Cu-Metalated Porphyrin-Based MOFs Coupled with Anatase as Photocatalysts for CO2 Reduction: The Effect of Metalation Proportion
Abstract
:1. Introduction
2. Materials and Methods
2.1. H2TCPP Metalation
2.2. MOF Synthesis
2.3. Synthesis of MOF/TiO2 Composite Materials
2.4. Pt Deposition
2.5. Materials Characterization
2.6. Photocatalytic Reactions
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sayre, H.J.; Tian, L.; Son, M.; Hart, S.M.; Liu, X.; Arias-Rotondo, D.M.; Rand, B.P.; Schlau-Cohen, G.S.; Scholes, G.D. Solar Fuels and Feedstocks: The Quest for Renewable Black Gold. Energy Environ. Sci. 2021, 14, 1402–1419. [Google Scholar] [CrossRef]
- Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angew. Chem. Int. Ed. 2013, 52, 7372–7408. [Google Scholar] [CrossRef] [PubMed]
- Duflot, M.; Marchal, C.; Caps, V.; Artero, V.; Christoforidis, K.; Keller, V. Optimization of NH2-UiO-66/TiO2/Au Composites for Enhanced Gas-Phase CO2 Photocatalytic Reduction into CH4. Catal. Today 2023, 413–415, 114018. [Google Scholar] [CrossRef]
- Ioannidou, T.; Anagnostopoulou, M.; Vasiliadou, I.A.; Marchal, C.; Alexandridou, E.-O.; Keller, V.; Christoforidis, K.C. Mixed Phase Anatase Nanosheets/Brookite Nanorods TiO2 Photocatalysts for Enhanced Gas Phase CO2 Photoreduction and H2 Production. J. Environ. Chem. Eng. 2024, 12, 111644. [Google Scholar] [CrossRef]
- Xin, X.; Xu, T.; Wang, L.; Wang, C. Ti3+-Self Doped Brookite TiO2 Single-Crystalline Nanosheets with High Solar Absorption and Excellent Photocatalytic CO2 Reduction. Sci. Rep. 2016, 6, 23684. [Google Scholar] [CrossRef] [PubMed]
- Low, J.; Cheng, B.; Yu, J. Surface Modification and Enhanced Photocatalytic CO2 Reduction Performance of TiO2: A Review. Appl. Surf. Sci. 2017, 392, 658–686. [Google Scholar] [CrossRef]
- Ola, O.; Maroto-Valer, M.M. Review of Material Design and Reactor Engineering on TiO2 Photocatalysis for CO2 Reduction. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 16–42. [Google Scholar] [CrossRef]
- Wei, L.; Yu, C.; Zhang, Q.; Liu, H.; Wang, Y. TiO2-Based Heterojunction Photocatalysts for Photocatalytic Reduction of CO2 into Solar Fuels. J. Mater. Chem. A Mater. 2018, 6, 22411–22436. [Google Scholar] [CrossRef]
- Crake, A.; Christoforidis, K.C.; Kafizas, A.; Zafeiratos, S.; Petit, C. CO2 Capture and Photocatalytic Reduction Using Bifunctional TiO2MOF Nanocomposites under UV–Vis Irradiation. Appl. Catal. B 2017, 210, 131–140. [Google Scholar] [CrossRef]
- Swetha, S.; Janani, B.; Khan, S.S. A Critical Review on the Development of Metal-Organic Frameworks for Boosting Photocatalysis in the Fields of Energy and Environment. J. Clean. Prod. 2022, 333, 130164. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, F.; Pang, H. A Review of MOFs and Their Composites-Based Photocatalysts: Synthesis and Applications. Adv. Funct. Mater. 2021, 31, 2104231. [Google Scholar] [CrossRef]
- Navalón, S.; Dhakshinamoorthy, A.; Álvaro, M.; Ferrer, B.; García, H. Metal–Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chem. Rev. 2023, 123, 445–490. [Google Scholar] [CrossRef]
- Jin, J. Porphyrin-Based Metal–Organic Framework Catalysts for Photoreduction of CO2: Understanding the Effect of Node Connectivity and Linker Metalation on Activity. New J. Chem. 2020, 44, 15362–15368. [Google Scholar] [CrossRef]
- Stanley, P.M.; Hemmer, K.; Hegelmann, M.; Schulz, A.; Park, M.; Elsner, M.; Cokoja, M.; Warnan, J. Topology- and Wavelength-Governed CO2 Reduction Photocatalysis in Molecular Catalyst-Metal–Organic Framework Assemblies. Chem. Sci. 2022, 13, 12164–12174. [Google Scholar] [CrossRef]
- Majewski, M.B.; Peters, A.W.; Wasielewski, M.R.; Hupp, J.T.; Farha, O.K. Metal–Organic Frameworks as Platform Materials for Solar Fuels Catalysis. ACS Energy Lett. 2018, 3, 598–611. [Google Scholar] [CrossRef]
- Li, R.; Hu, J.; Deng, M.; Wang, H.; Wang, X.; Hu, Y.; Jiang, H.; Jiang, J.; Zhang, Q.; Xie, Y.; et al. Integration of an Inorganic Semiconductor with a Metal–Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions. Adv. Mater. 2014, 26, 4783–4788. [Google Scholar] [CrossRef]
- Wang, M.; Wang, D.; Li, Z. Self-Assembly of CPO-27-Mg/TiO2 Nanocomposite with Enhanced Performance for Photocatalytic CO2 Reduction. Appl. Catal. B 2016, 183, 47–52. [Google Scholar] [CrossRef]
- Wang, L.; Jin, P.; Huang, J.; She, H.; Wang, Q. Integration of Copper(II)-Porphyrin Zirconium Metal–Organic Framework and Titanium Dioxide to Construct Z-Scheme System for Highly Improved Photocatalytic CO2 Reduction. ACS Sustain. Chem. Eng. 2019, 7, 15660–15670. [Google Scholar] [CrossRef]
- Lin, C.; Han, C.; Zhang, H.; Gong, L.; Gao, Y.; Wang, H.; Bian, Y.; Li, R.; Jiang, J. Porphyrin-Based Metal–Organic Frameworks for Efficient Photocatalytic H2 Production under Visible-Light Irradiation. Inorg. Chem. 2021, 60, 3988–3995. [Google Scholar] [CrossRef] [PubMed]
- Rajasree, S.S.; Li, X.; Deria, P. Physical Properties of Porphyrin-Based Crystalline Metal–organic Frameworks. Commun. Chem. 2021, 4, 47. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Jung, W.-J.; Park, K.; Kim, S.-Y.; Baeg, J.-O.; Kim, C.H.; Son, H.-J.; Pac, C.; Kang, S.O. Rapid Exciton Migration and Amplified Funneling Effects of Multi-Porphyrin Arrays in a Re(I)/Porphyrinic MOF Hybrid for Photocatalytic CO2 Reduction. ACS Appl. Mater. Interfaces 2021, 13, 2710–2722. [Google Scholar] [CrossRef]
- Son, H.-J.; Jin, S.; Patwardhan, S.; Wezenberg, S.J.; Jeong, N.C.; So, M.; Wilmer, C.E.; Sarjeant, A.A.; Schatz, G.C.; Snurr, R.Q.; et al. Light-Harvesting and Ultrafast Energy Migration in Porphyrin-Based Metal–Organic Frameworks. J. Am. Chem. Soc. 2013, 135, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, K.; Wang, H.; Zhou, M.; Zhou, B.; Li, Y.; Li, Q.; Wang, Q.; Shen, H.-M.; She, Y. Metalloporphyrin-Based Metal–Organic Frameworks for Photocatalytic Carbon Dioxide Reduction: The Influence of Metal Centers. Processes 2023, 11, 1042. [Google Scholar] [CrossRef]
- He, J.; Zhang, Y.; He, J.; Zeng, X.; Hou, X.; Long, Z. Enhancement of Photoredox Catalytic Properties of Porphyrinic Metal–Organic Frameworks Based on Titanium Incorporation via Post-Synthetic Modification. Chem. Commun. 2018, 54, 8610–8613. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Song, S.; Gu, H.; Li, Y.; Sun, Q.; Ding, N.; Tang, H.; Zheng, L.; Liu, S.; Li, Z.; et al. Enhancing the Photocatalytic Activity of Zirconium-Based Metal–Organic Frameworks Through the Formation of Mixed-Valence Centers. Adv. Sci. 2023, 10, 2303206. [Google Scholar] [CrossRef]
- Xu, C.; Liu, H.; Li, D.; Su, J.-H.; Jiang, H.-L. Direct Evidence of Charge Separation in a Metal–Organic Framework: Efficient and Selective Photocatalytic Oxidative Coupling of Amines via Charge and Energy Transfer. Chem. Sci. 2018, 9, 3152–3158. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wei, Z.; Li, Y.; Sun, Q.; Ding, N.; Zheng, L.; Liu, S.; Chen, W.; Li, S.; Pang, S. Modulating the Conduction Band of MOFs by Introducing Tiny TiO2 Nanoparticles for Enhanced Photocatalytic Performance: Importance of the Loading Position. Inorg. Chem. 2023, 62, 10572–10581. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.-B.; Liu, T.-T.; Liu, J.; Jin, S.; Wu, X.-P.; Gong, X.-Q.; Wang, K.; Yin, Q.; Liu, T.-F.; Cao, R.; et al. Boosting Interfacial Charge-Transfer Kinetics for Efficient Overall CO2 Photoreduction via Rational Design of Coordination Spheres on Metal–Organic Frameworks. J. Am. Chem. Soc. 2020, 142, 12515–12523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Si, D.; Huang, H.; Xie, L.; Fang, Z.; Liu, T.; Cao, R. Partial Metalation of Porphyrin Moieties in Hydrogen-Bonded Organic Frameworks Provides Enhanced CO2 Photoreduction Activity. Angew. Chem. Int. Ed. 2022, 61, e202203955. [Google Scholar] [CrossRef]
- Yu, C.-J.; Krzyaniak, M.D.; Fataftah, M.S.; Wasielewski, M.R.; Freedman, D.E. A Concentrated Array of Copper Porphyrin Candidate Qubits. Chem. Sci. 2019, 10, 1702–1708. [Google Scholar] [CrossRef]
- Wang, L.; Duan, S.; Jin, P.; She, H.; Huang, J.; Lei, Z.; Zhang, T.; Wang, Q. Anchored Cu(II) Tetra(4-Carboxylphenyl)Porphyrin to P25 (TiO2) for Efficient Photocatalytic Ability in CO2 Reduction. Appl. Catal. B 2018, 239, 599–608. [Google Scholar] [CrossRef]
- Jin, P.; Wang, L.; Ma, X.; Lian, R.; Huang, J.; She, H.; Zhang, M.; Wang, Q. Construction of Hierarchical ZnIn2S4@PCN-224 Heterojunction for Boosting Photocatalytic Performance in Hydrogen Production and Degradation of Tetracycline Hydrochloride. Appl. Catal. B 2021, 284, 119762. [Google Scholar] [CrossRef]
- Hartle, M.D.; Prell, J.S.; Pluth, M.D. Spectroscopic Investigations into the Binding of Hydrogen Sulfide to Synthetic Picket-Fence Porphyrins. Dalton Trans. 2016, 45, 4843–4853. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jin, P.; Duan, S.; Huang, J.; She, H.; Wang, Q.; An, T. Accelerated Fenton-like Kinetics by Visible-Light-Driven Catalysis over Ironiii Porphyrin Functionalized Zirconium MOF: Effective Promotion on the Degradation of Organic Contaminants. Environ. Sci. Nano 2019, 6, 2652–2661. [Google Scholar] [CrossRef]
- Ma, C.; Wolterbeek, H.T.; Denkova, A.G.; Serra Crespo, P. Porphyrinic Metal–Organic Frameworks as Molybdenum Adsorbents for the 99Mo/99mTc Generator. Inorg. Chem. Front. 2023, 10, 2239–2249. [Google Scholar] [CrossRef]
- Wang, N.; Liu, S.; Sun, Z.; Han, Y.; Xu, J.; Xu, Y.; Wu, J.; Meng, H.; Zhang, B.; Zhang, X. Synergistic Adsorption and Photocatalytic Degradation of Persist Synthetic Dyes by Capsule-like Porphyrin-Based MOFs. Nanotechnology 2021, 32, 465705. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Peng, C.; He, Y.; Zhang, W.; Zhang, Q.; Zhang, T. Conjugated Microspheres FeTCPP–TDI–TiO2 with Enhanced Photocatalytic Performance for Antibiotics Degradation Under Visible Light Irradiation. Catal. Lett. 2016, 146, 2543–2554. [Google Scholar] [CrossRef]
- Liu, X.; Qi, W.; Wang, Y.; Lin, D.; Yang, X.; Su, R.; He, Z. Rational Design of Mimic Multienzyme Systems in Hierarchically Porous Biomimetic Metal–Organic Frameworks. ACS Appl. Mater. Interfaces 2018, 10, 33407–33415. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Martin, C.B.; Arumuganainar, S.; Gilman, A.; Koel, B.E.; Sarazen, M.L. Mechanistic Elucidations of Highly Dispersed Metalloporphyrin Metal-Organic Framework Catalysts for CO2 Electroreduction. Angew. Chem. Int. Ed. 2023, 62, e202218208. [Google Scholar] [CrossRef]
- Yu, K.; Lee, Y.-R.; Seo, J.Y.; Baek, K.-Y.; Chung, Y.-M.; Ahn, W.-S. Sonochemical Synthesis of Zr-Based Porphyrinic MOF-525 and MOF-545: Enhancement in Catalytic and Adsorption Properties. Microporous Mesoporous Mater. 2021, 316, 110985. [Google Scholar] [CrossRef]
- Zhao, Y.; Kuang, Y.; Liu, M.; Wang, J.; Pei, R. Synthesis of Metal–Organic Framework Nanosheets with High Relaxation Rate and Singlet Oxygen Yield. Chem. Mater. 2018, 30, 7511–7520. [Google Scholar] [CrossRef]
- Cao, X.; Tong, R.; Tang, S.; Jang, B.W.-L.; Mirjalili, A.; Li, J.; Guo, X.; Zhang, J.; Hu, J.; Meng, X. Design of Pd–Zn Bimetal MOF Nanosheets and MOF-Derived Pd3.9Zn6.1/CNS Catalyst for Selective Hydrogenation of Acetylene under Simulated Front-End Conditions. Molecules 2022, 27, 5736. [Google Scholar] [CrossRef] [PubMed]
- Zhai, G.; Liu, Y.; Lei, L.; Wang, J.; Wang, Z.; Zheng, Z.; Wang, P.; Cheng, H.; Dai, Y.; Huang, B. Light-Promoted CO2 Conversion from Epoxides to Cyclic Carbonates at Ambient Conditions over a Bi-Based Metal–Organic Framework. ACS Catal. 2021, 11, 1988–1994. [Google Scholar] [CrossRef]
- Madhusudan Reddy, K.; Gopal Reddy, C.V.; Manorama, S.V. Preparation, Characterization, and Spectral Studies on Nanocrystalline Anatase TiO2. J. Solid. State Chem. 2001, 158, 180–186. [Google Scholar] [CrossRef]
- Sheng, W.; Wang, X.; Wang, Y.; Chen, S.; Lang, X. Integrating TEMPO into a Metal–Organic Framework for Cooperative Photocatalysis: Selective Aerobic Oxidation of Sulfides. ACS Catal. 2022, 12, 11078–11088. [Google Scholar] [CrossRef]
- da Trindade, L.G.; Borba, K.M.N.; Trench, A.B.; Zanchet, L.; Teodoro, V.; Pontes, F.M.L.; Longo, E.; Mazzo, T.M. Effective Strategy to Coupling Zr-MOF/ZnO: Synthesis, Morphology and Photoelectrochemical Properties Evaluation. J. Solid. State Chem. 2021, 293, 121794. [Google Scholar] [CrossRef]
- Mette, G.; Sutter, D.; Gurdal, Y.; Schnidrig, S.; Probst, B.; Iannuzzi, M.; Hutter, J.; Alberto, R.; Osterwalder, J. From Porphyrins to Pyrphyrins: Adsorption Study and Metalation of a Molecular Catalyst on Au(111). Nanoscale 2016, 8, 7958–7968. [Google Scholar] [CrossRef] [PubMed]
- Gottfried, J.M.; Flechtner, K.; Kretschmann, A.; Lukasczyk, T.; Steinrück, H.-P. Direct Synthesis of a Metalloporphyrin Complex on a Surface. J. Am. Chem. Soc. 2006, 128, 5644–5645. [Google Scholar] [CrossRef]
- Diller, K.; Papageorgiou, A.C.; Klappenberger, F.; Allegretti, F.; Barth, J.V.; Auwärter, W. In Vacuo Interfacial Tetrapyrrole Metallation. Chem. Soc. Rev. 2016, 45, 1629–1656. [Google Scholar] [CrossRef]
- Crake, A.; Christoforidis, K.C.; Gregg, A.; Moss, B.; Kafizas, A.; Petit, C. The Effect of Materials Architecture in TiO2/MOF Composites on CO2 Photoreduction and Charge Transfer. Small 2019, 15, 1805473. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Gao, J.; Rao, S.; Jin, C.; Jiang, H.; Shen, J.; Yu, X.; Wang, W.; Wang, L.; Yang, J.; et al. A Multifunctional Membrane Based on TiO2/PCN-224 Heterojunction with Synergistic Photocatalytic-Photothermal Activity under Visible-Light Irradiation. Appl. Catal. B 2024, 342, 123374. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Lu, H.; Gu, Z.; Chen, L. Au-Nanorod-Modified PCN-222(Cu) for H2 Evolution from HCOOH Dehydrogenation by Photothermally Enhanced Photocatalysis. Chem. Commun. 2022, 58, 8520–8523. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anagnostopoulou, M.; Keller, V.; Christoforidis, K.C. Cu-Metalated Porphyrin-Based MOFs Coupled with Anatase as Photocatalysts for CO2 Reduction: The Effect of Metalation Proportion. Energies 2024, 17, 1483. https://doi.org/10.3390/en17061483
Anagnostopoulou M, Keller V, Christoforidis KC. Cu-Metalated Porphyrin-Based MOFs Coupled with Anatase as Photocatalysts for CO2 Reduction: The Effect of Metalation Proportion. Energies. 2024; 17(6):1483. https://doi.org/10.3390/en17061483
Chicago/Turabian StyleAnagnostopoulou, Maria, Valérie Keller, and Konstantinos C. Christoforidis. 2024. "Cu-Metalated Porphyrin-Based MOFs Coupled with Anatase as Photocatalysts for CO2 Reduction: The Effect of Metalation Proportion" Energies 17, no. 6: 1483. https://doi.org/10.3390/en17061483
APA StyleAnagnostopoulou, M., Keller, V., & Christoforidis, K. C. (2024). Cu-Metalated Porphyrin-Based MOFs Coupled with Anatase as Photocatalysts for CO2 Reduction: The Effect of Metalation Proportion. Energies, 17(6), 1483. https://doi.org/10.3390/en17061483