4-(1,3-Dioxoisoindolin-2-yl)butyl(2R,4aS,6aS,12bR,14aS,14bR)-10-hydroxy-2,4a,6a,9,12b,14a-hexamethyl-11-oxo-1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-tetradecahydropicene-2-carboxylate
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemistry
3.2. 2-(4-Bromobutyl) isoindoline-1, 3-dione (3)
3.3. 4-(1,3-Dioxoisoindolin-2-yl)butyl (2R,4aS,6aS,12bR,14aS,14bR)-10-hydroxy-2,4a,6a,9,12b,14a-hexamethyl-11-oxo-1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-tetradecahydropicene-2-carboxylate (4)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kannaiyan, R.; Shanmugam, M.K.; Sethi, G. Molecular targets of celastrol derived from Thunder of God Vine: Potential role in the treatment of inflammatory disorders and cancer. Cancer Lett. 2011, 303, 9–20. [Google Scholar] [CrossRef]
- Allison, A.C.; Cacabelos, R.; Lombardi, V.R.M.; Álvarez, X.A.; Vigo, C. Central nervous system effects of celastrol, a potent antioxidant and antiinflammatory agent. CNS Drug Rev. 2000, 6, 45–62. [Google Scholar] [CrossRef]
- Der Sarkissian, S.; Cailhier, J.; Borie, M.; Mansour, S.; Hamet, P.; Stevens, L.; Noiseux, N. Celastrol as a novel cardioprotective drug. Can. J. Cardiol. 2013, 29, S331. [Google Scholar] [CrossRef]
- Yang, G.; Wang, K.; Song, H.; Zhu, R.; Ding, S.; Yang, H.; Sun, J.; Wen, X.; Sun, L. Celastrol ameliorates osteoarthritis via regulating TLR2/NF-κB signaling pathway. Front. Pharmacol. 2022, 13, 963506. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.W.; Law, B.Y.K.; Mok, S.W.F.; Leung, E.L.H.; Fan, X.X.; Coghi, P.S.; Zeng, W.; Leung, C.H.; Ma, D.L.; Liu, L.; et al. Autophagic degradation of epidermal growth factor receptor in gefitinib-resistant lung cancer by celastrol. Int. J. Oncol. 2016, 49, 1576–1588. [Google Scholar] [CrossRef]
- Sun, H.; Xu, L.; Yu, P.; Jiang, J.; Zhang, G.; Wang, Y. Synthesis and preliminary evaluation of neuroprotection of celastrol analogues in PC12 cells. Bioorganic Med. Chem. Lett. 2010, 20, 3844–3847. [Google Scholar] [CrossRef]
- Liu, J.; Lee, J.; Hernandez, M.A.S.; Mazitschek, R.; Ozcan, U. Treatment of obesity with celastrol. Cell 2015, 161, 999–1011. [Google Scholar] [CrossRef]
- Jin, H.Z.; Hwang, B.Y.; Kim, H.S.; Lee, J.H.; Kim, Y.H.; Lee, J.J. Antiinflammatory constituents of celastrus o rbiculatus inhibit the NF-κB activation and NO production. J. Nat. Prod. 2002, 65, 89–91. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Yu, Y.; Zou, P.; Jiang, Y.; Sun, D. Characterization of celastrol to inhibit hsp90 and cdc37 interaction. J. Biol. Chem. 2009, 284, 35381–35389. [Google Scholar] [CrossRef]
- Wong, V.K.W.; Qiu, C.; Xu, S.W.; Law, B.Y.K.; Zeng, W.; Wang, H.; Michelangeli, F.; Dias, I.R.D.S.R.; Qu, Y.Q.; Chan, T.W. Ca2+ signalling plays a role in celastrol-mediated suppression of synovial fibroblasts of rheumatoid arthritis patients and experimental arthritis in rats. Br. J. Pharmacol. 2019, 176, 2922–2944. [Google Scholar] [CrossRef] [PubMed]
- Di Matteo, A.; Bathon, J.M.; Emery, P. Rheumatoid arthritis. Lancet 2023, 402, 2019–2033. [Google Scholar] [CrossRef]
- Gravallese, E.M.; Firestein, G.S. Rheumatoid arthritis—Common origins, divergent mechanisms. N. Engl. J. Med. 2023, 388, 529–542. [Google Scholar] [CrossRef]
- Liang, H.Y.; Yin, H.X.; Li, S.F.; Chen, Y.; Zhao, Y.J.; Hu, W.; Zhou, R.P. Calcium-permeable channels cooperation for rheumatoid arthritis: Therapeutic opportunities. Biomolecules 2022, 12, 1383. [Google Scholar] [CrossRef]
- Wong, V.K.; Li, T.; Law, B.Y.; Ma, E.D.; Yip, N.; Michelangeli, F.; Law, C.K.; Zhang, M.; Lam, K.Y.; Chan, P. Saikosaponin-d, a novel SERCA inhibitor, induces autophagic cell death in apoptosis-defective cells. Cell Death Dis. 2013, 4, e720. [Google Scholar] [CrossRef]
- Xu, S.W.; Law, B.Y.K.; Qu, S.L.Q.; Hamdoun, S.; Chen, J.; Zhang, W.; Guo, J.R.; Wu, A.G.; Mok, S.W.F.; Zhang, D.W. SERCA and P-glycoprotein inhibition and ATP depletion are necessary for celastrol-induced autophagic cell death and collateral sensitivity in multidrug-resistant tumor cells. Pharmacol. Res. 2020, 153, 104660. [Google Scholar] [CrossRef] [PubMed]
- Coghi, P.; Ng, J.P.; Kadioglu, O.; Law, B.Y.K.; Qiu, A.C.; Saeed, M.E.; Chen, X.; Ip, C.K.; Efferth, T.; Liu, L. Synthesis, computational docking and biological evaluation of celastrol derivatives as dual inhibitors of SERCA and P-glycoprotein in cancer therapy. Eur. J. Med. Chem. 2021, 224, 113676. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Kuan, H.; Wei, Q.; Gianoncelli, A.; Ribaudo, G.; Coghi, P. (2R, 4aS, 6aS, 12bR, 14aS, 14bR) 10-Hydroxy-N-(4-((6-methoxyquinolin-8-yl) amino) pentyl)-2, 4a, 6a, 9, 12b, 14a-hexamethyl-11-oxo-1, 2, 3, 4, 4a, 5, 6, 6a, 11, 12b, 13, 14, 14a, 14b-tetradecahydropicene-2-carboxamide. Molbank 2023, 2023, M1716. [Google Scholar] [CrossRef]
- Klaić, L.; Morimoto, R.I.; Silverman, R.B. Celastrol analogues as inducers of the heat shock response. Design and synthesis of affinity probes for the identification of protein targets. ACS Chem. Biol. 2012, 7, 928–937. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, G.F.S.; Lopes, J.R.; Dos Santos, J.L.; Scarim, C.B. Phthalimide as a versatile pharmacophore scaffold: Unlocking its diverse biological activities. Drug Dev. Res. 2023, 84, 1346–1375. [Google Scholar] [CrossRef]
- Kaur, M.; Sharma, S.; Utreja, D. A Review on Drug Discovery of Phthalimide Analogues as Emerging Pharmacophores: Synthesis and Biological Potential. ChemistrySelect 2025, 10, e202405580. [Google Scholar] [CrossRef]
- Aljuhani, A.; Nafie, M.S.; Albujuq, N.R.; Hourani, W.; Albelwi, F.F.; Darwish, K.M.; Samir Ayed, A.; Reda Aouad, M.; Rezki, N. Unveiling the anti-cancer potentiality of phthalimide-based Analogues targeting tubulin polymerization in MCF-7 cancerous Cells: Rational design, chemical Synthesis, and Biological-coupled Computational investigation. Bioorganic Chem. 2024, 153, 107827. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.X.; Martin, K.K.; Stewart, A.K. Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma. Leuk. Lymphoma 2013, 54, 683–687. [Google Scholar] [CrossRef]
- Santos, J.L.; Yamasaki, P.R.; Chin, C.M.; Takashi, C.H.; Pavan, F.R.; Leite, C.Q. Synthesis and in vitro anti Mycobacterium tuberculosis activity of a series of phthalimide derivatives. Bioorg Med. Chem. 2009, 17, 3795–3799. [Google Scholar] [CrossRef] [PubMed]
- Bansal, M.; Upadhyay, C.; Poonam; Kumar, S.; Rathi, B. Phthalimide analogs for antimalarial drug discovery. RSC Med. Chem. 2021, 12, 1854–1867. [Google Scholar] [CrossRef]
- Khan, M.; Aatasam Hanif, M.; Rehman, K.; Arif, M.; Nazir, H.; Wali Khan, S.; Kangal, A.; Abid, R.; Dunia, A.A.F.; Mohamed, S.E.; et al. Molecular docking and in vitro antibacterial activity of chiral phthalimide on ESBL producing gram negative bacteria. Pak. J. Pharm. Sci. 2023, 36, 681–697. [Google Scholar] [PubMed]
- Heras Martinez, H.M.; Barragan, E.; Marichev, K.O.; Chávez-Flores, D.; Bugarin, A. Phthalimides as anti-inflammatory agents. Future Med. Chem. 2025, 17, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Wen, J.; Hua, Y.; Zhu, Y.; Xia, Q.; Guo, Q.; Luo, Y.; Deng, X.; Huang, Y. Synthesis and anticancer properties of celastrol derivatives involved in the inhibition of VEGF. J. Enzym. Inhib. Med. Chem. 2023, 38, 2238137. [Google Scholar] [CrossRef]
- Yuzhu, G.; Anyanwu, M.; Yang, X.; Zimo, R.; Gianoncelli, A.; Ribaudo, G.; Coghi, P. (2R,4aS,6aS,12bR,14aS,14bR)-N-(2-(2-(2-(2-Azidoethoxy)ethoxy)ethoxy)ethyl)-10-hydroxy-2,4a,6a,9,12b,14a-hexamethyl-11-oxo-1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-tetradecahydropicene-2-carboxamide. Molbank 2024, 2, M1800. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Z.; Ma, Z.; Li, M.; Du, L. Astemizole Derivatives as Fluorescent Probes for hERG Potassium Channel Imaging. ACS Med. Chem. Lett. 2016, 7, 245–249. [Google Scholar] [CrossRef]
- Jiang, A.; Anyanwu, M.; Leong, K.; Li, J.; Gianoncelli, A.; Coghi, P.; Ribaudo, G. 3-[(1H-Benzo[d][1,2,3]triazol-1-yl)oxy]propyl 9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)icosahydro-3aH-cyclopenta[a]chrysene-3a-carboxylate. Molbank 2022, 3, M1419. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Leong, K.F.; Coluccini, C.; Coghi, P. 4-(1,3-Dioxoisoindolin-2-yl)butyl(2R,4aS,6aS,12bR,14aS,14bR)-10-hydroxy-2,4a,6a,9,12b,14a-hexamethyl-11-oxo-1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-tetradecahydropicene-2-carboxylate. Molbank 2025, 2025, M2048. https://doi.org/10.3390/M2048
Chen Z, Leong KF, Coluccini C, Coghi P. 4-(1,3-Dioxoisoindolin-2-yl)butyl(2R,4aS,6aS,12bR,14aS,14bR)-10-hydroxy-2,4a,6a,9,12b,14a-hexamethyl-11-oxo-1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-tetradecahydropicene-2-carboxylate. Molbank. 2025; 2025(3):M2048. https://doi.org/10.3390/M2048
Chicago/Turabian StyleChen, Zihan, Ka Fai Leong, Carmine Coluccini, and Paolo Coghi. 2025. "4-(1,3-Dioxoisoindolin-2-yl)butyl(2R,4aS,6aS,12bR,14aS,14bR)-10-hydroxy-2,4a,6a,9,12b,14a-hexamethyl-11-oxo-1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-tetradecahydropicene-2-carboxylate" Molbank 2025, no. 3: M2048. https://doi.org/10.3390/M2048
APA StyleChen, Z., Leong, K. F., Coluccini, C., & Coghi, P. (2025). 4-(1,3-Dioxoisoindolin-2-yl)butyl(2R,4aS,6aS,12bR,14aS,14bR)-10-hydroxy-2,4a,6a,9,12b,14a-hexamethyl-11-oxo-1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-tetradecahydropicene-2-carboxylate. Molbank, 2025(3), M2048. https://doi.org/10.3390/M2048