A New Study on the Effect of the Partial Wake Generated in a Wind Farm
Abstract
:1. Introduction
2. Jensen Wake Model
2.1. Partial Wake Modeling within the Jansen Model
2.2. Method for Determining the Region Impacted by a Partial Wake in the Jansen Model
3. Power Generated in the Case of a Partial Wake
Approach to Estimating the Power Produced by a Wind Farm
4. Results and Discussion
4.1. Interval of the Partial Wake at a Wind Farm
4.2. The Power Generated by the Wind Farm
4.3. Validity Study
- −
- In Mosetti’s study [27], the 26 wind turbines arranged in the optimal configuration were more widely spaced in a park of 100 cells, resulting in less partial wake interference.
- −
- Conversely, in the study by Zergane et al. [38], the 55 wind turbines in the park were distributed across a dense arrangement of 144 cells, leading to increased interference among the wind turbines and consequently a significant partial wake effect.
5. Conclusions
- −
- This method enables the determination of the range within which the partial wake operates. This range extended between 45.16 D and 56.49 D, thereby facilitating a more precise determination of the power developed by a wind farm at a given speed.
- −
- By comparing the results obtained in this study with those of previous works, it becomes apparent that the application of this method is more decisive in denser parks, where encounters with partial wakes are more frequent.
- −
- In a broader context, this method could be used as a reference tool for accurately evaluating the power produced by a wind farm.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Symbols
AR | Actuator disk area (m2) |
Aw | Wake area (m2) |
CT | Thrust coefficient |
D | Rotor diameter (m) |
R | Rotor radius (m) |
Power with wake effect (W) | |
Power without wake effect (W) | |
Ptot | Total power (W) |
rx | Wake radius at x position (m) |
Δrx | Area affected by the partial wake |
x | Wake downstream position (m) |
U | Wind speed (m/s) |
Ux | Wind speed at x wake downstream position (m/s) |
U0 | Wind speed without wake effect (3/s) |
Wind speed in the wake (m/s) | |
y | Distance between the centers of two neighboring wind turbines (m) |
Z | Hub height (m) |
Z0 | Ground roughness (m) |
α | Entrainment coefficient |
Surface swept by the partial wake (m2) |
References
- Korolev, V.G. Development prospects of wind energy in the Russian energy complex. Electr. J. 2022, 35, 107094. [Google Scholar] [CrossRef]
- Veena, R.; Manuel, S.M.; Mathew, S.; Petra, M.I. Wake induced Power Losses in Wind Farms. Int. J. Eng. Adv. Technol. 2020, 9, 2175–2180. [Google Scholar]
- Lin, J.; Wei, Z.; Wei, J.; Shen, W.Z. New engineering wake model for wind farm applications. Renew. Energy 2022, 198, 1354–1363. [Google Scholar] [CrossRef]
- Hu, W.; Huang, Q.; Wu, X.; Li, J.; Zhang, Z. Wind farm control and optimization. In Control of Power Electronic Converters and Systems; Academic Press: Cambridge, MA, USA, 2021; pp. 609–644. [Google Scholar]
- Coelho, P. The Betz limit and the corresponding thermodynamic limit. Wind Eng. 2023, 47, 491–496. [Google Scholar] [CrossRef]
- Gumilar, L.; Sholeh, M.; Triharto, R.; Rumokoy, S.N.; Monika, D.; Aji, A.F. Influence of Wind Turbine Pitch Angle on DFIG Output Stability under Load Changes. In Proceedings of the 2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonisia, 16 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 435–439. [Google Scholar]
- Lanchester, F.W. A contribution to the theory of propulsion and the screw propeller. J. Am. Soc. Nav. Eng. 1915, 27, 509–510. [Google Scholar] [CrossRef]
- Uchida, T. Effects of inflow shear on wake characteristics of wind-turbines over flat terrain. Energies 2020, 13, 3745. [Google Scholar] [CrossRef]
- Hertwig, D.; Gough, H.L.; Grimmond, S.; Barlow, J.F.; Kent, C.W.; Lin, W.E.; Robins, A.G.; Hayden, P. Wake characteristics of tall buildings in a realistic urban canopy. Bound. Layer Meteorol. 2019, 172, 239–270. [Google Scholar] [CrossRef]
- Peña, A.; Réthoré, P.E.; Van Der Laan, M.P. On the application of the Jensen wake model using a turbulence-dependent wake decay coefficient: The Sexbierum case. Wind Energy 2016, 19, 763–776. [Google Scholar] [CrossRef]
- Duc, T.; Coupiac, O.; Girard, N.; Giebel, G.; Göçmen, T. Local turbulence parameterization improves the Jensen wake model and its implementation for power optimization of an operating wind farm. Wind Energy Sci. 2019, 4, 287–302. [Google Scholar] [CrossRef]
- Thøgersen, E.; Tranberg, B.; Herp, J.; Greiner, M. Statistical meandering wake model and its application to yaw-angle optimisation of wind farms. J. Phys. Conf. Ser. 2017, 854, 012017. [Google Scholar] [CrossRef]
- Lopes, A.M.; Vicente, A.H.; Sanchez, O.H. Operation assessment of analytical wind turbine wake models. J. Wind Eng. Ind. Aerodyn. 2022, 220, 104840. [Google Scholar] [CrossRef]
- Barthelmie, R.; Larsen, G.; Frandsen, S.; Folkerts, L.; Rados, K.; Pryor, S.; Lange, B.; Schepers, G. Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar. J. Atmos. Ocean. Technol. 2006, 23, 888–901. [Google Scholar] [CrossRef]
- Ishihara, T.; Yamaguchi, A.; Fujino, Y. Development of a new wake model based on a wind tunnel experiment. Glob. Wind Power 2004, 105, 33–45. [Google Scholar]
- Yang, J.; Fang, L.; Song, D.; Su, M.; Yang, X.; Huang, L.; Joo, Y.H. Review of control strategy of large horizontal axis wind turbines yaw system. Wind Energy 2021, 24, 97–115. [Google Scholar] [CrossRef]
- Hansen, M.H. Using an Unsteady Panel Method with Fluid-Structure Interaction Problems. In IUTAM/IFToMM Symposium on Synthesis of Nonlinear Dynamical Systems: Proceedings of the IUTAM/IFToMM Symposium, Riga, Latvia, 24–28 August 1998; Springer: Dordrecht, The Netherlands, 2000; pp. 139–148. [Google Scholar]
- Crasto, G.; Gravdahl, A.R. CFD wake modeling using a porous disc. In Proceedings of the European Wind Energy Conference & Exhibition 2008, Brussels, Belgium, 31 March–3 April 2008; Volume 15. [Google Scholar]
- Crespo, A.; Hernandez, J.; Frandsen, S. Survey of modelling methods for wind turbine wakes and wind farms. Int. J. Prog. Appl. Wind Power Convers. Technol. 1999, 2, 1–24. [Google Scholar] [CrossRef]
- Ti, Z.; Deng, X.W.; Yang, H. Wake modeling of wind turbines using machine learning. Appl. Energy 2020, 257, 114025. [Google Scholar] [CrossRef]
- Huang, H.S. Distributed genetic algorithm for optimization of wind farm annual profits. In Proceedings of the 2007 International Conference on Intelligent Systems Applications to Power Systems, Kaohsiung, Taiwan, 5–8 November 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1–6. [Google Scholar]
- Jensen, N.O. A Note on Wind Generator Interaction; Technical Report; Riso-M-2411; Riso National Laboratory: Roskilde, Denmark, 1983. [Google Scholar]
- Zhang, S.; Gao, X.; Ma, W.; Lu, H.; Lv, T.; Xu, S.; Wang, Y. Derivation and verification of three-dimensional wake model of multiple wind turbines based on super-Gaussian function. Renew. Energy 2023, 215, 118968. [Google Scholar] [CrossRef]
- Feng, D.; Li, L.K.; Gupta, V.; Wan, M. Component wise influence of upstream turbulence on the far-wake dynamics of wind turbines. Renew. Energy 2022, 200, 1081–1091. [Google Scholar] [CrossRef]
- Hewitt, S.; Margetts, L.; Revell, A. Building a digital wind farm. Arch. Comput. Methods Eng. 2018, 25, 879–899. [Google Scholar] [CrossRef]
- Grady, S.A.; Hussaini, M.Y.; Abdullah, M.M. Placement of wind turbines using genetic algorithms. Renew. Energy 2005, 30, 259–270. [Google Scholar] [CrossRef]
- Mosetti, G.; Poloni, C.; Diviacco, B. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J. Wind Eng. Ind. Aerodyn. 1994, 51, 105–116. [Google Scholar] [CrossRef]
- Ituarte-Villarreal, C.M.; Espiritu, J.F. Optimization of wind turbine placement using a viral based optimization algorithm. Procedia Comput. Sci. 2011, 6, 469–474. [Google Scholar] [CrossRef]
- Marmidis, G.; Lazarou, S.; Pyrgioti, E. Optimal placement of wind turbines in a wind park using Monte Carlo simulation. Renew. Energy 2008, 33, 1455–1460. [Google Scholar] [CrossRef]
- Zergane, S.; Smaili, A.; Masson, C. Optimization of wind turbine placement in a wind farm using a new pseudo-random number generation method. Renew. Energy 2018, 125, 166–171. [Google Scholar] [CrossRef]
- Lio, W.H.; Larsen, G.C.; Thorsen, G.R. Dynamic wake tracking using a cost-effective LiDAR and Kalman filtering: Design, simulation and full-scale validation. Renew. Energy 2021, 172, 1073–1086. [Google Scholar] [CrossRef]
- He, R.; Yang, H.; Lu, L. Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control. Appl. Energy 2023, 337, 120878. [Google Scholar] [CrossRef]
- Vad, A.; Tamaro, S.; Bottasso, C.L. A non-symmetric Gaussian wake model for lateral wake-to-wake interactions. J. Phys. Conf. Ser. 2023, 2505, 012046. [Google Scholar] [CrossRef]
- Scott, R.; Viggiano, B.; Dib, T.; Ali, N.; Hölling, M.; Peinke, J.; Cal, R.B. Wind turbine partial wake merging description and quantification. Wind Energy 2020, 23, 1610–1618. [Google Scholar] [CrossRef]
- Katic, I.; Hojstrup, J.; Jensen, N.O. A Simple Model for Cluster Efficiency. In Proceedings of the European Wind Energy Association Conference and Exhibition, Rome, Italy, 7–9 October 1986; Volume 1, pp. 407–410. [Google Scholar]
- Seim, F.; GravdahL, A.R.; Adaramola, M.S. Validating of kinematic wind turbine wake models in complex terrain using actual wind farm production data. Energy 2017, 123, 742–753. [Google Scholar] [CrossRef]
- Sun, H.; Gao, X.; Yang, H. Validations of three-dimensional wake models with the wind field measurements in complex terrain. Energy 2019, 189, 116213. [Google Scholar] [CrossRef]
- Zergane, S.; Amroune, S.; Rokbi, M.; Guesmia, S. New study on the extension of a current wind farm, case of Kaberten park in Algeria. Turk. J. Computer Math. Educ. 2022, 13, 428–434. [Google Scholar]
- Tong, W.; Chowdhury, S.; Zhang, J.; Messac, A. Impact of different wake models on the estimation of wind farm power generation. In Proceedings of the 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO, Multidisciplinary Analysis and Optimization Conference, Indianapolis, IN, USA, 17–19 September 2012; p. 5430. [Google Scholar]
- Available online: https://fr.wind-turbine-models.com/turbines/550-enercon-e-82-e2-2.300/ (accessed on 1 January 2023).
x (m) | U (m/s) | rx (m) | P (kW) |
---|---|---|---|
45 D | 6 | 367.743 | 316.027 |
50 D | 5.98 | 367.74 | 314.715 |
55 D | 5.99 | 440.35 | 314.217 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zergane, S.; Farsi, C.; Amroune, S.; Benkherbache, S.; Menasri, N. A New Study on the Effect of the Partial Wake Generated in a Wind Farm. Energies 2024, 17, 1498. https://doi.org/10.3390/en17061498
Zergane S, Farsi C, Amroune S, Benkherbache S, Menasri N. A New Study on the Effect of the Partial Wake Generated in a Wind Farm. Energies. 2024; 17(6):1498. https://doi.org/10.3390/en17061498
Chicago/Turabian StyleZergane, Said, Chouki Farsi, Salah Amroune, Souad Benkherbache, and Noureddine Menasri. 2024. "A New Study on the Effect of the Partial Wake Generated in a Wind Farm" Energies 17, no. 6: 1498. https://doi.org/10.3390/en17061498
APA StyleZergane, S., Farsi, C., Amroune, S., Benkherbache, S., & Menasri, N. (2024). A New Study on the Effect of the Partial Wake Generated in a Wind Farm. Energies, 17(6), 1498. https://doi.org/10.3390/en17061498