Renewable Energy Potentials and Roadmap in Brazil, Austria, and Germany
Abstract
:1. Introduction
2. The Role of Hydrogen Production in the Global Energy System: A Review of Relevant Publications
3. Decarbonization Energy Policies
3.1. European Landscape
3.1.1. Austria
3.1.2. Germany
3.2. South American Landscape
Brazil
3.3. Comparative Analysis of Decarbonization Energy Policies: Challenges, Implications, and Future Directions
4. Sustainable Pathways for the Hydrogen Sector (America/Europe)
4.1. Comparative Analysis: Challenges and Opportunities in Hydrogen Production between Brazil and Europe
4.2. Hydrogen Storage: An Essential Component in the Transition to Sustainable Energy
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahfuz, M.H.; Kamyar, A.; Afshar, O.; Sarraf, M.; Anisur, M.R.; Kibria, M.A.; Saidur, R.; Metselaar, I.H.S.C. Exergetic analysis of a solar thermal power system with PCM storage. Energy Conv. Manag. 2014, 78, 486–492. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strat. Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Hossain, S.; Nisfindy, O.B.; Azad, A.T.; Dawood, M.; Azad, A.K. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conv. Manag. 2018, 165, 602–627. [Google Scholar] [CrossRef]
- Nath, K.; Das, D. Production and storage of hydrogen: Present scenario and future perspective. J. Sci. Ind. Res. 2007, 66, 701–709. Available online: https://nopr.niscpr.res.in/handle/123456789/1307 (accessed on 24 January 2024).
- Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef]
- Nicoletti, G.; Arcuri, N.; Nicoletti, G.; Bruno, R. A technical and environmental comparison between hydrogen and some fossil fuels. Energy Conv. Manag. 2015, 89, 205–213. [Google Scholar] [CrossRef]
- Chaubey, R.; Sahu, S.; James, O.O.; Maity, S. A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew. Sustain. Energy Rev. 2013, 23, 443–462. [Google Scholar] [CrossRef]
- Moraes, T.S.; Silva, H.N.C.; da Zotes, L.P.; Mattos, L.V.; Borges, L.E.P.; Farrauto, R.; Noronha, F.B. A techno-economic evaluation of the hydrogen production for energy generation using an ethanol fuel processor. Int. J. Hydrogen Energy 2019, 44, 21205–21219. [Google Scholar] [CrossRef]
- International Renewable Energy Agency—IRENA. Hydrogen: A Renewable Energy Perspective. In Proceedings of the 2nd Hydrogen Energy Ministerial Meeting in Tokyo, Japan, 25 September 2019. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Hydrogen_2019.pdf (accessed on 24 January 2024).
- Chai, S.; Zhang, G.; Li, G.; Zhang, Y. Industrial hydrogen production technology and development status in China: A review. Clean Technol. Environ. Policy 2021, 23, 1931–1946. [Google Scholar] [CrossRef]
- Ren, X.; Dong, L.; Xu, D.; Hu, B. Challenges towards hydrogen economy in China. Int. J. Hydrogen Energy 2020, 45, 34326–34345. [Google Scholar] [CrossRef]
- Li, X.J.; Allen, J.D.; Stager, J.A.; Ku, A.Y. Paths to low-cost hydrogen energy at a scale for transportation applications in the USA and China via liquid-hydrogen distribution networks. Clean Energy 2020, 4, 26–47. [Google Scholar] [CrossRef]
- Empresa de Pesquisa Energética. Balanço Energético Nacional; EPE: Rio de Janeiro, Brazil, 2022. Available online: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2022 (accessed on 24 January 2024).
- Hunt, J.D.; Nascimento, A.; Nascimento, N.; Werncke, L.; Joel, O. Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy. Renew. Sustain. Energy Rev. 2022, 160, 112291. [Google Scholar] [CrossRef]
- Bartlett, J.; Krupnick, A. Decarbonized Hydrogen in the US Power and Industrial Sectors: Identifying and Incentivizing Opportunities to Lower Emissions. Report 20–25, Resources of the Future 2020. Available online: https://media.rff.org/documents/RFF_Report_20-25_Decarbonized_Hydrogen.pdf (accessed on 24 January 2024).
- Navas-Anguita, Z.; García-Gusano, D.; Dufour, J.; Iribarren, D. Revisiting the role of steam methane reforming with CO2 capture and storage for long-term hydrogen production. Sci. Total Environ. 2021, 771, 145432. [Google Scholar] [CrossRef]
- Bing, R.G.; Straub, C.T.; Sulis, D.B.; Wang, J.P.; Adams, M.W.W.; Kelly, R.M. Plant biomass fermentation by the extreme thermophile Caldicellulosiruptor bescii for co-production of green hydrogen and acetone: Technoeconomic analysis. Bioresour. Technol. 2022, 348, 126780. [Google Scholar] [CrossRef] [PubMed]
- Amulya, K.; Venkata Mohan, S. Green hydrogen based succinic acid and biopolymer production in a biorefinery: Adding value to CO2 from acidogenic fermentation. Chem. Eng. J. 2022, 429, 132163. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Boretti, A. A perspective on the production of hydrogen from solar-driven thermal decomposition of methane. Int. J. Hydrogen Energy 2021, 46, 34509–34514. [Google Scholar] [CrossRef]
- Parmar, K.R.; Pant, K.K.; Roy, S. Blue hydrogen and carbon nanotube production via direct catalytic decomposition of methane in fluidized bed reactor: Capture and extraction of carbon in the form of CNTs. Energy Conv. Manag. 2021, 232, 113893. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Zhang, K.; Xu, J.; Wu, Q.; Xie, Z.; An, W.; Liang, X.; Zou, X. Electrocatalytic water splitting over perovskite oxide catalysts. Chin. J. Catal. 2023, 50, 109–125. [Google Scholar] [CrossRef]
- Zhang, H.; Maijenburg, A.W.; Li, X.; Schweizer, S.L.; Wehrspohn, R.B. Bifunctional Heterostructured Transition Metal Phosphides for Efficient Electrochemical Water Splitting. Adv. Funct. Mater. 2020, 30, 2003261. [Google Scholar] [CrossRef]
- Fan, Z.; Friedmann, S.J. Low-carbon production of iron and steel: Technology options, economic assessment, and policy. Joule 2021, 5, 829–862. [Google Scholar] [CrossRef]
- Cloete, S.; Arnaiz del Pozo, C.; Jiménez Álvaro, Á. System-friendly process design: Optimizing blue hydrogen production for future energy systems. Energy 2022, 259, 124954. [Google Scholar] [CrossRef]
- Widera, B. Renewable hydrogen implementations for combined energy storage, transportation and stationary applications. Therm. Sci. Eng. Prog. 2020, 16, 100460. [Google Scholar] [CrossRef]
- Chaudhary, M.L.; Al-Fatesh, A.S.; Kumar, R.; Lanre, M.S.; Frusteri, F.; AlReshaidan, S.B.; Ibrahim, A.A.; Abasaeed, A.E.; Fakeeha, A.H. Promotional effect of addition of ceria over yttria-zirconia supported Ni based catalyst system for hydrogen production through dry reforming of methane. Int. J. Hydrogen Energy 2022, 47, 20838–20850. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Kasim, S.O.; Ibrahim, A.A.; Osman, A.I.; Abasaeed, A.E.; Atia, H.; Armbruster, U.; Frusteri, L.; bin Jumah, A.; Alanazi, Y.M.; et al. Greenhouse gases utilization via catalytic reforming with Sc promoted Ni/SBA-15. Fuel 2022, 30, 125523. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Kumar, R.; Kasim, S.O.; Ibrahim, A.A.; Fakeeha, A.H.; Abasaeed, A.E.; Atia, H.; Armbruster, U.; Kreyenschulte, C.; Lund, H.; et al. Effect of Cerium Promoters on an MCM-41-Supported Nickel Catalyst in Dry Reforming of Methane. Ind. Eng. Chem. Res. 2022, 61, 164–174. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Patel, N.; Fakeeha, A.H.; Alotibi, M.F.; Alreshaidan, S.B.; Kumar, R. Reforming of methane: Effects of active metals, supports, and promoters. Catal. Rev. 2023, 1, 2211447. [Google Scholar] [CrossRef]
- Amin, M.; Shah, H.H.; Fareed, A.G.; Khan, W.U.; Chung, E.; Zia, A.; Rahman Farooqi, Z.U.; Lee, C. Hydrogen production through renewable and non-renewable energy processes and their impact on climate change. Int. J. Hydrogen Energy 2022, 47, 33112–33134. [Google Scholar] [CrossRef]
- Tahir, M.B.; Nabi, G.; Iqbal, T.; Sagir, M.; Rafique, M. Role of MoSe2 on nanostructures WO3-CNT performance for photocatalytic hydrogen evolution. Ceram. Int. 2018, 44, 6686–6690. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, Y.; Cao, S.; Hu, W.; Piao, L.; Chen, X. Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO2 nanoparticles. Nano Res. 2021, 15, 2013–2022. [Google Scholar] [CrossRef]
- Hunt, J.D.; Nascimento, A.; Zakeri, B.; Barbosa, P.S.F. Hydrogen Deep Ocean Link: A global sustainable interconnected energy grid. Energy 2022, 249, 123660. [Google Scholar] [CrossRef]
- Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009L0028 (accessed on 11 March 2024).
- Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009L0030 (accessed on 11 March 2024).
- D’Adamo, I.; Falcone, P.M.; Gastaldi, M.; Morone, P. RES-T trajectories and an integrated SWOT-AHP analysis for biomethane. Policy implications to support a green revolution in European transport. Energy Policy 2020, 138, 111220. [Google Scholar] [CrossRef]
- Directive (EU) 2015/1513 of the European Parliament and of the Council of 9 September 2015. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32015L1513 (accessed on 11 March 2024).
- Fragkos, P.; Tasios, N.; Paroussos, L.; Capros, P.; Tsani, S. Energy system impacts and policy implications of the European Intended Nationally Determined Contribution and low-carbon pathway to 2050. Energy Policy 2017, 100, 216–226. [Google Scholar] [CrossRef]
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018. Available online: https://eur-lex.europa.eu/eli/dir/2018/2001/oj (accessed on 11 March 2024).
- Lorenzi, G.; Baptista, P. Promotion of renewable energy sources in the Portuguese transport sector: A scenario analysis. J. Clean Prod. 2018, 186, 918–932. [Google Scholar] [CrossRef]
- Banja, M.; Sikkema, R.; Jégard, M.; Motola, V.; Dallemand, J.F. Biomass for energy in the EU—The support framework. Energy Policy 2019, 131, 215–228. [Google Scholar] [CrossRef]
- European Energy Security Strategy. COM 330 Final. Brussels, Belgium, 28.05.2014. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0330&from=EN (accessed on 24 January 2024).
- Pelinka, A. The nuclear power referendum in Austria. Elect. Stud. 1983, 2, 253–261. [Google Scholar] [CrossRef]
- Wehrle, S.; Gruber, K.; Schmidt, J. The cost of undisturbed landscapes. Energy Policy 2021, 159, 112617. [Google Scholar] [CrossRef]
- Crichton, R.; Mette, J.; Tambo, E.; Nduhuura, P.; Nguedia-Nguedoung, A. The impact of Austria’s climate strategy on renewable energy consumption and economic output. Energy Policy 2023, 178, 113610. [Google Scholar] [CrossRef]
- ÖSG. Bundesrecht konsolidiert: Gesamte Rechtsvorschrift für Ökostromgesetz 2012. Available online: https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=20007386 (accessed on 24 January 2024).
- Shiva Kumar, A.; Dobbins, A.; Fahl, U.; Singh, A. Drivers of renewable energy deployment in the EU: An analysis of past trends and projections. Energy Strat. Rev. 2019, 26, 100402. [Google Scholar] [CrossRef]
- Integrated National Energy and Climate Plan for Austria 2021–2030 Pursuant to Regulation (EU) 2018/1999 of the European Parliament and of the Council on the Governance of the Energy Union and Climate Action; Federal Ministry for Sustainability and Tourism: Vienna, Austria, 2019; Available online: https://ec.europa.eu/energy/sites/ener/files/documents/at_final_necp_main_en.p (accessed on 24 January 2024).
- International Energy Agency Wind. 2014 Annual Report. 2015. Available online: https://usercontent.one/wp/iea-wind.org/wp-content/uploads/2022/12/2014-IEA-Annual-Report.pdf (accessed on 24 January 2024).
- BMNT; BMVIT. #Mission2030: Die Österreichische Klima- und Energiestrategie. 2018. Available online: https://www.global2000.at/sites/global/files/Analyse-KlimaEnergiestrategie2018.pdf (accessed on 24 January 2024).
- Komendantova, N.; Neumueller, S.; Nkoana, E. Public attitudes, co-production and polycentric governance in energy policy. Energy Policy 2021, 153, 112241. [Google Scholar] [CrossRef]
- European Commission. 2030 Climate & Energy Framework. Available online: https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2030-climate-energy-framework_en (accessed on 24 January 2024).
- Klima- und Energie-Modellregionen. Available online: https://www.klimaundenergiemodellregionen.at/ (accessed on 24 January 2024).
- Swiss Federal Office of Energy. Energiestrategie 2050. 2018. Available online: https://www.bfe.admin.ch/bfe/de/home/politik/energiestrategie-2050.html/ (accessed on 24 January 2024).
- Swiss Federal Office of Energy. Herkunftsnachweis für Elektrizität und Stromkennzeichnung. 2016. Available online: https://www.bfe.admin.ch/bfe/de/home/versorgung/stromversorgung/herkunftsnachweis-fuer-elektrizitaet-und-stromkennzeichnung.html (accessed on 24 January 2024).
- Broughel, A.E.; Hampl, N. Community financing of renewable energy projects in Austria and Switzerland: Profiles of potential investors. Energy Policy 2018, 123, 722–736. [Google Scholar] [CrossRef]
- Deutscher Bundestag. Coal-Fired Power Generation Termination Act (KVBG). Bundesgesetzblatt. August 2020. Available online: https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&start=//*[@attr_id=’bgbl120s1818.pdf (accessed on 24 January 2024).
- Deutscher Bundestag. Renewable Energy Sources Act. Bundesgesetzblatt. December 2020. Available online: https://www.bmwi.de/Redaktion/EN/Downloads/renewable-energy-sources-act-2017.pdf%3F__blob%3DpublicationFile%26v%3D3 (accessed on 24 January 2024).
- Hall, S.; Roelich, K.E.; Davis, M.E.; Holstenkamp, L. Finance and justice in low-carbon energy transitions. Appl. Energy 2018, 222, 772–780. [Google Scholar] [CrossRef]
- Nagl, S.; Fürsch, M.; Paulus, M.; Richter, J.; Trüby, J.; Lindenberger, D. Energy policy scenarios to reach challenging climate protection targets in the German electricity sector until 2050. Util. Policy 2011, 19, 185–192. [Google Scholar] [CrossRef]
- German Federal Government. 2016. Available online: https://www.bmuv.de/fileadmin/Daten_BMU/Pools/Broschueren/aktionsprogramm_klimaschutz_2020_broschuere_en_bf.pdf (accessed on 24 January 2024).
- Agora Energiewende. Energiewende: What Do the New Laws Mean? Ten Questions and Answers about EEG 2017, the Electricity Market Act, and the Digitisation Act; Agora Energiewende: Berlim, Germany, 2016; Available online: https://static.agora-energiewende.de/fileadmin/Projekte/2016/EEG-FAQ/Agora_FAQ-EEG_EN_WEB.pdf (accessed on 24 January 2024).
- BMUB. Climate Protection Plan 2050; Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety. 2016. Available online: https://ec.europa.eu/clima/sites/lts/lts_de_en.pdf (accessed on 24 January 2024).
- Frank, A.G.; Gerstlberger, W.; Paslauski, C.A.; Lerman, L.V.; Ayala, N.F. The contribution of innovation policy criteria to the development of local renewable energy systems. Energy Policy 2018, 115, 353–365. [Google Scholar] [CrossRef]
- Leiren, M.D.; Reimer, I. Historical institutionalist perspective on the shift from feed-in tariffs towards auctioning in German renewable energy policy. Energy Res. Soc. Sci. 2018, 43, 33–40. [Google Scholar] [CrossRef]
- Berchem, A. Das Unterschätzte Gesetz. Zeit Online. 2006. Available online: http://www.zeit.de/online/2006/39/EEG/komplettansicht (accessed on 14 March 2017).
- Schreurs, M.A. The politics of phase-out, Bull. Atom. Sci. 2012, 68, 30–41. [Google Scholar] [CrossRef]
- Huenteler, J.; Schmidt, T.S.; Kanie, N. Japan’s post-Fukushima challenge—Implications from the German experience on renewable energy policy. Energy Policy 2012, 45, 6–11. [Google Scholar] [CrossRef]
- Altmaier, P. Energiewende Könnte bis zu einer Billion Euro Kosten. Frankfurter Allgemeine. 2013. Available online: http://www.faz.net/aktuell/politik/energiepolitik/umweltminister-altmaier-energiewende-koennte-bis-zu-einer-billion-euro-kosten-12086525.html (accessed on 7 January 2017).
- Proskuryakova, L. Updating energy security and environmental policy: Energy security theories revisited. J. Environ. Manag. 2018, 223, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Bonatz, N.; Guo, R.; Wu, W.; Liu, L. A comparative study of the interlinkages between energy poverty and low carbon development in China and Germany by developing an energy poverty index. Energy Build. 2019, 183, 817–831. [Google Scholar] [CrossRef]
- Ruhnau, O.; Bannik, S.; Otten, S.; Praktiknjo, A.; Robinius, M. Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050. Energy 2019, 166, 989–999. [Google Scholar] [CrossRef]
- Ethics Commission for a Safe Energy Supply. Germany’s Energy Transition—A Collective Project for the Future; Federal Government of Germany: Berlin, Germany, 2011; Available online: https://www.bundesregierung.de/resource/blob/2065474/457334/bae4db36ddee0379dac83f1a14cab337/2011-05-30-abschlussbericht-ethikkommission-en-data.pdf (accessed on 24 January 2024).
- Brodny, J.; Tutak, M.; Bindzár, P. Assessing the level of renewable energy development in the european union member states. A 10-year perspective. Energies 2021, 14, 3765. [Google Scholar] [CrossRef]
- Federal Ministry for Economic Affairs and Energy. Entwicklung der Erneuerbaren Energien in Deutschland im Jahr 2015; Bundesministerium für Wirtschaft und Energie (BMWi): Berlin, Germany, 2016; Available online: https://www.connaissancedesenergies.org/sites/default/files/pdf-actualites/erneuerbare-energien-in-zahlen-2015.pdf (accessed on 24 January 2024).
- Diógenes, J.R.F.; Claro, J.; Rodrigues, J.C. Barriers to onshore wind farm implementation in Brazil. Energy Policy 2019, 128, 253–266. [Google Scholar] [CrossRef]
- Carstens, D.D.S.; Cunha, S.K. Challenges and opportunities for the growth of solar photovoltaic energy in Brazil. Energy Policy 2019, 125, 396–404. [Google Scholar] [CrossRef]
- Aquila, G.; de Oliveira Pamplona, E.; de Queiroz, A.R.; Junior, P.R.; Fonseca, M.N. An overview of incentive policies for the expansion of renewable energy generation in electricity power systems and the Brazilian experience. Renew. Sustain. Energy Rev. 2017, 70, 1090–1098. [Google Scholar] [CrossRef]
- Abdmouleh, Z.; Alammari, R.A.; Gastli, A. Review of policies encouraging renewable energy integration & best practices. Renew. Sustain. Energy Rev. 2015, 45, 249–262. [Google Scholar] [CrossRef]
- Muhammed, G.; Tekbiyik-Ersoy, N. Development of renewable energy in China, USA, and Brazil: A comparative study on renewable energy policies. Sustainability 2020, 12, 9136. [Google Scholar] [CrossRef]
- UNFCCC. Intended Nationally Determined Contribution; UNFCCC: Brasília, Brazil, 2015; Available online: http://www4.unfccc.int/Submissions/INDC/PublishedDocuments/Brazil/1/BRAZILiNDCenglishFINAL.pdf (accessed on 24 January 2024).
- Dranka, G.G.; Ferreira, P. Electric vehicles and biofuels synergies in the Brazilian energy system. Energies 2020, 13, 4423. [Google Scholar] [CrossRef]
- Tolmasquim, M.T.; de Barros Correia, T.; Addas Porto, N.; Kruger, W. Electricity market design and renewable energy auctions: The case of Brazil. Energy Policy 2021, 158, 112558. [Google Scholar] [CrossRef]
- Siqueira, A.M.Q.; Bermann, C. Fundamentos do planejamento energético centralizado e do descentralizado. Rev. Bras. Energ. 2020, 26, 33–44. [Google Scholar] [CrossRef]
- Tolmasquim, M. The energy sector in Brazil: Policy and Perspectives. Estud. Avançados 2012, 26, 249–260. [Google Scholar] [CrossRef]
- Lazaro, L.L.B.; Soares, R.S.; Bermann, C.; Collaço, F.M.A.; Giatti, L.L.; Abram, S. Energy transition in Brazil: Is there a role for multilevel governance in a centralized energy regime? Energy Res. Soc. Sci. 2022, 85, 102404. [Google Scholar] [CrossRef]
- Silva, G.D.P.; Magrini, A.; Tolmasquim, M.T.; Branco, D.A.C. Environmental licensing and energy policy regulating utility-scale solar photovoltaic installations in Brazil: Status and future perspectives. Impact Assess. Proj. Apprais. 2019, 37, 503–515. [Google Scholar] [CrossRef]
- Pfoser, S.; Schauer, O.; Costa, Y. Acceptance of LNG as an alternative fuel: Determinants and policy implications. Energy Policy 2018, 120, 259–267. [Google Scholar] [CrossRef]
- Strunz, S. The German energy transition as a regime shift. Ecol. Econ. 2014, 100, 150–158. [Google Scholar] [CrossRef]
- Herbes, C.; Rilling, B.; Ringel, M. Policy frameworks and voluntary markets for biomethane—How do different policies influence providers’ product strategies? Energy Policy 2021, 153, 112292. [Google Scholar] [CrossRef]
- Langer, K.; Decker, T.; Roosen, J.; Menrad, K. Factors influencing citizens’ acceptance and non-acceptance of wind energy in Germany. J. Clean. Prod. 2018, 175, 133–144. [Google Scholar] [CrossRef]
- Daniel-Gromke, J.; Rensberg, N.; Denysenko, V.; Stinner, W.; Schmalfuß, T.; Scheftelowitz, M.; Nelles, M.; Liebetrau, J. Current developments in production and utilization of biogas and biomethane in Germany. Chem. Ing. Tech. 2018, 90, 17–35. [Google Scholar] [CrossRef]
- Coester, A.; Hofkes, M.W.; Papyrakis, E. Economics of renewable energy expansion and security of supply: A dynamic simulation of the German electricity market. Appl. Energy 2018, 231, 1268–1284. [Google Scholar] [CrossRef]
- Li, L.; Lin, J.; Wu, N.; Xie, S.; Meng, C.; Zheng, Y.; Wang, X.; Zhao, Y. Review and outlook on the international renewable energy development. Energy Built Environ. 2022, 3, 139–157. [Google Scholar] [CrossRef]
- Kemfert, C. Germany must go back to its low-carbon future. Nature 2017, 549, 26–27. [Google Scholar] [CrossRef]
- Pereira, E.B.; Martins, F.R.; Gonçalves, A.R.; Costa, R.S.; de Lima, F.J.L.; Rüther, R.; de Abreu, S.L.; Tiepolo, G.M.; Pereira, S.V.; Souza, J.G. Atlas Brasileiro de Energia Solar 2017, 2nd ed.; INPE: São José dos Campos, Brazil, 2017; p. 80. [Google Scholar] [CrossRef]
- Lee, J.; Zhao, F. Global Wind Report 2022; GWEC—Global Wind Energy Council: Brussels, Belgium, 4 April 2022; Available online: https://gwec.net/global-wind-report-2022/ (accessed on 24 January 2024).
- Oliveira, R.C.; Panorama do hidrogênio no Brasil. Instituto de Pesquisa Econômica Aplicada (IPEA). 2022. Available online: https://repositorio.ipea.gov.br/bitstream/11058/11291/1/td_2787_web.pdf (accessed on 24 January 2024).
- Empresa de Pesquisa Energética. Balanço Energético Nacional; EPE: Brasília, Brazil, 2021. Available online: https://www.epe.gov.br/sites-en/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-231/BEN_Síntese_2020_EN.pdf (accessed on 24 January 2024).
- BMWi. Federal Ministry for Economic Affairs and Climate Action. In The National Hydrogen Strategy; BMWi: Berlin, Germany, 2020. [Google Scholar]
- Liebich, A.; Fröhlich, T.; Münter, D.; Fehrenbach, H.; Giegrich, J.; Köppen, S.; Dünnebeil, F.; Knörr, W.; Biemann, K. Detailed Analyses of the System Comparison of Storable Energy Carriers from Renewable Energies—Final Report; Federal Environment Agency: Dessau-Roßlau, Germany, 2021; Available online: https://inis.iaea.org/search/search.aspx?orig_q=reportnumber:%22UBA-FB--000263/ANH%22 (accessed on 24 January 2024).
- Breuer, J.L.; Scholten, J.; Koj, J.C.; Schorn, F.; Fiebrandt, M.; Samsun, R.C.; Albus, R.; Görner, K.; Stolten, D.; Peters, R. An Overview of Promising Alternative Fuels for Road, Rail, Air, and Inland Waterway Transport in Germany. Energies 2022, 15, 1443. [Google Scholar] [CrossRef]
- Trattner, A.; Klell, M.; Radner, F. ScienceDirect Sustainable hydrogen society e Vision, findings and development of a hydrogen economy using the example of Austria. Int. J. Hydrogen Energy 2021, 47, 2059–2079. [Google Scholar] [CrossRef]
- Povacz, L.; Bhandari, R. Analysis of the Levelized Cost of Renewable Hydrogen in Austria. Sustainability 2023, 15, 4575. [Google Scholar] [CrossRef]
- Vilbergsson, K.V.; Dillman, K.; Emami, N.; Ásbjörnsson, E.J.; Heinonen, J.; Finger, D.C. ScienceDirect Can remote green hydrogen production play a key role in decarbonizing Europe in the future? A cradle-to-gate LCA of hydrogen production in. Int. J. Hydrogen Energy 2023, 48, 177711–177728. [Google Scholar] [CrossRef]
- Baumann, M.; Fazeni-Fraisl, K.; Kienberger, T.; Nagovnak, P.; Pauritsch, G.; Rosenfeld, D.; Sejkora, C.; Tichler, R. Erneuerbares Gas in Österreich 2040; Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie: Vienna, Austria, 2021; Volume 94. [Google Scholar]
- Energy Outlook. Surviving the Energy Crisis. EIA. 2023. Available online: https://www.eia.gov/outlooks/aeo/ (accessed on 24 January 2024).
- Federal Ministry for Economic Affairs and Energy. Draft of the Integrated National Energy and Climate Plan. Available online: https://www.bmwk.de/Redaktion/EN/Downloads/E/draft-of-the-integrated-national-energy-and-climate-plan.pdf?__blob%C2%BCpublicat%20ionFile&v%C2%BC5 (accessed on 24 January 2024).
- Coleman, D.; Kopp, M.; Wagner, T.; Scheppat, B. The value chain of green hydrogen for fuel cell buses—A case study for the Rhine-Main area in Germany. Int. J. Hydrogen Energy 2020, 45, 5122–5133. [Google Scholar] [CrossRef]
- International Energy Agency—IEA. The Future of Hydrogen. 2019. Available online: https://www.iea.org/reports/the-future-of-hydrogen (accessed on 24 January 2024).
- Gesellschaft für Internationale Zusammenarbeit—GIZ. Mapeamento do Setor de Hidrogênio Brasileiro; GIZ: Brasília, Brazil, 2021; Available online: https://www.energypartnership.com.br/fileadmin/user_upload/brazil/media_elements/Mapeamento_H2_-_Diagramado_-_V2h.pdf (accessed on 24 January 2024).
- Empresa de Pesquisa Energética. Geração Eólica e Fotovoltaica, Dados de Entrada para Modelos Elétricos e Energéticos: Metodologias e Premissas; EPE: Brasília, Brazil, 2021. Available online: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-558/NT-EPE-DEE-011-2021_EOL%20e%20UFV%20-%20Entrada%20para%20modelos.pdf (accessed on 24 January 2024).
- International Renewable Energy Agency—IRENA. Renewable Capacity Statistics; The International Renewable Energy Agency Publications. 2022. Available online: https://www.irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022 (accessed on 24 January 2024).
- Moradi, R.; Groth, K.M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrogen Energy 2019, 44, 12254–12269. [Google Scholar] [CrossRef]
- Rivard, E.; Trudeau, M.; Zaghib, K. Hydrogen Storage for Mobility: A Review. Materials 2019, 12, 1973. [Google Scholar] [CrossRef] [PubMed]
- Zivar, D.; Kumar, S.; Foroozesh, J. Underground hydrogen storage: A comprehensive review. Int. J. Hydrogen Energy 2021, 46, 23436–23462. [Google Scholar] [CrossRef]
- Yan, L.; Liang, J.; Song, D.; Li, X.; Li, H. Modulation of Charge Redistribution in Heterogeneous NiO-Ni3Se4 Nanosheet Arrays for Advanced Water Electrolysis. Adv. Funct. Mater. 2024, 34, 2308345. [Google Scholar] [CrossRef]
- Wang, J.H.; Yang, S.W.; Ma, F.B.; Zhao, Y.K.; Zhao, S.N.; Xiong, Z.Y.; Cai, D.; Shen, H.D.; Zhu, K.; Zhang, Q.Y.; et al. RuCo alloy nanoparticles embedded within N-doped porous two-dimensional carbon nanosheets: A high-performance hydrogen evolution reaction catalyst. Tungsten 2024, 6, 114–123. [Google Scholar] [CrossRef]
- Liao, J.; Shao, Y.; Feng, Y.; Zhang, J.; Song, C.; Zeng, W.; Tang, J.; Dong, H.; Liu, Q.; Li, H. Interfacial charge transfer induced dual-active-sites of heterostructured Cu0.8Ni0.2WO4 nanoparticles in ammonia borane methanolysis for fast hydrogen production. Appl. Catal. B Environ. 2023, 320, 121973. [Google Scholar] [CrossRef]
- Feng, Y.; Li, Y.; Liao, Q.; Zhang, W.; Huang, Z.; Chen, X.; Shao, Y.; Dong, H.; Liu, Q.; Li, H. Modulation the electronic structure of hollow structured CuO-NiCo2O4 nanosphere for enhanced catalytic activity towards methanolysis of ammonia borane. Fuel 2023, 332, 126045. [Google Scholar] [CrossRef]
Related Keywords | Forms of Hydrogen Production | Description | References | ||||
---|---|---|---|---|---|---|---|
Green | Gray | Blue | Brown | White | |||
Fermentation | x | x | Several studies in the literature employ fermentation processes for the development of sustainable technologies for H2 production, while others view it as gray. | e.g., [19,20] | |||
Electrolysis | x | Among several hydrogen production methods, eco-friendly and high-purity hydrogen can be obtained through water electrolysis. | [21] | ||||
Carbon dioxide | x | x | Gray hydrogen is produced through steam methane reforming (SMR), while blue hydrogen is derived from SMR with CO2 capture and storage (CCS). | [18] | |||
Catalyst activity | x | x | x | x | x | Catalyst activity can be assessed in various hydrogen processes, including gray, white, blue, brown, and green processes. | [22,23,24,25] |
Hydrogen generations | x | x | x | Hydrogen generation technology assumes a central role in determining the course of hydrogen utilization, exerting a profound influence on its multifaceted applications across diverse sectors. | [18,26,27,28] | ||
Electrocatalysts | x | Developing cost-effective electrocatalysts for green water electrolysis is a topic of significant research interest. | [25] | ||||
Steam reforming | x | SMR of natural gas is currently the most mature and extended technology for gray hydrogen production. | [18] | ||||
Methane | x | x | SMR processes can give rise to gray hydrogen or blue hydrogen when carbon capture is employed, with several studies evaluating the catalytic effect with methane reforming. | [18,29,30,31,32] | |||
Biomass | x | x | Blue-green pathways offer numerous benefits and warrant serious consideration in the global decarbonization effort, particularly when utilizing microorganisms such as microalgae and cyanobacteria, which are significant sources of biohydrogen. | [26,27,28,33] | |||
Hydrogen storage | x | x | x | x | x | The hydrogen storage technology is crucial for the advancement of this technology, being linked to its entire production chain. | [18,26,27,28] |
Photocatalytic activity | x | Using a photocatalyst empowers prospective applications for the evolution of green hydrogen. Photocatalytic H2 production is proven to be one of the cleanest methods for harvesting both hydrogen and oxygen. | [34] | ||||
Energy efficiency | x | x | x | x | x | Energy efficiency is linked to the entire production process. In alkaline electrolysis, for instance, the energy efficiency is approximately 70–80%. | [21,33] |
Titanium dioxide | x | Titanium dioxide (TiO2) is a promising candidate for photocatalytic H2 production due to its favorable properties, including a large band gap, low cost, non-toxicity, and chemical stability. | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, G.H.R.; Nascimento, A.; Baum, C.D.; Mathias, M.H. Renewable Energy Potentials and Roadmap in Brazil, Austria, and Germany. Energies 2024, 17, 1482. https://doi.org/10.3390/en17061482
da Silva GHR, Nascimento A, Baum CD, Mathias MH. Renewable Energy Potentials and Roadmap in Brazil, Austria, and Germany. Energies. 2024; 17(6):1482. https://doi.org/10.3390/en17061482
Chicago/Turabian Styleda Silva, Gustavo Henrique Romeu, Andreas Nascimento, Christoph Daniel Baum, and Mauro Hugo Mathias. 2024. "Renewable Energy Potentials and Roadmap in Brazil, Austria, and Germany" Energies 17, no. 6: 1482. https://doi.org/10.3390/en17061482
APA Styleda Silva, G. H. R., Nascimento, A., Baum, C. D., & Mathias, M. H. (2024). Renewable Energy Potentials and Roadmap in Brazil, Austria, and Germany. Energies, 17(6), 1482. https://doi.org/10.3390/en17061482