-free Newton Krylov (JFNK) is an attractive method to solve nonlinear equations in the nuclear engineering community, and has been successfully applied to steady-state neutron diffusion k-eigenvalue problems and multi-physics coupling problems. Preconditioning technique plays an important role in the JFNK algorithm, significantly affecting its computational efficiency. The key point is how to automatically construct a high-quality preconditioning matrix that can improve the convergence rate and perform the preconditioning matrix factorization efficiently and robustly. A reordering-based ILU(k) preconditioner is proposed to achieve the above objectives. In detail, the finite difference technique combined with the coloring algorithm is utilized to automatically construct a preconditioning matrix with low computational cost. Furthermore, the reordering algorithm is employed for the ILU(k) to reduce the additional non-zero elements and pursue robust computational performance. A 2D LRA neutron steady-state benchmark problem is used to evaluate the performance of the proposed preconditioning technique, and a steady-state neutron diffusion k-eigenvalue problem with thermal-hydraulic feedback is also utilized as a supplement. The results show that coloring algorithms can automatically and efficiently construct the preconditioning matrix. The computational efficiency of the FDP with coloring could be about 60 times higher than that of the preconditioner without the coloring algorithm. The reordering-based ILU(k) preconditioner shows excellent robustness, avoiding the effect of the fill-in level k choice in incomplete LU factorization. Moreover, its performances under different fill-in levels are comparable to the optimal computational cost with natural ordering. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

12 pages, 1997 KiB  
Article
A New Study on the Effect of the Partial Wake Generated in a Wind Farm
by Said Zergane, Chouki Farsi, Salah Amroune, Souad Benkherbache and Noureddine Menasri
Energies 2024, 17(6), 1498; https://doi.org/10.3390/en17061498 - 21 Mar 2024
Viewed by 692
Abstract
In this article, we present an investigative study on the often-overlooked partial wake phenomenon in previous studies concerning wind farm configurations. A partial wake occurs when a portion of the actuator disk of a downstream wind turbine is affected by the wake of [...] Read more.
In this article, we present an investigative study on the often-overlooked partial wake phenomenon in previous studies concerning wind farm configurations. A partial wake occurs when a portion of the actuator disk of a downstream wind turbine is affected by the wake of another upstream turbine. This phenomenon occurs in addition to the full wake, where the entire upstream turbine is affected by the wake of the frontal turbine, also leading to a decrease in wind speed and consequently a reduction in power production. The proposed study is based on measuring the power generated by the area swept by the wake of an array of turbines in a wind farm. To accomplish this, we integrate the linear wake model of Jensen, the specifications of the ENERCON E2 wind turbine, and the wind farm data into Matlab-developed software (version 18) to perform the calculations. In a concrete application, this proposed method is validated by reproducing the previous works that neglected the partial wake in wind farm configurations. The simulation results obtained are analyzed, compared, and discussed under similar operational conditions. Full article
Show Figures

Figure 1

22 pages, 5094 KiB  
Article
A Fully Coupled Gas–Water–Solids Mathematical Model for Vertical Well Drainage of Coalbed Methane
by Chengwang Wang, Haifeng Zhao, Zhan Liu, Tengfei Wang and Gaojie Chen
Energies 2024, 17(6), 1497; https://doi.org/10.3390/en17061497 - 21 Mar 2024
Viewed by 729
Abstract
The coupling relationship between the deformation field, the diffusion field, and the seepage field is an important factor in fluid transport mechanisms in the long-term coalbed methane (CBM) exploitation process. A mathematical model of gas–water two-phase fluid–structure coupling in a double-porosity medium in [...] Read more.
The coupling relationship between the deformation field, the diffusion field, and the seepage field is an important factor in fluid transport mechanisms in the long-term coalbed methane (CBM) exploitation process. A mathematical model of gas–water two-phase fluid–structure coupling in a double-porosity medium in coal reservoirs is established in this paper. Taking Hancheng Block, a typical production block in Qinshui Basin, as the geological background critical desorption pressure, reservoir permeability anisotropy is considered in the model. COMSOL Multiphysics (COMSOL_6.0) was used to create the model. The accuracy and rationality of the model were verified by comparing field production data with the results of the simulation. Using the simulation, the influence law of various reservoir geological characteristics parameters (Langmuir strain constant, ratio of critical desorption pressure to reservoir pressure of coal seam (CDPRP), elastic modulus, initial water saturation, Langmuir pressure, etc.) on CBM productivity, reservoir pressure, and permeability ratio was discussed, and a thorough analysis of the factors affecting productivity was obtained using the orthogonal test method. The findings of this study indicate that the change in permeability is the result of the superposition effect of many factors. Different stages of drainage have different primary regulating factors. Rock skeleton stress has a consequence on coal matrix permeability in the early drainage stage, and coal matrix shrinkage is primarily impacted in the later drainage stage. Besides the initial water saturation, other reservoir geological parameters (e.g., CDPRP, Langmuir volume, Langmuir strain constant, elastic modulus) have a strong relationship with productivity. When the value of coal geological parameters increases, the degree of productivity release is higher (as the initial water saturation increases, the production decreases correspondingly). Different coal and rock parameters have varying levels of impact on the drainage stage of CBM wells. The influences of the CDPRP, Langmuir volume, Langmuir strain constant, and elastic modulus on gas production are mainly concentrated in the initial and intermediate drainage stages and begin to fall off during the last drainage stage. Per the multi-factor analysis, the main coal–rock parameters affecting the productivity release are the Langmuir strain constant, followed by the CDPRP and other parameters. The analysis findings can offer theoretical guidance for CBM well selection and layer selection and enhance the block’s overall CBM development level. The improved productivity prediction model for CBM, which is based on fluid–structure coupling theory, can offer a new technical benchmark for CBM well productivity prediction. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery for Unconventional Oil and Gas Reservoirs)
Show Figures

Figure 1

20 pages, 1079 KiB  
Review
Review of DC-DC Partial Power Converter Configurations and Topologies
by Omar Gsous, Reem Rizk, Arsenio Barbón and Ramy Georgious
Energies 2024, 17(6), 1496; https://doi.org/10.3390/en17061496 - 21 Mar 2024
Viewed by 1198
Abstract
The Partial Power Processing (PPP) concept has garnered attention as it enables the down-sizing of converter and component ratings. Unlike conventional power processing, PPP addresses a portion of the transferred power, leading to a reduction in conversion losses. Throughout this paper, the state [...] Read more.
The Partial Power Processing (PPP) concept has garnered attention as it enables the down-sizing of converter and component ratings. Unlike conventional power processing, PPP addresses a portion of the transferred power, leading to a reduction in conversion losses. Throughout this paper, the state of the art of isolated and non-isolated DC-DC converter topologies will be revised. Partial Power Converter (PPC) systems represent one of the main streams of PPP, which, based on isolation requirements and converter connections, can further be divided into isolated converters, such as: Input-Parallel-Output-Series (IPOS), Input-Series-Output-Parallel (ISOP), and, Input-Series-Output-Series (ISOS), or non-isolated converters. This work intends to evaluate and differentiate the characteristics of each type of topology while developing analytically possible connections that may require further research and reviewing metrics that help in fair comparisons of different PPC arrangements, operating under different conditions. A thorough revision is provided for DC-DC converter topologies due to their increased importance in present-day applications, such as energy storage, Electric Vehicles (EVs), and Photo-Voltaics (PVs). Full article
Show Figures

Figure 1

22 pages, 458 KiB  
Review
A Review of Energy Overconsumption Reduction Methods in the Utilization Stage in Compressed Air Systems
by Dominik Gryboś and Jacek S. Leszczyński
Energies 2024, 17(6), 1495; https://doi.org/10.3390/en17061495 - 21 Mar 2024
Viewed by 876
Abstract
Pneumatic systems use the energy of compressed air to carry out manufacturing automation processes through the implementation of complex handling and motion tasks. However, these systems are energy intensive: it is estimated that pneumatic systems in manufacturing plants consume approximately 10% of all [...] Read more.
Pneumatic systems use the energy of compressed air to carry out manufacturing automation processes through the implementation of complex handling and motion tasks. However, these systems are energy intensive: it is estimated that pneumatic systems in manufacturing plants consume approximately 10% of all electricity consumed in the industrial sector. At the same time, the energy efficiency of the whole pneumatic system is observed to be 6–10%, due to the compression process, oversizing, and overconsumption. There are numerous solutions in the literature focusing on improving efficiency at the compression stage of utilization; however, for the utilization stage, there is a lack of systematization and grouping of these solutions. The following review will summarize current knowledge about the utilization stage and methods for improving oversizing and energy overconsumption. In addition, a method of exergy analysis for pneumatic systems will be presented, which is a very useful tool to assess the efficiency of these systems. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
Show Figures

Figure 1

23 pages, 7895 KiB  
Article
Energy Consumption and Battery Size of Battery Trolley Electric Trucks in Surface Mines
by Haiming Bao, Peter Knights, Mehmet Kizil and Micah Nehring
Energies 2024, 17(6), 1494; https://doi.org/10.3390/en17061494 - 21 Mar 2024
Cited by 1 | Viewed by 1089
Abstract
Mining production, being one of the most energy-intensive industries globally, consumes substantial amounts of fossil fuels and contributes to extensive carbon emissions worldwide. The trend toward electrification and advanced developments in battery technology have shifted attention from diesel power to battery alternatives. These [...] Read more.
Mining production, being one of the most energy-intensive industries globally, consumes substantial amounts of fossil fuels and contributes to extensive carbon emissions worldwide. The trend toward electrification and advanced developments in battery technology have shifted attention from diesel power to battery alternatives. These alternatives are appealing, as they contribute to decarbonisation efforts when compared to conventional diesel trucks. This paper presents a comprehensive review of recent technological advancements in powertrains for Mining Haulage Truck (MHT). It also compares these configurations based on mining system-level considerations to assess their future potential. The evaluated configurations include Diesel-Electric Truck (DET), Trolley Assist Truck (TAT), Battery-only Truck (BOT), Battery Trolley with Dynamic charging truck (BT-D), and Battery Trolley with Stationary charging truck (BT-S). According to the analysis, the energy demand for on-board diesel or battery power (excluding trolley power) in these alternative options is as follows: DET—681 kWh, BOT—645 kWh, TAT—511 kWh, BT-S—471 kWh, and BT-D—466 kWh. The paper also illustrates the theory of battery size design based on the current battery technology, battery material selection, battery package design, and battery size selection methods. In the case of tailored battery size selection, BOT, BT-D, and BT-S configurations require LiFePO4 (LFP) battery masses of 25 tonnes, 18 tonnes, and 18 tonnes, respectively. Based on a techno-economic assessment of battery MHT alternatives with a future perspective, it has been determined that BT-D requires the lowest amount of on-board battery energy. Furthermore, over a span of 20 years, BT-S has demonstrated the lowest on-board battery cost. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

17 pages, 2552 KiB  
Article
Hydrogen Storage in Deep Saline Aquifers: Non-Recoverable Cushion Gas after Storage
by Katarzyna Luboń and Radosław Tarkowski
Energies 2024, 17(6), 1493; https://doi.org/10.3390/en17061493 - 21 Mar 2024
Viewed by 955
Abstract
Underground hydrogen storage facilities require cushion gas to operate, which is an expensive one-time investment. Only some of this gas is recoverable after the end of UHS operation. A significant percentage of the hydrogen will remain in underground storage as non-recoverable cushion gas. [...] Read more.
Underground hydrogen storage facilities require cushion gas to operate, which is an expensive one-time investment. Only some of this gas is recoverable after the end of UHS operation. A significant percentage of the hydrogen will remain in underground storage as non-recoverable cushion gas. Efforts must be made to reduce it. This article presents the results of modeling the cushion gas withdrawal after the end of cyclical storage operation. It was found that the amount of non-recoverable cushion gas is fundamentally influenced by the duration of the initial hydrogen filling period, the hydrogen flow rate, and the timing of the upconing occurrence. Upconing is one of the main technical barriers to hydrogen storage in deep saline aquifers. The ratio of non-recoverable cushion gas to cushion gas (NRCG/CG) decreases with an increasing amount of cushion gas. The highest ratio, 0.63, was obtained in the shortest 2-year initial filling period. The lowest ratio, 0.35, was obtained when utilizing the longest initial filling period of 4 years and employing the largest amount of cushion gas. The presented cases of cushion gas recovery can help investors decide which storage option is the most advantageous based on the criteria that are important to them. Full article
(This article belongs to the Special Issue Green Hydrogen Economy in the Global Energy Transition)
Show Figures

Figure 1

13 pages, 2684 KiB  
Article
Hydrogen-Rich Syngas Production from Gasification of Sewage Sludge: Catalonia Case
by Sandra Untoria, Abel Rouboa and Eliseu Monteiro
Energies 2024, 17(6), 1492; https://doi.org/10.3390/en17061492 - 21 Mar 2024
Viewed by 699
Abstract
The continuous tightening of legislation regulating the agricultural usage of sewage sludge in the province of Catalonia (Spain) leads us to propose its gasification to produce hydrogen-rich syngas. A thermodynamic equilibrium model was developed using Aspen Plus® to simulate the air and [...] Read more.
The continuous tightening of legislation regulating the agricultural usage of sewage sludge in the province of Catalonia (Spain) leads us to propose its gasification to produce hydrogen-rich syngas. A thermodynamic equilibrium model was developed using Aspen Plus® to simulate the air and steam gasification of sewage sludge from a wastewater treatment plant in Catalonia. The syngas generated is analyzed in terms of composition and lower heating value (LHV), as a function of equivalence ratio (ER), gasification temperature (Tgas), steam-to-biomass ratio (SBR), and moisture content (MC). Results show that air-blown gasification finds the highest LHV of 7.48 MJ/m3 at 1200 °C, ER of 0.2, and MC of 5%. Using steam as the gasifying agent, an LHV of 10.30 MJ/m3 is obtained at SBR of 0.2, MC of 5%, and 1200 °C. A maximum of 69.7% hydrogen molar fraction is obtained at 600 °C, MC of 25%, and SBR of 1.2. This study suggests using steam as a gasifying agent instead of air since it provides a higher LHV of the syngas as well as a hydrogen-richer syngas for the implementation of gasification as an alternative method to sewage sludge treatment in the region of Catalonia. Since the economic aspect should also be considered, in this regard, our sensitivity analysis provided important data demonstrating that it is possible to reduce the gasification temperature without significantly decreasing the LHV. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

29 pages, 4929 KiB  
Article
Research on Dynamic Economic Dispatch Optimization Problem Based on Improved Grey Wolf Algorithm
by Wenqiang Yang, Yihang Zhang, Xinxin Zhu, Kunyan Li and Zhile Yang
Energies 2024, 17(6), 1491; https://doi.org/10.3390/en17061491 - 21 Mar 2024
Cited by 1 | Viewed by 873
Abstract
The dynamic economic dispatch (DED) problem is a typical complex constrained optimization problem with non-smooth, nonlinear, and nonconvex characteristics, especially considering practical situations such as valve point effects and transmission losses, and its objective is to minimize the total fuel costs and total [...] Read more.
The dynamic economic dispatch (DED) problem is a typical complex constrained optimization problem with non-smooth, nonlinear, and nonconvex characteristics, especially considering practical situations such as valve point effects and transmission losses, and its objective is to minimize the total fuel costs and total carbon emissions of generating units during the dispatch cycle while satisfying a series of equality and inequality constraints. For the challenging DED problem, a model of a dynamic economic dispatch problem considering fuel costs is first established, and then an improved grey wolf optimization algorithm (IGWO) is proposed, in which the exploitation and exploration capability of the original grey wolf optimization algorithm (GWO) is enhanced by initializing the population with a chaotic algorithm and introducing a nonlinear convergence factor to improve weights. Furthermore, a simple and effective constraint-handling method is proposed for the infeasible solutions. The performance of the IGWO is tested with eight benchmark functions selected and compared with other commonly used algorithms. Finally, the IGWO is utilized for three different scales of DED cases, and compared with existing methods in the literature. The results show that the proposed IGWO has a faster convergence rate and better global optimization capabilities, and effectively reduces the fuel costs of the units, thus proving the effectiveness of IGWO. Full article
(This article belongs to the Special Issue Techno-Economic Analysis and Optimization for Energy Systems)
Show Figures

Figure 1

21 pages, 5394 KiB  
Article
Performance and Emission Optimisation of an Ammonia/Hydrogen Fuelled Linear Joule Engine Generator
by Gen Chen, Ugochukwu Ngwaka, Dawei Wu and Mingqiang Li
Energies 2024, 17(6), 1490; https://doi.org/10.3390/en17061490 - 21 Mar 2024
Viewed by 1132
Abstract
This paper presents a Linear Joule Engine Generator (LJEG) powered by ammonia and hydrogen co-combustion to tackle decarbonisation in the electrification of transport propulsion systems. A dynamic model of the LJEG, which integrates mechanics, thermodynamics, and electromagnetics sub-models, as well as detailed combustion [...] Read more.
This paper presents a Linear Joule Engine Generator (LJEG) powered by ammonia and hydrogen co-combustion to tackle decarbonisation in the electrification of transport propulsion systems. A dynamic model of the LJEG, which integrates mechanics, thermodynamics, and electromagnetics sub-models, as well as detailed combustion chemistry analysis for emissions, is presented. The dynamic model is integrated and validated, and the LJEG performance is optimised for improved performance and reduced emissions. At optimal conditions, the engine could generate 1.96 kWe at a thermal efficiency of 34.3% and an electrical efficiency of 91%. It is found that the electromagnetic force of the linear alternator and heat addition from the external combustor and engine valve timing have the most significant influences on performance, whereas the piston stroke has a lesser impact. The impacts of hydrogen ratio, oxygen concentration, inlet pressure, and equivalence ratio of ammonia-air on nitric oxide (NO) formation and reduction are revealed using a detailed chemical kinetic analysis. Results indicated that rich combustion and elevated pressure are beneficial for NO reduction. The rate of production analysis indicates that the equivalence ratio significantly changes the relative contribution among the critical NO formation and reduction reaction pathways. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

17 pages, 10679 KiB  
Article
Investigation on Transition Characteristics of a Modified RAE5243 Airfoil
by Zhiyong Liu, Hongbiao Wang, Zhao Zhang, Xiang Liu and Fengxue Qian
Energies 2024, 17(6), 1489; https://doi.org/10.3390/en17061489 - 20 Mar 2024
Viewed by 684
Abstract
The transition characteristics of a modified RAE5243 airfoil were investigated using a wind tunnel test and numerical simulations. Transition detection is of great significance for the assessment of drag reduction. In wind tunnel tests, transition location can be detected by infrared thermography. However, [...] Read more.
The transition characteristics of a modified RAE5243 airfoil were investigated using a wind tunnel test and numerical simulations. Transition detection is of great significance for the assessment of drag reduction. In wind tunnel tests, transition location can be detected by infrared thermography. However, in subsonic and transonic wind tunnel tests, the temperature difference between the laminar flow region and turbulent flow region is small. Moreover, the test models are usually made of metals, which make the transition location hard to identify. Combined with infrared thermography, a carbon nanotube heating coating powered by electricity was used to detect the transition location of a modified RAE5243 airfoil wing. The effects of heating power, angle of attack (AOA), and Mach number were studied. The results show that heating power has no impact on transition location. As the AOA increases, the transition location moves forward. With an increase in Mach number, the transition location moves forward first and then backward, and it reaches its most forward point at Ma = 0.75. The results of our numerical simulations indicate that, at Ma 0.75, a shock wave appears on the wing, and the transition is closely related to the shock wave rather than the adverse pressure gradient. Full article
Show Figures

Figure 1

18 pages, 3304 KiB  
Article
Unlocking the Technology Potential for Universal Access to Clean Energy in Developing Countries
by Boucar Diouf and Ekra Miezan
Energies 2024, 17(6), 1488; https://doi.org/10.3390/en17061488 - 20 Mar 2024
Cited by 1 | Viewed by 758
Abstract
Access to clean energy remains a major issue in developing countries, particularly Sub-Saharan Africa, despite successive policies and the assistance of international institutions or organizations. The United Nations (UN) launched some of the most ambitious initiatives with the Millennium Development Goals and, more [...] Read more.
Access to clean energy remains a major issue in developing countries, particularly Sub-Saharan Africa, despite successive policies and the assistance of international institutions or organizations. The United Nations (UN) launched some of the most ambitious initiatives with the Millennium Development Goals and, more recently, the Sustainable Development Goals and Power Africa, a United States (US) government initiative. Sub-Saharan Africa has an important potential in renewable energy for both biogas and solar photovoltaic energy, but they remain underexploited. This paper presents the challenges of access to clean energy in developing countries and the failure of remedial policies mostly based on public–private partnerships (PPPs) in the context of endemic poverty of rural populations. In addition, the development of modern energy technologies remains very limited. Appropriate reforms should be carried out to change the paradigm and allow universal access to clean energy. This paper also addresses the different structural barriers that hinder access to technology in Sub-Saharan Africa and the consequences of access to clean energy in the context of poverty. Full article
(This article belongs to the Collection Feature Papers in Energy, Environment and Well-Being)
Show Figures

Figure 1

26 pages, 5153 KiB  
Article
Adaptation of Microinverter Reference Design for Integration with Battery Energy Storage Systems in Microgrids
by Danijel Jolevski, Damir Jakus, Josip Vasilj and Joško Novaković
Energies 2024, 17(6), 1487; https://doi.org/10.3390/en17061487 - 20 Mar 2024
Viewed by 700
Abstract
The paper presents an adaptation of the microinverter platform from Texas Instruments to incorporate a battery energy storage system (BESS) alongside the development of the BESS system itself. Initially designed for unidirectional power flow between PV panels and an electric grid, the platform [...] Read more.
The paper presents an adaptation of the microinverter platform from Texas Instruments to incorporate a battery energy storage system (BESS) alongside the development of the BESS system itself. Initially designed for unidirectional power flow between PV panels and an electric grid, the platform required modifications to accommodate bidirectional energy transfer for BESS integration. These modifications encompass software adjustments and hardware enhancements, which are all detailed within the paper. The electrical configuration includes selecting and deploying components such as DCDC power converters, microcontrollers, measured signals, and actuating signals to facilitate battery connection to the platform’s DC bus. Furthermore, a supervisory control and data acquisition (SCADA) system is devised for supervisory control and monitoring, with its implementation outlined. Control software tailored for the chosen microcontroller of the DCDC converters is described in terms of structure and functionality. A hardware-in-the-loop (HIL) methodology is employed to validate the proposed modifications and microgrid configuration. Utilizing the real-time simulator OPAL-RT, the paper presents experimental results and their analysis within the considered microgrid environment. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
Show Figures

Figure 1

16 pages, 9790 KiB  
Article
Ash Formation and Associated Interactions during Co-Combustion of Wheat Straw and Sewage Sludge
by Yingnan Shan, Hongfang Zhou and Changdong Sheng
Energies 2024, 17(6), 1486; https://doi.org/10.3390/en17061486 - 20 Mar 2024
Viewed by 694
Abstract
The aim of the present work was to investigate ash formation and associated interactions during the pulverized fuel co-combustion of biomass fuels. Combustion experiments were carried out with narrowly sized wheat straw (WS), sewage sludge (SS), and their blends in a drop tube [...] Read more.
The aim of the present work was to investigate ash formation and associated interactions during the pulverized fuel co-combustion of biomass fuels. Combustion experiments were carried out with narrowly sized wheat straw (WS), sewage sludge (SS), and their blends in a drop tube furnace at 1100 °C and 1300 °C. The resulting residual ash and fine particulate matter (PM10) were characterized with various analyses. It was observed that co-combustion influences size distributions of the residual ash particles and generally generates larger residual ash particles close to those of SS combustion. The interaction of K capture by minerals enhances the melting and consequently increases the production of large and melting ash particles during co-combustion. It was found that blending SS with WS has not only the positive interaction of K capture by minerals from SS ash to significantly reduce submicron ash formation, but also the positive interaction of transforming alkali chlorides into alkali sulfates to reduce the corrosiveness of submicron ash particles. Co-combustion of SS with WS can also reduce the presence of alkali chloride at PM1–10, lowering the propensities of deposition and corrosion of the fine residual ash particles. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

30 pages, 4706 KiB  
Article
Sizing of Battery Energy Storage Systems for Firming PV Power including Aging Analysis
by Juan A. Tejero-Gómez and Ángel A. Bayod-Rújula
Energies 2024, 17(6), 1485; https://doi.org/10.3390/en17061485 - 20 Mar 2024
Viewed by 1071
Abstract
The variability of solar radiation presents significant challenges for the integration of solar photovoltaic (PV) energy into the electrical system. Incorporating battery storage technologies ensures energy reliability and promotes sustainable growth. In this work, an energy analysis is carried out to determine the [...] Read more.
The variability of solar radiation presents significant challenges for the integration of solar photovoltaic (PV) energy into the electrical system. Incorporating battery storage technologies ensures energy reliability and promotes sustainable growth. In this work, an energy analysis is carried out to determine the installation size and the operating setpoint with optimal constant monthly power through an iterative calculation process, considering various operating setpoints and system parameters. A degradation model is integrated according to the curves offered by battery manufacturers and the charge–discharge cycles are calculated using the rainflow method to guarantee a reliable analysis of the plant. Through massive data analysis in a long-term simulation, indicators are generated that allow for establishing a relationship between the energy unavailability of the system and the BESS dimensions. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
Show Figures

Figure 1

22 pages, 2417 KiB  
Review
Review of the Integration of Hybrid Electric Turbochargers for Mass-Produced Road Vehicles
by Cosmin Constantin Suciu, Sorin Vlad Igret, Ion Vetres and Ioana Ionel
Energies 2024, 17(6), 1484; https://doi.org/10.3390/en17061484 - 20 Mar 2024
Viewed by 903
Abstract
This study presents the findings of a comprehensive SWOT analysis on the integration of hybrid electric turbochargers (HETs) in mass-produced road vehicles. Through a synthesis of multiple research findings, this study compared the performance of HETs on thermal engines versus traditional turbochargers and [...] Read more.
This study presents the findings of a comprehensive SWOT analysis on the integration of hybrid electric turbochargers (HETs) in mass-produced road vehicles. Through a synthesis of multiple research findings, this study compared the performance of HETs on thermal engines versus traditional turbochargers and HETs on thermal engines versus HETs on hybrid engines. The analysis highlights key strengths, weaknesses, opportunities, and threats associated with the adoption of HET technology in the automotive industry. The results of the SWOT analysis provide valuable insights for both manufacturers and consumers regarding the feasibility and benefits of adopting HET technology in modern vehicles. By elucidating the fundamental mechanics of turbochargers and demonstrating the potential of hybrid electric turbocharging, this study contributes to a deeper understanding of the role of HETs in shaping the future of automotive engineering. In conclusion, this study underscores the potential of HETs to substantially mitigate the environmental impact of the transportation sector by reducing emissions and conserving energy. The novelty of this study is reflected in its comprehensive synthesis of multiple research findings, offering insights into the feasibility and benefits of adopting HET technology in modern vehicles, thereby contributing to a deeper understanding of the role of HETs in shaping the future of automotive engineering and highlighting their continued significance, as evidenced by the systematic SWOT analysis presented. Their ability to optimize fuel efficiency and power output, coupled with the feasibility of downsized engines, positions HETs as an attractive option for sustainable mobility solutions. Further research is warranted to comprehensively understand the environmental and economic implications of widespread HET adoption. Full article
Show Figures

Graphical abstract

12 pages, 3241 KiB  
Article
Cu-Metalated Porphyrin-Based MOFs Coupled with Anatase as Photocatalysts for CO2 Reduction: The Effect of Metalation Proportion
by Maria Anagnostopoulou, Valérie Keller and Konstantinos C. Christoforidis
Energies 2024, 17(6), 1483; https://doi.org/10.3390/en17061483 - 20 Mar 2024
Cited by 1 | Viewed by 875
Abstract
Converting carbon dioxide (CO2) into valuable chemicals such as fossil resources via photocatalysis requires the development of advanced materials. Herein, we coupled zirconium-based metal–organic frameworks (MOFs) containing porphyrin and Cu-porphyrin with anatase TiO2. The effect of the porphyrin metalation [...] Read more.
Converting carbon dioxide (CO2) into valuable chemicals such as fossil resources via photocatalysis requires the development of advanced materials. Herein, we coupled zirconium-based metal–organic frameworks (MOFs) containing porphyrin and Cu-porphyrin with anatase TiO2. The effect of the porphyrin metalation proportion was also investigated. Notably, while the use of free-base porphyrin as the organic linker resulted in the development of PCN-224, the presence of Cu-porphyrin provided mixed-phase MOF structures containing both PCN-224 and PCN-222. MOF/TiO2 composites bearing partial (50%) metalated porphyrin were proven more active and selective towards the production of CH4, at ambient conditions, in the gas phase and using water vapors without the use of hole scavengers. The optimized composite bearing 15 wt.% of the partial metalated MOF was three times more active than pure TiO2 towards CH4 production. This study provides insights on the effect of precise materials engineering at a molecular level on the development of advanced MOF-based photocatalysts for CO2 reduction. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

21 pages, 1155 KiB  
Review
Renewable Energy Potentials and Roadmap in Brazil, Austria, and Germany
by Gustavo Henrique Romeu da Silva, Andreas Nascimento, Christoph Daniel Baum and Mauro Hugo Mathias
Energies 2024, 17(6), 1482; https://doi.org/10.3390/en17061482 - 20 Mar 2024
Viewed by 1424
Abstract
The emerging energy transition is particularly described as a move towards a cleaner, lower-carbon system. In the context of the global shift towards sustainable energy sources, this paper reviews the potential and roadmap for hydrogen energy as a crucial component of the clean [...] Read more.
The emerging energy transition is particularly described as a move towards a cleaner, lower-carbon system. In the context of the global shift towards sustainable energy sources, this paper reviews the potential and roadmap for hydrogen energy as a crucial component of the clean energy landscape. The primary objective is to present a comprehensive literature overview, illuminating key themes, trends, and research gaps in the scientific discourse concerning hydrogen production and energy policy. This review focuses particularly on specified geographic contexts, with an emphasis on understanding the unique energy policies related to renewable energy in Brazil, Austria, and Germany. Given their distinct social systems and developmental stages, this paper aims to delineate the nuanced approaches these countries adopt in their pursuit of renewable energy and the integration of hydrogen within their energy frameworks. Brazil exhibits vast renewable energy potential, particularly in wind and solar energy sectors, positioning itself for substantial growth in the coming years. Germany showcases a regulatory framework that promotes innovation and technological expansion, reflecting its highly developed social system and commitment to transitioning away from fossil fuels. Austria demonstrates dedication to decarbonization, particularly through the exploration of biomethane for residential heating and cooling. Full article
Show Figures

Figure 1

32 pages, 1081 KiB  
Article
Useful Exergy as an Intermediate Input in a Two-Sector Model of the United States Economy
by João Gonçalves, João Santos, Matthew Heun, Paul E. Brockway and Tiago Domingos
Energies 2024, 17(6), 1481; https://doi.org/10.3390/en17061481 - 20 Mar 2024
Viewed by 1037
Abstract
Conventional economic growth models treat production/consumption as abstractions linked only by money flows, disregarding their connection to the physical world. Nevertheless, the existing literature suggests that energy flows can influence production and links useful exergy prices with economic growth. Useful exergy is energy [...] Read more.
Conventional economic growth models treat production/consumption as abstractions linked only by money flows, disregarding their connection to the physical world. Nevertheless, the existing literature suggests that energy flows can influence production and links useful exergy prices with economic growth. Useful exergy is energy measured at the stage where it produces an end-use (and is a measurement of energy quality). Not all approaches in the literature use this metric and they often consider energy as a primary input (despite it being an intermediate input). We explore the relationship between energy flows and economic growth for the US through a framework where useful exergy, the output of an “extended energy sector” (where all effects of increasing primary-to-final-to-useful exergy efficiency are located), is an intermediate input for a “non-energy sector”. Together, they encompass the entire economy. We conclude that the share of investment in the extended energy sector grew with the overall economic growth throughout 1960–2020, while the labour share decreased. The non-energy sector contributed the largest share of consumption, exports, imports and labour. In recent years, the energy sector has overtaken it in terms of investment. Our two-sector model has important implications for current climate policy, namely regarding the Integrated Assessment Models on which it is based. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

15 pages, 1349 KiB  
Article
Global Residual Demand Analysis in a Deep Variable Renewable Energy Penetration Scenario for Replacing Coal: A Study of 42 Countries
by Jai-Oan Cho, Jeong Ik Lee and Staffan Qvist
Energies 2024, 17(6), 1480; https://doi.org/10.3390/en17061480 - 20 Mar 2024
Cited by 1 | Viewed by 753
Abstract
This study analyzes the residual demand curves of 42 countries under five scenarios with varying variable renewable energy (VRE) levels to observe how replacing coal with VRE can alter the demand curve. Using 2018 demand data, the residual demand was calculated and analyzed [...] Read more.
This study analyzes the residual demand curves of 42 countries under five scenarios with varying variable renewable energy (VRE) levels to observe how replacing coal with VRE can alter the demand curve. Using 2018 demand data, the residual demand was calculated and analyzed by subtracting the VRE supply curve from the demand curve. The operational requirements for low-carbon load-following sources amid high VRE penetration are examined. Key findings indicate that substantial peak residual demand persists even with 70% energy from VREs, emphasizing the need for significant load-following resources. Transitioning to a 70% VRE scenario could reduce CO2 emissions by approximately 16.799 billion tons, advancing towards carbon neutrality. However, this benefit depends on maintaining grid stability, highlighting the importance of adequate load-following plants to manage VRE intermittency. Countries like Malaysia, South Korea, Tunisia, the UK, Japan, Indonesia, Thailand, and Libya face higher load-following demands due to specific renewable energy contexts. This study reveals varying renewable energy environments across countries, suggesting that a universal strategy for carbon neutrality and replacing coal may not be feasible. Each nation must develop its own approach to emission reduction, considering its unique conditions. This research emphasizes the urgent need for developing cost-effective, flexible, low-carbon load-following sources to enhance decarbonization potential globally. Full article
(This article belongs to the Special Issue Repurposing Coal Power Plants with Nuclear Power Plants)
Show Figures

Figure 1

15 pages, 5303 KiB  
Article
Reservoir Porosity Prediction Based on BiLSTM-AM Optimized by Improved Pelican Optimization Algorithm
by Lei Qiao, Nansi He, You Cui, Jichang Zhu and Kun Xiao
Energies 2024, 17(6), 1479; https://doi.org/10.3390/en17061479 - 20 Mar 2024
Cited by 2 | Viewed by 674
Abstract
To accurately predict reservoir porosity, a method based on bi-directional long short-term memory with attention mechanism (BiLSTM-AM) optimized by the improved pelican optimization algorithm (IPOA) is proposed. Firstly, the nonlinear inertia weight factor, Cauchy mutation, and sparrow warning mechanism are introduced to improve [...] Read more.
To accurately predict reservoir porosity, a method based on bi-directional long short-term memory with attention mechanism (BiLSTM-AM) optimized by the improved pelican optimization algorithm (IPOA) is proposed. Firstly, the nonlinear inertia weight factor, Cauchy mutation, and sparrow warning mechanism are introduced to improve the pelican optimization algorithm (POA). Secondly, the superiority of IPOA is verified by using the CEC–2022 benchmark test functions. In addition, the Wilcoxon test is applied to evaluate the experimental results, which proves the superiority of IPOA against other popular algorithms. Finally, BiLSTM-AM is optimized by IPOA, and IPOA-BiLSTM-AM is used for porosity prediction in the Midlands basin. The results show that IPOA-BiLSTM-AM has the smallest prediction error for the verification set samples (RMSE and MAE were 0.5736 and 0.4313, respectively), which verifies its excellent performance. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

49 pages, 6240 KiB  
Review
A Systematic Review on Heat Transfer and Pressure Drop Correlations for Natural Refrigerants
by Alberta Carella and Annunziata D’Orazio
Energies 2024, 17(6), 1478; https://doi.org/10.3390/en17061478 - 19 Mar 2024
Viewed by 818
Abstract
Due to environmental concerns, natural refrigerants and their use in refrigeration and air conditioning systems are receiving more attention from manufacturers, end users and the scientific community. The study of heat transfer and pressure drop is essential for accurate design and more energy [...] Read more.
Due to environmental concerns, natural refrigerants and their use in refrigeration and air conditioning systems are receiving more attention from manufacturers, end users and the scientific community. The study of heat transfer and pressure drop is essential for accurate design and more energy efficient cycles using natural refrigerants. The aim of this work is to provide an overview of the latest outcomes related to heat transfer and pressure drop correlations for ammonia, propane, isobutane and propylene and to investigate the current state of the art in terms of operating conditions. Available data on the existing correlations between heat transfer coefficients and pressure drops for natural refrigerants have been collected through a systematic search. Whenever possible, validity intervals are given for each correlation, and the error is quantified. It is the intention of the authors that this paper be a valuable support for researchers and an aid to design, with particular reference to heat pumps. A procedure based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was adopted, and the Scopus database was used to query the relevant literature. A total of 135 publications qualified for inclusion in the survey; 34 articles report experimental investigations for unusual geometric conditions. Of the 101 selected papers related to usual geometric conditions, N = 50 deal only with HTC, N = 16 deal only with pressure drop and the remainder (N = 35) analyse both HTC and pressure drop. Among the 85 HTC papers, N = 53 deal with the evaporating condition, N = 30 with condensation and only N = 2 with the heat transfer correlations under both conditions. Most of the 101 articles concern propane and isobutane. The high temperatures are less widely investigated. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop