Previous Issue
Volume 2025, June
 
 

Molbank, Volume 2025, Issue 3 (September 2025) – 34 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
9 pages, 1356 KB  
Communication
Synthesis of (Camphor-3-yl)acetic Acid-Derived Pyrazoles
by Luka Ciber, Helena Brodnik, Nejc Petek, Franc Požgan, Jurij Svete, Bogdan Štefane and Uroš Grošelj
Molbank 2025, 2025(3), M2058; https://doi.org/10.3390/M2058 - 12 Sep 2025
Abstract
Two pyrazole derivatives were prepared in three steps from (camphor-3-yl)acetic acid. The pyrazole derivatives were fully characterized. The stereochemistry at the newly formed stereogenic center was confirmed by NOESY measurements and single crystal X-ray analysis. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

9 pages, 1563 KB  
Short Note
5-(2-Methylsulfanylethyl)-3-prop-2-enyl-2-sulfanylideneimidazolidin-4-one
by Petar Stanić, Marko V. Rodić and Biljana Šmit
Molbank 2025, 2025(3), M2057; https://doi.org/10.3390/M2057 - 4 Sep 2025
Viewed by 283
Abstract
An amino acid-derived 2-thiohydantoin, 5-(2-methylsulfanylethyl)-3-prop-2-enyl-2-sulfanylideneimidazolidin-4-one, obtained from l-methionine, was synthesized in a two-step reaction protocol with allyl isothiocyanate. The compound was obtained in an 82% yield and was fully structurally characterized by NMR and IR spectroscopy. The crystal structure, molecular packing, and [...] Read more.
An amino acid-derived 2-thiohydantoin, 5-(2-methylsulfanylethyl)-3-prop-2-enyl-2-sulfanylideneimidazolidin-4-one, obtained from l-methionine, was synthesized in a two-step reaction protocol with allyl isothiocyanate. The compound was obtained in an 82% yield and was fully structurally characterized by NMR and IR spectroscopy. The crystal structure, molecular packing, and intermolecular interactions were characterized by X-ray diffraction analysis. Full article
Show Figures

Figure 1

5 pages, 585 KB  
Short Note
3-([4-(Acetylamino)phenyl]methoxy-1-carbonyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic Acid
by Kathryn N. Mayeaux, Bailey N. Baxter, Hannah K. Lawley, Caleb N. Lopansri, Mary Helene Marmande, Lucy A. Orr and David C. Forbes
Molbank 2025, 2025(3), M2056; https://doi.org/10.3390/M2056 - 30 Aug 2025
Viewed by 396
Abstract
Overexpression of protein phosphatase 5 (PP5) is linked to tumor cell growth, making it a candidate for small-molecule drug therapy. Since the PP2A domain has been selectively inhibited using functionalized scaffolds that maximize contacts, a similar approach is proposed to work for PP5. [...] Read more.
Overexpression of protein phosphatase 5 (PP5) is linked to tumor cell growth, making it a candidate for small-molecule drug therapy. Since the PP2A domain has been selectively inhibited using functionalized scaffolds that maximize contacts, a similar approach is proposed to work for PP5. As cantharidin’s demethylated cousin, norcantharidin, is a potent but unselective phosphatase inhibitor that can be prepared in just two synthetic steps, the bicyclic scaffold holds promise as an attractive target upon functionalization. Our hypothesis targets PP5 selectivity through derivatives of norcantharidin with functionalized attachments for optimal active-site binding. The methodology offers a promising platform for developing PP5-selective anticancer therapeutics. The approach reported herein exploits anhydride reactivity to yield a carboxylic acid derivative as our next-generation inhibitor of PP5. The methodology offers groundwork for future optimization of norcantharidin-based drug candidates with improved tumor selectivity, potency, and synthetic feasibility. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

6 pages, 332 KB  
Communication
Synthesis of Ethyl (S)-3-(1-Methyl-2-Oxo-Cyclohexyl)-2-Oxopropanoate Through Stereoselective Michael Addition
by Domenico C. M. Albanese and Nicoletta Gaggero
Molbank 2025, 2025(3), M2055; https://doi.org/10.3390/M2055 - 28 Aug 2025
Viewed by 435
Abstract
A practical four-step sequence for the synthesis of α,δ-dioxoesters with high enantiomeric excess was developed. It makes use of a regio- and stereoselective Michael addition of a chiral ketimine to ethyl 2-(phenylthio)-2-propenoate as a key transformation. The synthetic elaboration of the Michael adduct [...] Read more.
A practical four-step sequence for the synthesis of α,δ-dioxoesters with high enantiomeric excess was developed. It makes use of a regio- and stereoselective Michael addition of a chiral ketimine to ethyl 2-(phenylthio)-2-propenoate as a key transformation. The synthetic elaboration of the Michael adduct provides the new ethyl 3-(1-methyl-2-oxo-cyclohexyl)-2-oxopropanoate, bearing a quaternary stereocenter with 95% ee and high yield. Full article
Show Figures

Graphical abstract

7 pages, 1218 KB  
Communication
Synthesis of Novel Spiro-Isoxazolidine Derivatives of 9α-Hydroxyparthenolide
by Mohamed Zaki, Mohammed Loubidi and Sabine Berteina-Raboin
Molbank 2025, 2025(3), M2054; https://doi.org/10.3390/M2054 - 28 Aug 2025
Viewed by 320
Abstract
The 1,3-dipolar cycloaddition reaction was applied to 9α-hydroxyparthenolide, an important sesquiterpene component of Anvillea radiata that was extracted directly from plant material collected in Morocco. Several new spiro-isoxazolidine derivatives were generated on the B-ring of 9α-hydroxyparthenolide (α-methylene-γ-butyrolactone (1)) by 1,3-dipolar cycloaddition [...] Read more.
The 1,3-dipolar cycloaddition reaction was applied to 9α-hydroxyparthenolide, an important sesquiterpene component of Anvillea radiata that was extracted directly from plant material collected in Morocco. Several new spiro-isoxazolidine derivatives were generated on the B-ring of 9α-hydroxyparthenolide (α-methylene-γ-butyrolactone (1)) by 1,3-dipolar cycloaddition of its exocyclic double bond with various nitrones. These compounds were fully characterized by spectroscopic methods. Full article
Show Figures

Figure 1

6 pages, 272 KB  
Short Note
1H,1H,7H-Dodecafluoroheptyl Pentafluorobenzoate
by Sofia S. Kascheeva, Anastasiya V. Lastovka, Andrey S. Vinogradov and Dmitriy A. Parkhomenko
Molbank 2025, 2025(3), M2053; https://doi.org/10.3390/M2053 - 27 Aug 2025
Viewed by 357
Abstract
Polyfluoroarenes are widely used in organic synthesis because they readily undergo nucleophilic substitution reactions. This reactivity prompted us to report the synthesis and spectroscopic characterization of a new compound, 1H,1H,7H-dodecafluoroheptyl pentafluorobenzoate, obtained via three different approaches starting from pentafluorobenzoic acid and 1H,1H,7H-dodecafluoroheptanol. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Scheme 1

5 pages, 590 KB  
Communication
4,4′-Bis(1-(4-nitrophenyl)-2-(2,4,6-trinitrophenyl)hydrazineyl)-1,1′-biphenyl and Its Corresponding Stable Diradical
by Miron T. Caproiu and Petre Ionita
Molbank 2025, 2025(3), M2045; https://doi.org/10.3390/M2045 - 26 Aug 2025
Viewed by 377
Abstract
Starting with DPPH-diradical, the corresponding dinitro-derivative was obtained in a biphasic system using solid sodium nitrite and 15-crown-5 ether as the nitrating reagents. The new compound was characterized using 1H- and 13C-NMR, IR, and UV-Vis. After undergoing oxidation, a new stable diradical was [...] Read more.
Starting with DPPH-diradical, the corresponding dinitro-derivative was obtained in a biphasic system using solid sodium nitrite and 15-crown-5 ether as the nitrating reagents. The new compound was characterized using 1H- and 13C-NMR, IR, and UV-Vis. After undergoing oxidation, a new stable diradical was obtained, and this was characterized using ESR, IR, and UV-Vis. This process demonstrates that the well-known chemistry based on DPPH can be extended to DPPH-diradical. Full article
Show Figures

Figure 1

6 pages, 938 KB  
Short Note
N-[(2H-1,3-benzodioxol-5-yl)methyl]-2-(2,2,2-trichloroacetamido)benzamide
by Plamen Penchev and Dimitar Stoitsov
Molbank 2025, 2025(3), M2052; https://doi.org/10.3390/M2052 - 25 Aug 2025
Viewed by 1213
Abstract
The structure of N-[(2H-1,3-benzodioxol-5-yl)methyl]-2-(2,2,2-trichloroacetamido)benzamide was verified by using a combination of 1D and 2D NMR techniques. Fully assigned data from 1D NMR (1H, 13C and DEPT 135) and 2D NMR (COSY, HMQC, HMBC) spectra was presented for [...] Read more.
The structure of N-[(2H-1,3-benzodioxol-5-yl)methyl]-2-(2,2,2-trichloroacetamido)benzamide was verified by using a combination of 1D and 2D NMR techniques. Fully assigned data from 1D NMR (1H, 13C and DEPT 135) and 2D NMR (COSY, HMQC, HMBC) spectra was presented for the compound. The 1H NMR spectrum of the ABX spin system in the benzodioxol moiety was simulated to predict the corresponding nJHH coupling constants. The spectral assignments for the structure were supported by interpretive library search and HOSE predictions. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

6 pages, 625 KB  
Communication
Three Hypoxanthine Derivatives from the Marine Cyanobacterium Okeania hirsuta
by Ryoya Kawabe, Botao Zhang, Ryuichi Watanabe, Hajime Uchida, Masayuki Satake and Hiroshi Nagai
Molbank 2025, 2025(3), M2051; https://doi.org/10.3390/M2051 - 21 Aug 2025
Viewed by 296
Abstract
Three novel hypoxanthine derivatives (13) were obtained from the Okinawan cyanobacterium Okeania hirsuta. The structures of these compounds were elucidated mainly based on the spectroscopic data, including 1D and 2D NMR, as well as high-resolution mass spectrometry. In [...] Read more.
Three novel hypoxanthine derivatives (13) were obtained from the Okinawan cyanobacterium Okeania hirsuta. The structures of these compounds were elucidated mainly based on the spectroscopic data, including 1D and 2D NMR, as well as high-resolution mass spectrometry. In particular, the amounts of obtained compounds 2 and 3 were only 200 μg and much less than 50 μg, respectively. Therefore, some carbons signals could not be observed on 13C NMR spectra of these compounds. However, the detailed analysis of HSQC and HMBC spectra allowed us to elucidate their structures. For NMR measurements of compound 3, it was found that using an 800 MHz NMR machine equipped with a cryogenic probe and acetic acid-d4 as a solvent is essential. Compounds (13) were N-3′-carbonylbutyl group-connected hypoxanthines. Full article
(This article belongs to the Section Natural Product Chemistry)
Show Figures

Figure 1

7 pages, 403 KB  
Communication
Synthesis of a New Bioconjugate Steroid Pyridinium Salt Derived from Allopregnanolone Acetate
by Hisami Rodríguez-Matsui, J. Luis Sánchez-Juárez, Vladimir Carranza-Téllez, Joel L. Terán, Jesús Sandoval-Ramirez and Alan Carrasco-Carballo
Molbank 2025, 2025(3), M2050; https://doi.org/10.3390/M2050 - 20 Aug 2025
Viewed by 335
Abstract
Because allopregnanolone and derivatives represent biologically active molecules, in this letter, we present the synthesis of a new bioconjugate steroid pyridinium salt derived from allopregnanolone in three steps. The key steps involve the formation of the hydrazone intermediate, followed by condensation with bromoacetyl [...] Read more.
Because allopregnanolone and derivatives represent biologically active molecules, in this letter, we present the synthesis of a new bioconjugate steroid pyridinium salt derived from allopregnanolone in three steps. The key steps involve the formation of the hydrazone intermediate, followed by condensation with bromoacetyl bromide and subsequent coupling with pyridine to generate the pyridinium bromide salt. The new bioconjugate steroid pyridinium salt, 4, was fully characterized by proton and carbon nuclear magnetic resonance (1H and 13C NMR) spectroscopy, mass spectrometry (MS), and Fourier transform infrared spectroscopy (FTIR). 1H-NMR analysis revealed the presence of a dynamic rotameric mixture in a 7:3 ratio of Z/E amide conformers, which were identified by a 2D NOESY experiment. Full article
Show Figures

Figure 1

4 pages, 337 KB  
Short Note
5-[2-(4-Chlorophenyl)-2-oxoethyl]-3-(4-hydroxyphenyl)-2-thioxo-1,3-thiazolidin-4-one
by Nazar Trotsko
Molbank 2025, 2025(3), M2049; https://doi.org/10.3390/M2049 - 20 Aug 2025
Viewed by 307
Abstract
Rhodanine derivatives, as a subtype of thiazolidin-4-ones, represent an important class of heterocyclic compound known for their broad spectrum of biological activities and practical applications. In this short note, the synthesis of a new compound, 5-[2-(4-chlorophenyl)-2-oxoethyl]-3-(4-hydroxyphenyl)-2-thioxo-1,3-thiazolidin-4-one, is described. The target molecule was synthesized [...] Read more.
Rhodanine derivatives, as a subtype of thiazolidin-4-ones, represent an important class of heterocyclic compound known for their broad spectrum of biological activities and practical applications. In this short note, the synthesis of a new compound, 5-[2-(4-chlorophenyl)-2-oxoethyl]-3-(4-hydroxyphenyl)-2-thioxo-1,3-thiazolidin-4-one, is described. The target molecule was synthesized via a thia-Michael addition followed by cyclocondensation. Its structure was confirmed by 1H and 13C NMR spectroscopy and further supported by 2D NMR studies. Full article
Show Figures

Figure 1

7 pages, 612 KB  
Short Note
4-(1,3-Dioxoisoindolin-2-yl)butyl(2R,4aS,6aS,12bR,14aS,14bR)-10-hydroxy-2,4a,6a,9,12b,14a-hexamethyl-11-oxo-1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-tetradecahydropicene-2-carboxylate
by Zihan Chen, Ka Fai Leong, Carmine Coluccini and Paolo Coghi
Molbank 2025, 2025(3), M2048; https://doi.org/10.3390/M2048 - 19 Aug 2025
Viewed by 334
Abstract
In this report, we describe the synthesis of a compound derived from the natural compound celastrol, which is connected to a phthalimide moiety via an ester linkage. The compound was fully characterized by proton (1H), carbon-13 (13C), heteronuclear single-quantum [...] Read more.
In this report, we describe the synthesis of a compound derived from the natural compound celastrol, which is connected to a phthalimide moiety via an ester linkage. The compound was fully characterized by proton (1H), carbon-13 (13C), heteronuclear single-quantum coherence (HSQC), and distortionless enhancement by polarization transfer (DEPT) NMR. Ultraviolet–visible spectroscopy (UV-Vis), Fourier-transform infrared (FTIR), and elementary analysis were also performed. Full article
Show Figures

Figure 1

8 pages, 1233 KB  
Short Note
5-((3′,5′-Dibromo-[2,2′-bithiophen]-5-yl)methyl)-3-ethyl-2-thioxothiazolidin-4-one∙Br2 (1:1)
by Enrico Podda, Simone Acca, Maria Carla Aragoni, Vito Lippolis, Anna Pintus, Massimiliano Arca and Giuseppe Sforazzini
Molbank 2025, 2025(3), M2047; https://doi.org/10.3390/M2047 - 14 Aug 2025
Viewed by 290
Abstract
The reaction of rhodanine vinyl bithiophene (BTR) with molecular dibromine (Br2) resulted in the formation of compound 1. Single-crystal X-ray diffraction analysis revealed bromination of the terminal thiophenyl ring and the formation of a 1:1 CT “spoke” adduct between the [...] Read more.
The reaction of rhodanine vinyl bithiophene (BTR) with molecular dibromine (Br2) resulted in the formation of compound 1. Single-crystal X-ray diffraction analysis revealed bromination of the terminal thiophenyl ring and the formation of a 1:1 CT “spoke” adduct between the rhodanine thiocarbonyl group and a neutral dibromine (Br2) molecule. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

6 pages, 857 KB  
Short Note
Methyl α-d-Tagatopyranoside
by Yiming Hu, Akihiro Iyoshi, Masakazu Tanaka and Atsushi Ueda
Molbank 2025, 2025(3), M2046; https://doi.org/10.3390/M2046 - 14 Aug 2025
Cited by 1 | Viewed by 287
Abstract
d-Tagatose, classified as a rare sugar, exhibits notable biological activities, including its function as a low-calorie sweetener. The three-dimensional configuration of carbohydrates is crucial for elucidating their functional properties. Numerous studies have reported the X-ray crystallographic structures of d-tagatose and its [...] Read more.
d-Tagatose, classified as a rare sugar, exhibits notable biological activities, including its function as a low-calorie sweetener. The three-dimensional configuration of carbohydrates is crucial for elucidating their functional properties. Numerous studies have reported the X-ray crystallographic structures of d-tagatose and its derivatives bearing a free anomeric hydroxy group. However, there are no reports on the X-ray crystallographic structure of d-tagatosides featuring a glycosidic linkage at the anomeric position. In this study, we synthesized methyl α-d-tagatopyranoside from d-tagatose and successfully determined its X-ray crystallographic structure, revealing its 5C2 conformation. Full article
Show Figures

Figure 1

6 pages, 640 KB  
Short Note
Bis(4-((E)-3,5–Diacetoxystyryl)phenyl)nonanedioate
by Claudia Sciacca, Giulia Maria Grasso, Nunzio Cardullo and Vera Muccilli
Molbank 2025, 2025(3), M2044; https://doi.org/10.3390/M2044 - 5 Aug 2025
Viewed by 370
Abstract
Resveratrol is a natural stilbene known for its wide range of biological activities, including antioxidant, anti-inflammatory, and anti-aging effects. However, its application in cosmetics and dermatology is limited by poor stability and bioavailability. Azelaic acid is a natural carboxylic acid employed in cosmetics [...] Read more.
Resveratrol is a natural stilbene known for its wide range of biological activities, including antioxidant, anti-inflammatory, and anti-aging effects. However, its application in cosmetics and dermatology is limited by poor stability and bioavailability. Azelaic acid is a natural carboxylic acid employed in cosmetics for its tyrosinase inhibition activity and for cutaneous hyperpigmentation disorders. In this work, we report a concise chemoenzymatic procedure for the synthesis of a novel hybrid molecule combining acetylated resveratrol and azelaic acid. This methodology offers a valuable route for the development of new bioactive compounds for potential cosmetic and dermatological applications. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

6 pages, 790 KB  
Short Note
6-Amino-4-phenylpyrrolo[2,3-c][1,2,6]thiadiazine-5-carbonitrile
by Andreas S. Kalogirou, Andreas Kourtellaris and Panayiotis A. Koutentis
Molbank 2025, 2025(3), M2043; https://doi.org/10.3390/M2043 - 28 Jul 2025
Viewed by 459
Abstract
The reaction of 2-(3-chloro-5-phenyl-4H-1,2,6-thiadiazin-4-ylidene)malononitrile with ammonia in anhydrous THF, at ca. 20 °C, for 24 h, gave 6-amino-4-phenylpyrrolo[2,3-c][1,2,6]thiadiazine-5-carbonitrile in 95% yield. The product was characterized by 1H and 13C NMR, SC-XRD, MALDI-TOF mass spectrometry, FTIR, and UV-vis [...] Read more.
The reaction of 2-(3-chloro-5-phenyl-4H-1,2,6-thiadiazin-4-ylidene)malononitrile with ammonia in anhydrous THF, at ca. 20 °C, for 24 h, gave 6-amino-4-phenylpyrrolo[2,3-c][1,2,6]thiadiazine-5-carbonitrile in 95% yield. The product was characterized by 1H and 13C NMR, SC-XRD, MALDI-TOF mass spectrometry, FTIR, and UV-vis spectroscopy. Intermolecular hydrogen bonding interactions were observed in the solid state between the C≡N and N-H groups of adjacent molecules. Full article
Show Figures

Figure 1

11 pages, 2689 KB  
Communication
Synthesis and Structural Characterization of Manganese(I) Complexes Ligated by 2-Azabutadienes (ArS)2C=C(H)-N=CPh2
by Rodolphe Kinghat, Abderrahim Khatyr, Michael Knorr, Yoann Rousselin and Marek M. Kubicki
Molbank 2025, 2025(3), M2042; https://doi.org/10.3390/M2042 - 28 Jul 2025
Cited by 1 | Viewed by 400
Abstract
The thioether-functionalized 2-azabutadienes (ArS)2C=C(H)-N=CPh2 (L1 Ar = Ph, L2 Ar = p-Tol) ligate to [Mn(CO)5Br] to form the octahedral five-membered S, N-chelate complexes fac-[MnBr(CO)3{(ArS)2C=C(H)-N=CPh2] (1 Ar [...] Read more.
The thioether-functionalized 2-azabutadienes (ArS)2C=C(H)-N=CPh2 (L1 Ar = Ph, L2 Ar = p-Tol) ligate to [Mn(CO)5Br] to form the octahedral five-membered S, N-chelate complexes fac-[MnBr(CO)3{(ArS)2C=C(H)-N=CPh2] (1 Ar = Ph; 2 Ar = p-Tol), whose crystal structures have been solved by X-ray diffraction. Complex 1 crystallizes in the non-centrosymmetric orthorhombic space group P212121, whereas 2 crystallizes in the triclinic space group P1¯. The secondary interactions occurring in the packing have also been assessed by an Atoms in Molecules (AIM) topological analysis. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

7 pages, 421 KB  
Short Note
1,3,4,5-Tetra-O-benzoyl-α-d-tagatopyranose
by Yiming Hu, Akihiro Iyoshi, Yui Makura, Masakazu Tanaka and Atsushi Ueda
Molbank 2025, 2025(3), M2041; https://doi.org/10.3390/M2041 - 22 Jul 2025
Cited by 2 | Viewed by 427
Abstract
d-Tagatose, a rare sugar, is recognized as a low-calorie sweetener, used in daily life. Although d-tagatose exhibits intriguing biological activities, the synthesis of its derivatives has rarely been reported. In this study, we developed a method for synthesizing 1,3,4,5-tetra-O-benzoyl-α- [...] Read more.
d-Tagatose, a rare sugar, is recognized as a low-calorie sweetener, used in daily life. Although d-tagatose exhibits intriguing biological activities, the synthesis of its derivatives has rarely been reported. In this study, we developed a method for synthesizing 1,3,4,5-tetra-O-benzoyl-α-d-tagatopyranose through the regioselective benzoylation of d-tagatose in a single step, achieving an 88% yield on a gram scale. Additionally, 1,2,3,4,5-penta-O-benzoyl-α-d-tagatopyranose and 1,2,3,4,6-penta-O-benzoyl-α-d-tagatofuranose were synthesized in 50% yield as a 7:1 mixture. The structures of the three new benzoylated d-tagatose derivatives were confirmed by 1H, 13C NMR, 2D NMR, FT-IR, and HRMS analyses. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

7 pages, 636 KB  
Short Note
Benzyl-N-[4-(2-hydroxyethyl)-1,3-thiazol-2-yl]carbamate
by Lucrezia Spinelli, Matteo Mori and Laura Fumagalli
Molbank 2025, 2025(3), M2040; https://doi.org/10.3390/M2040 - 21 Jul 2025
Viewed by 1076
Abstract
Heterocycles—cyclic compounds containing at least one non-carbon heteroatom (e.g., N, O, S)—are fundamental in medicinal chemistry due to their influence on a drug’s physicochemical and biological properties. They improve solubility, bioavailability, and facilitate molecular recognition through their electronic and hydrogen-bonding features. These properties [...] Read more.
Heterocycles—cyclic compounds containing at least one non-carbon heteroatom (e.g., N, O, S)—are fundamental in medicinal chemistry due to their influence on a drug’s physicochemical and biological properties. They improve solubility, bioavailability, and facilitate molecular recognition through their electronic and hydrogen-bonding features. These properties make them indispensable in drug design. This study focuses on the synthesis of a key heterocyclic intermediate: benzyl-N-[4-(2-hydroxyethyl)-1,3-thiazol-2-yl]carbamate. This molecule incorporates a thiazole ring, known for its rigidity and electronic properties, that enhances target interactions. The 2-position bears a Cbz-protected amine, enabling orthogonal deprotection, while the 4-position features a hydroxyethyl side chain, providing a handle for further chemical modifications via nucleophilic substitution. Herein, we report the successful synthesis of this intermediate along with its full 1H and 13C NMR spectra, melting point, and crystal structure, confirming its identity and purity. Full article
Show Figures

Figure 1

16 pages, 1696 KB  
Communication
Synthesis and Characterization of Amide-Based Cyclotriphosphazene Derivatives with Alkoxy Terminal Groups
by Khairunnisa Abdul Rahim and Zuhair Jamain
Molbank 2025, 2025(3), M2039; https://doi.org/10.3390/M2039 - 21 Jul 2025
Viewed by 478
Abstract
A series of new amide-based cyclotriphosphazene molecules consisting of different terminal groups (heptyl, decyl, and tetradecyl) at the periphery was successfully synthesized and characterized. The reaction began with the alkylation of methyl-4-hydroxybenzoate with 1-bromoheptane, 1-bromodecane, and 1-bromotetradecane, which was followed by reduction with [...] Read more.
A series of new amide-based cyclotriphosphazene molecules consisting of different terminal groups (heptyl, decyl, and tetradecyl) at the periphery was successfully synthesized and characterized. The reaction began with the alkylation of methyl-4-hydroxybenzoate with 1-bromoheptane, 1-bromodecane, and 1-bromotetradecane, which was followed by reduction with potassium hydroxide to form a series of benzoic acid intermediates (1a–c). These intermediates underwent a reaction with thionyl chloride, followed by a reaction with 4-nitroaniline and triethylamine, to form para-substituted amides (2a–c). Further reduction of intermediates 2a–c with sodium sulfide hydrate produced the anilines 3a–c. Another reaction of hexachlorocyclotriphosphazene (HCCP) with methyl-4-hydroxybenzoate yielded intermediate 4, which was then reduced with sodium hydroxide to form intermediate 5. Finally, chlorination of intermediate 5 with thionyl chloride, followed by a reaction with the aniline derivatives (3a–c), formed the hexasubstituted cyclotriphosphazene compounds 6a–c, with two amide linkages. The structures of these compounds were confirmed using Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and CHN elemental analysis. Full article
Show Figures

Figure 1

8 pages, 641 KB  
Communication
Synthesis of 2-(2-((5″-(4-Cyanophenyl)-3,4′,4″-trioctyl[2,2′:5′,2″-terthiophen]-5-yl)methylene)-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile
by Alexia M. Frîncu, Lidia Căta, David Bălăceanu, Ion Grosu, Andreea P. Crișan and Anamaria Terec
Molbank 2025, 2025(3), M2038; https://doi.org/10.3390/M2038 - 18 Jul 2025
Viewed by 436
Abstract
A new π-conjugated acceptor–donor–acceptor small molecule, designed for applications in organic solar cells, containing a terthiophene core and indandione- and benzonitrile-based electron-withdrawing units, was synthesized via a multi-step process involving Suzuki–Miyaura cross-coupling and Knoevenagel condensation reactions. The structure was confirmed by NMR spectroscopy, [...] Read more.
A new π-conjugated acceptor–donor–acceptor small molecule, designed for applications in organic solar cells, containing a terthiophene core and indandione- and benzonitrile-based electron-withdrawing units, was synthesized via a multi-step process involving Suzuki–Miyaura cross-coupling and Knoevenagel condensation reactions. The structure was confirmed by NMR spectroscopy, HRMS, and its optoelectronic properties were evaluated by UV–vis spectroscopy and cyclic voltammetry. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

4 pages, 652 KB  
Short Note
3-Methyl-2-((methylthio)methyl)but-2-enal
by Huaxuan Zhang and Xingang Xie
Molbank 2025, 2025(3), M2037; https://doi.org/10.3390/M2037 - 16 Jul 2025
Viewed by 397
Abstract
During the Swern oxidation of 3-methylbut-3-en-1-ol, an unexpected C-C bond formation product, 3-methyl-2-(methylthio)but-2-enal, was obtained. Its structure was characterized using 1H-NMR, 13C-NMR, and HRMS. Based on the classical Swern oxidation mechanism and the unique structural features of the substrate, we propose [...] Read more.
During the Swern oxidation of 3-methylbut-3-en-1-ol, an unexpected C-C bond formation product, 3-methyl-2-(methylthio)but-2-enal, was obtained. Its structure was characterized using 1H-NMR, 13C-NMR, and HRMS. Based on the classical Swern oxidation mechanism and the unique structural features of the substrate, we propose a plausible reaction pathway. This discovery not only provides insights into the selection of oxidation conditions for 1, 1-disubstituted homoallylic alcohols with analogous structures but also offers a viable synthetic route for the preparation of compounds containing the 3-methyl-2-(methylthio)but-2-enal motif. Full article
Show Figures

Figure 1

7 pages, 806 KB  
Communication
Two Cocrystals of Phenazine with Different Phenylboronic Acids
by Stijn Germonpré, Subhrajyoti Bhandary and Kristof Van Hecke
Molbank 2025, 2025(3), M2036; https://doi.org/10.3390/M2036 - 14 Jul 2025
Viewed by 630
Abstract
Boronic acids are an important class of molecules diversely used in organic synthesis, catalysis, medicinal chemistry, and for the design of functional materials. Particularly, aryl boronic acids in the solid state are known to exhibit pharmaceutical and photoluminescent properties for antimicrobial, sensing, and [...] Read more.
Boronic acids are an important class of molecules diversely used in organic synthesis, catalysis, medicinal chemistry, and for the design of functional materials. Particularly, aryl boronic acids in the solid state are known to exhibit pharmaceutical and photoluminescent properties for antimicrobial, sensing, and drug delivery applications. Furthermore, the phenazine molecule is known for its diverse pharmacological properties, including antibiotic activity. In the case of molecular crystalline solids, it is well established that understanding noncovalent interactions remains key to designing or engineering their functional properties. While both aryl boronic acids and phenazine molecules individually represent an important class of compounds, their co-assembly in the crystalline state is of interest within the context of supramolecular chemistry and crystal engineering. Herein, we report the supramolecular features of two newly synthesized cocrystals, which are composed of para-F/CF3-substituted phenylboronic acids, respectively, and phenazine, as demonstrated by structure analysis by single-crystal X-ray diffraction. Full article
Show Figures

Figure 1

9 pages, 1055 KB  
Short Note
A Pyrene-Anchored Nickel N-Heterocyclic Carbene–Isoquinoline Complex Promotes CO2 Reduction
by Xue Chen, Li-Li Yu, Shu-Ying Chen, Tong Wang and Quan Zhou
Molbank 2025, 2025(3), M2035; https://doi.org/10.3390/M2035 - 8 Jul 2025
Viewed by 472
Abstract
In this study, on the basis of a previous report, a pyrene-anchored nickel complex was designed and synthesized via five steps. The NMR spectra of the synthesized complex were found to exhibit significant proton and carbon chemical shift anisotropy. Cyclic voltammetry spectra showed [...] Read more.
In this study, on the basis of a previous report, a pyrene-anchored nickel complex was designed and synthesized via five steps. The NMR spectra of the synthesized complex were found to exhibit significant proton and carbon chemical shift anisotropy. Cyclic voltammetry spectra showed that the introduction of pyrene slightly influenced the onset potential of CO2 reduction. Lastly, controlled-potential electrolysis experiments disclosed that a pyrene-anchored nickel carbene–isoquinoline (Ni2) complex selectively converted CO2 into CH4 with a TON value of 2.3 h−1. Full article
(This article belongs to the Topic Heterocyclic Carbene Catalysis)
Show Figures

Figure 1

5 pages, 302 KB  
Short Note
(5R,7R,11bR)-9-(di(1H-Indol-3-yl)methyl)-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl Acetate
by Jessica A. Perez-Rangel, Gabriela Servín-García, Atilano Gutiérrez-Carrillo, Alejandro Islas-Jácome, Luis Chacón-García, Rosa E. del Río and Carlos J. Cortés-García
Molbank 2025, 2025(3), M2034; https://doi.org/10.3390/M2034 - 7 Jul 2025
Viewed by 456
Abstract
The semi-synthesis of the (5R,7R,11bR)-9-(di(1H-indol-3-yl)methyl)-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl acetate was performed via a pseudo-multicomponent reaction involving a double Friedel–Crafts alkylation between the natural product-derived aldehyde 6β-acetoxyvouacapane and the corresponding indole. The transformation was carried [...] Read more.
The semi-synthesis of the (5R,7R,11bR)-9-(di(1H-indol-3-yl)methyl)-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl acetate was performed via a pseudo-multicomponent reaction involving a double Friedel–Crafts alkylation between the natural product-derived aldehyde 6β-acetoxyvouacapane and the corresponding indole. The transformation was carried out under solvent-free mechanochemical conditions using mortar and pestle grinding, with ZnCl2 as the catalyst. Structural elucidation of the target compound was accomplished using 1D and 2D NMR spectroscopy (1H, 13C, COSY, HSQC, and HMBC), FT-IR, and high-resolution mass spectrometry (HRMS). Full article
Show Figures

Graphical abstract

7 pages, 1961 KB  
Short Note
3′H-Spiro[dibenzo[c,h]xanthene-7,1′-isobenzofuran]-3′-one
by Brian A. Chalmers, David B. Cordes, Aidan P. McKay, Iain L. J. Patterson, Nadiia Vladymyrova and Iain A. Smellie
Molbank 2025, 2025(3), M2033; https://doi.org/10.3390/M2033 - 7 Jul 2025
Viewed by 368
Abstract
Target compound 3′H-spiro[dibenzo[c,h]xanthene-7,1′-isobenzofuran]-3′-one (1) has long been known to be a by-product obtained from the preparation of naphtholphthalein. The structure of compound 1 was elucidated in the early 20th century; however, this compound has not [...] Read more.
Target compound 3′H-spiro[dibenzo[c,h]xanthene-7,1′-isobenzofuran]-3′-one (1) has long been known to be a by-product obtained from the preparation of naphtholphthalein. The structure of compound 1 was elucidated in the early 20th century; however, this compound has not previously been fully characterized using modern techniques. In this report, 1H NMR and 13C NMR spectra are provided. X-ray crystallography is also used to characterize the title compound for the first time. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

9 pages, 2968 KB  
Short Note
Diethyl 3-(4-Bromobenzoyl)-7-(4-pyridyl)indolizine-1,2-dicarboxylate
by Mihaela Cristea, Mihai Răducă, Maria Gdaniec, Sergiu Shova, Nicoleta Doriana Banu and Florea Dumitrascu
Molbank 2025, 2025(3), M2032; https://doi.org/10.3390/M2032 - 7 Jul 2025
Viewed by 521
Abstract
The title compound, C26H21BrN2O5 (Compound 4), was obtained via our previously described procedure with modifications, i.e., via a facile one-pot three component reaction starting from commercially available materials. Compound 4 was crystallized from nitromethane. It [...] Read more.
The title compound, C26H21BrN2O5 (Compound 4), was obtained via our previously described procedure with modifications, i.e., via a facile one-pot three component reaction starting from commercially available materials. Compound 4 was crystallized from nitromethane. It crystalized in a triclinic crystal system, in the P-1¯ space group. The crystal structure of 4 is described herein. Hirsfeld surface analysis, generated by the Crystal Explorer 21 software, was used to visualize the intermolecular close contacts in the title compound. The electrostatic, dispersion, and total energies in the crystal structure were calculated using the same program. Full article
Show Figures

Graphical abstract

10 pages, 1171 KB  
Short Note
N,N,N′-Tris(trimethylsilyl)-2-pyridinecarboximidamide
by Mukaila A. Ibrahim, Kathryn E. Preuss and René T. Boeré
Molbank 2025, 2025(3), M2031; https://doi.org/10.3390/M2031 - 3 Jul 2025
Viewed by 474
Abstract
N,N,N′-tris(trimethylsilyl)-carboximidamides are effective reagents in synthetic chemistry in reactions with both non-metal and metal halides, because the side product is the mild and volatile ClSi(CH3)3 rather than corrosive HCl. The title compound inserts the 2-pyridylamidinate [...] Read more.
N,N,N′-tris(trimethylsilyl)-carboximidamides are effective reagents in synthetic chemistry in reactions with both non-metal and metal halides, because the side product is the mild and volatile ClSi(CH3)3 rather than corrosive HCl. The title compound inserts the 2-pyridylamidinate fragment into several non-metal systems, including custom chelating radical ligands. The single-crystal X-ray diffraction structure was determined and modeled by Hirshfeld atom refinement using custom aspherical atomic scattering factors. Excellent data quality led to a model with enhanced precision of all interatomic distances and free refinement of H-atom positions and anisotropic displacement ellipsoids. This structure model is compared to the four previously published analogous structures. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

4 pages, 265 KB  
Short Note
[1,2,5]Thiadiazolo[3,4-b]pyrazine-5,6(4H,7H)-dione
by Lidia S. Konstantinova, Natalia V. Obruchnikova and Oleg A. Rakitin
Molbank 2025, 2025(3), M2030; https://doi.org/10.3390/M2030 - 1 Jul 2025
Viewed by 455
Abstract
Fused 1,2,5-chalcogenadiazoles are often used as biologically active compounds and organic optovoltaic materials. [1,2,5]Thiadiazolo[3,4-b]pyrazines are much less studied due to difficulties in their preparation. In this communication, [1,2,5]thiadiazolo[3,4-b]pyrazine-5,6(4H,7H)-dione, a key precursor for the synthesis of [...] Read more.
Fused 1,2,5-chalcogenadiazoles are often used as biologically active compounds and organic optovoltaic materials. [1,2,5]Thiadiazolo[3,4-b]pyrazines are much less studied due to difficulties in their preparation. In this communication, [1,2,5]thiadiazolo[3,4-b]pyrazine-5,6(4H,7H)-dione, a key precursor for the synthesis of 5,6-dihalo-[1,2,5]thiadiazolo[3,4-b]pyrazines, was prepared via condensation of 1,2,5-thiadiazole-3,4-diamine with oxalic acid or oxalyl chloride. The structure of the newly synthesized compound was established by elemental analysis, high-resolution mass spectrometry, 1H and 13C NMR, IR spectroscopy, and mass spectrometry. Full article
(This article belongs to the Collection Heterocycle Reactions)
Show Figures

Scheme 1

10 pages, 1743 KB  
Short Note
4-(4-Formyl-3,5-dimethoxyphenoxy)butyric Acid (BAL)
by Alex Lovstedt, Tracy R. Thompson and George Barany
Molbank 2025, 2025(3), M2029; https://doi.org/10.3390/M2029 - 26 Jun 2025
Viewed by 646
Abstract
The title compound, 4-(4-formyl-3,5-dimethoxyphenoxy)butyric acid (BAL), is an important “handle” for solid-phase synthesis of peptides and related compounds. Reported here is an X-ray single crystal structural analysis of BAL. The molecule is almost entirely flat, and the crystal is held together by π-stacking [...] Read more.
The title compound, 4-(4-formyl-3,5-dimethoxyphenoxy)butyric acid (BAL), is an important “handle” for solid-phase synthesis of peptides and related compounds. Reported here is an X-ray single crystal structural analysis of BAL. The molecule is almost entirely flat, and the crystal is held together by π-stacking and hydrogen bonding. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

Previous Issue
Back to TopTop