Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = soybean agglutinin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7712 KB  
Article
Alpha 1,3 N-Acetylgalactosaminyl Transferase (GTA) Impairs Invasion Potential of Trophoblast Cells in Preeclampsia
by Yaqi Li, Hongpan Wu, Xiaosong Pei, Shuai Liu and Qiu Yan
Int. J. Mol. Sci. 2024, 25(13), 7287; https://doi.org/10.3390/ijms25137287 - 2 Jul 2024
Cited by 1 | Viewed by 1582
Abstract
Preeclampsia (PE) is a pregnancy-specific disorder associated with shallow invasion of the trophoblast cells and insufficient remodeling of the uterine spiral artery. Protein glycosylation plays an important role in trophoblast cell invasion. However, the glycobiological mechanism of PE has not been fully elucidated. [...] Read more.
Preeclampsia (PE) is a pregnancy-specific disorder associated with shallow invasion of the trophoblast cells and insufficient remodeling of the uterine spiral artery. Protein glycosylation plays an important role in trophoblast cell invasion. However, the glycobiological mechanism of PE has not been fully elucidated. In the current study, employing the Lectin array, we found that soybean agglutinin (SBA), which recognizes the terminal N-acetylgalactosamine α1,3-galactose (GalNAc α1,3 Gal) glycotype, was significantly increased in placental trophoblast cells from PE patients compared with third-trimester pregnant controls. Upregulating the expression of the key enzyme α1,3 N-acetylgalactosaminyl transferase (GTA) promoted the biosynthesis of terminal GalNAc α1,3 Gal and inhibited the migration/invasion of HTR8/SVneo trophoblast cells. Moreover, the methylation status of GTA promoter in placental tissues from PE patients was lower than that in the third trimester by methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP) analysis. Elevated GTA expression in combination with the DNA methylation inhibitor 5-azacytidine (5-AzaC) treatment increased the glycotype biosynthesis and impaired the invasion potential of trophoblast cells, leading to preeclampsia. This study suggests that elevated terminal GalNAc α1,3 Gal biosynthesis and GTA expression may be applied as the new markers for evaluating placental function and the auxiliary diagnosis of preeclampsia. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

11 pages, 2277 KB  
Article
Development of a Phage-Displayed Nanobody-Based Competitive Immunoassay for the Sensitive Detection of Soybean Agglutinin
by Menghan Zhang, Yulou Qiu, Ajuan You, Siyi Song, Qin Yang, Biao Zhang, Xianshu Fu, Zihong Ye and Xiaoping Yu
Foods 2024, 13(12), 1893; https://doi.org/10.3390/foods13121893 - 16 Jun 2024
Cited by 1 | Viewed by 2184
Abstract
Soybean agglutinin (SBA) is a primary antinutritional factor in soybeans that can inhibit the growth of humans and mammals, disrupt the intestinal environment, and cause pathological changes. Therefore, detecting and monitoring SBA in foods is essential for safeguarding human health. In this paper, [...] Read more.
Soybean agglutinin (SBA) is a primary antinutritional factor in soybeans that can inhibit the growth of humans and mammals, disrupt the intestinal environment, and cause pathological changes. Therefore, detecting and monitoring SBA in foods is essential for safeguarding human health. In this paper, M13 phage-displayed nanobodies against SBA were isolated from a naive nanobody library. An M13 phage-displayed nanobody-based competitive enzyme-linked immunosorbent assay (P-cELISA) was then established for SBA analysis using biotinylated anti-M13 phage antibody (biotin-anti-M13) and streptavidin poly-HRP conjugate (SA-poly-HRP). The biotin-anti-M13@SA-poly-HRP probe can easily amplify the detection signal without the chemical modifications of phage-displayed nanobodies. The established P-cELISA presented a linear detection range of 0.56–250.23 ng/mL and a limit of detection (LOD) of 0.20 ng/mL, which was 12.6-fold more sensitive than the traditional phage-ELISA. Moreover, the developed method showed good specificity for SBA and acceptable recoveries (78.21–121.11%) in spiked wheat flour, albumen powder, and whole milk powder. This study proposes that P-cELISA based on biotin-anti-M13@SA-poly-HRP may provide a convenient and effective strategy for the sensitive detection of SBA. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

14 pages, 1773 KB  
Article
Identification of Compounds Preventing A. fumigatus Biofilm Formation by Inhibition of the Galactosaminogalactan Deacetylase Agd3
by Carla I. I. Seegers, Danielle J. Lee, Patricia Zarnovican, Susanne H. Kirsch, Rolf Müller, Thomas Haselhorst and Françoise H. Routier
Int. J. Mol. Sci. 2023, 24(3), 1851; https://doi.org/10.3390/ijms24031851 - 17 Jan 2023
Cited by 3 | Viewed by 4293
Abstract
The opportunistic fungus Aspergillus fumigatus causes a set of diseases ranging from allergy to lethal invasive mycosis. Within the human airways, A. fumigatus is embedded in a biofilm that forms not only a barrier against the host immune defense system, but also creates [...] Read more.
The opportunistic fungus Aspergillus fumigatus causes a set of diseases ranging from allergy to lethal invasive mycosis. Within the human airways, A. fumigatus is embedded in a biofilm that forms not only a barrier against the host immune defense system, but also creates a physical barrier protecting the fungi from chemicals such as antifungal drugs. Novel therapeutic strategies aim at combining drugs that inhibit biofilm synthesis or disrupt existing biofilm with classical antimicrobials. One of the major constituents of A. fumigatus biofilm is the polysaccharide galactosaminogalactan (GAG) composed of α1,4-linked N-acetylgalactosamine, galactosamine, and galactose residues. GAG is synthesized on the cytosolic face of the plasma membrane and is extruded in the extracellular space, where it is partially deacetylated. The deacetylase Agd3 that mediates this last step is essential for the biofilm formation and full virulence of the fungus. In this work, a previously described enzyme-linked lectin assay, based on the adhesion of deacetylated GAG to negatively charged plates and quantification with biotinylated soybean agglutinin was adapted to screen microbial natural compounds, as well as compounds identified in in silico screening of drug libraries. Actinomycin X2, actinomycin D, rifaximin, and imatinib were shown to inhibit Agd3 activity in vitro. At a concentration of 100 µM, actinomycin D and imatinib showed a clear reduction in the biofilm biomass without affecting the fungal growth. Finally, imatinib reduced the virulence of A. fumigatus in a Galleria mellonella infection model in an Agd3-dependent manner. Full article
(This article belongs to the Special Issue Antivirulence Strategies to Overcome Antimicrobial Resistance)
Show Figures

Figure 1

13 pages, 2834 KB  
Article
IgG Glycosylation Profiling of Peripheral Artery Diseases with Lectin Microarray
by Siting Li, Jingjing Meng, Fang Xu, Qian Wang, Xinping Tian, Mengtao Li, Xiaofeng Zeng, Chaojun Hu and Yuehong Zheng
J. Clin. Med. 2022, 11(19), 5727; https://doi.org/10.3390/jcm11195727 - 27 Sep 2022
Cited by 10 | Viewed by 2636
Abstract
Background: Inflammation plays a key role in the progression of atherosclerotic plaque for peripheral artery disease (PAD). Immunoglobulin G (IgG) glycosylation could modulate immunological effector functions and has been explored as biomarkers for various diseases. Methods: Lectin microarray was applied to analyze the [...] Read more.
Background: Inflammation plays a key role in the progression of atherosclerotic plaque for peripheral artery disease (PAD). Immunoglobulin G (IgG) glycosylation could modulate immunological effector functions and has been explored as biomarkers for various diseases. Methods: Lectin microarray was applied to analyze the expression profile of serum IgG glycosylation in patients with lower-extremity peripheral artery disease (LEPAD), carotid artery stenosis (CAS), abdominal aortic aneurysm (AAA), and healthy controls. Lectin blot was performed to validate the differences. Results: SNA (Sambucus nigra agglutinin) binding (preferred sialic acid) was significantly higher in the LEPAD (3.21 ± 2.06) and AAA (3.34 ± 2.42) groups compared to the CAS (2.47 ± 1.45) group. Significantly higher binding levels of ConA (Concanavalin A) (preferred mannose) and PSA (Pisum sativum agglutinin) (preferred fucose) were also observed in LEPAD compared to CAS patients. Among LEPAD patients, a significant lower binding level of Black bean crude (preferred GalNAc) was present for dyslipidemia patients. A higher binding level of MNA-M (Morniga M agglutinin) (preferred Mannose) and Jacalin-AIA (Artocarpus integrifolia agglutinin) (preferred Galβ3GalNAc) was observed for Fontaine severe patients. Higher binding levels of PHA-E (Phaseolus vulgaris Erythroagglutinin) and PHA-L (Phaseolus vulgaris Leucoagglutinin) (preferred Galβ4GlcNAc) were observed for diabetic patients, and higher binding of ASA (Allium sativum agglutinin) (preferred Mannose) was present in patients with hypertension. The level of high-sensitivity C-reactive protein (hsCRP) was positively associated with LTL (Lotus tetragonolobus lectin) (r = 0.44), PSA (r = 0.44), LCA (Lens Culinaris agglutinin) (r = 0.39), SNA (r = 0.57), and CSA (Cytisus sscoparius agglutinin) (r = 0.56). For CAS, symptomatic patients had lower binding levels of AAL (Aleuria aurantia lectin) (preferred fucose) and IAA (Iberis amara agglutinin) (preferred GalNAc). Blood total cholesterol level was positively associated with SNA-I (r = 0.36) and SBA (Soybean agglutinin) (r = r = 0.35). Creatinine levels were positively associated with lectins including, but not limited to, MNA-M (r = 0.42), CSA (r = 0.45), GHA (Glechoma hederacea agglutinin) (r = 0.42), and MNA-G (Morniga G agglutinin) (r = 0.45). Conclusion: LEPAD patients had increased IgG binding levels of SNA and ConA compared to CAS, which could provide potential diagnostic value. Fontaine severity was associated with Mannose-rich IgG N-glycan, while diabetic LEPAD correlated with bisecting GlcNAc. The levels of hsCRP and creatinine were positively associated with IgG fucosylation and galactosylation. Changes in IgG glycosylation may play important roles in PAD pathogenesis and progression. Full article
(This article belongs to the Special Issue Clinical Frontiers in Peripheral Artery Disease)
Show Figures

Figure 1

24 pages, 4735 KB  
Article
Cross-Reactivity and Sequence Homology Between Alpha-Synuclein and Food Products: A Step Further for Parkinson’s Disease Synucleinopathy
by Aristo Vojdani, Aaron Lerner and Elroy Vojdani
Cells 2021, 10(5), 1111; https://doi.org/10.3390/cells10051111 - 5 May 2021
Cited by 23 | Viewed by 5428
Abstract
Introduction: Parkinson’s disease is characterized by non-motor/motor dysfunction midbrain neuronal death and α-synuclein deposits. The accepted hypothesis is that unknown environmental factors induce α-synuclein accumulation in the brain via the enteric nervous system. Material and Methods: Monoclonal antibodies made against recombinant α-synuclein protein [...] Read more.
Introduction: Parkinson’s disease is characterized by non-motor/motor dysfunction midbrain neuronal death and α-synuclein deposits. The accepted hypothesis is that unknown environmental factors induce α-synuclein accumulation in the brain via the enteric nervous system. Material and Methods: Monoclonal antibodies made against recombinant α-synuclein protein or α-synuclein epitope 118–123 were applied to the antigens of 180 frequently consumed food products. The specificity of those antibody-antigen reactions was confirmed by serial dilution and inhibition studies. The Basic Local Alignment Search Tool sequence matching program was used for sequence homologies. Results: While the antibody made against recombinant α-synuclein reacted significantly with 86/180 specific food antigens, the antibody made against α-synuclein epitope 118–123 reacted with only 32/180 tested food antigens. The food proteins with the greatest number of peptides that matched with α-synuclein were yeast, soybean, latex hevein, wheat germ agglutinin, potato, peanut, bean agglutinin, pea lectin, shrimp, bromelain, and lentil lectin. Conclusions: The cross-reactivity and sequence homology between α-synuclein and frequently consumed foods, reinforces the autoimmune aspect of Parkinson’s disease. It is hypothesized that luminal food peptides that share cross-reactive epitopes with human α-synuclein and have molecular similarity with brain antigens are involved in the synucleinopathy. The findings deserve further confirmation by extensive research. Full article
(This article belongs to the Collection Advances in Neurodegenerative Disease)
Show Figures

Figure 1

12 pages, 23750 KB  
Article
Vapor-Stripping and Encapsulating to Construct Particles with Time-Controlled Asymmetry and Anisotropy
by Ting-Ying Wu, Chendi Gao, Man-Chen Huang, Zhi Zhang, Peng-Yuan Wang, Hsun-Yi Chen, Guosong Chen and Hsien-Yeh Chen
Coatings 2020, 10(12), 1248; https://doi.org/10.3390/coatings10121248 - 18 Dec 2020
Cited by 3 | Viewed by 2892
Abstract
An innovative chemical vapor sublimation and deposition (CVSD) process was shown to produce nanoscale anisotropic hybrid materials. Taking advantage of controlled thermodynamic properties and the mass transfer of molecules, this process allowed for water vapor sublimation from an iced template/substrate and stagewise vapor [...] Read more.
An innovative chemical vapor sublimation and deposition (CVSD) process was shown to produce nanoscale anisotropic hybrid materials. Taking advantage of controlled thermodynamic properties and the mass transfer of molecules, this process allowed for water vapor sublimation from an iced template/substrate and stagewise vapor deposition of poly-p-xylylene onto the sublimating ice substrate. In this study, the use of sensitive soybean agglutinin (SBA) protein tubes was demonstrated as an example to prepare the anisotropic hybrid material based on the CVSD process. The rationale of a timing parameter, Δt, was controlled to program the sublimation of the SBA-ice templates and the deposition of poly-p-xylylene during the CVSD process. As a result of this control, a stripping stage occurred, during which SBA tubes were exposed on the particle surface, and a subsequent encapsulation stage enabled the transformation of the ice templates into a nanometer-sized anisotropic hybrid material of poly-p-xylylene as the matrix with encapsulated SBA tubes. The timing parameter Δt and the controlled stripping and encapsulating stages during CVSD represent a straightforward and intriguing mechanism stemming from physical chemistry fundamentals for the fabrication of hybrid materials from sensitive molecules and with predetermined sizes and asymmetrical shapes. A simulation analysis showed consistency with the experimental results and controllability of the timing mechanism with predictable particle sizes. Full article
(This article belongs to the Special Issue Biointerface Coatings for Biomaterials and Biomedical Applications)
Show Figures

Figure 1

22 pages, 8257 KB  
Review
Are Dietary Lectins Relevant Allergens in Plant Food Allergy?
by Annick Barre, Els J.M. Van Damme, Mathias Simplicien, Hervé Benoist and Pierre Rougé
Foods 2020, 9(12), 1724; https://doi.org/10.3390/foods9121724 - 24 Nov 2020
Cited by 29 | Viewed by 6613
Abstract
Lectins or carbohydrate-binding proteins are widely distributed in seeds and vegetative parts of edible plant species. A few lectins from different fruits and vegetables have been identified as potential food allergens, including wheat agglutinin, hevein (Hev b 6.02) from the rubber tree and [...] Read more.
Lectins or carbohydrate-binding proteins are widely distributed in seeds and vegetative parts of edible plant species. A few lectins from different fruits and vegetables have been identified as potential food allergens, including wheat agglutinin, hevein (Hev b 6.02) from the rubber tree and chitinases containing a hevein domain from different fruits and vegetables. However, other well-known lectins from legumes have been demonstrated to behave as potential food allergens taking into account their ability to specifically bind IgE from allergic patients, trigger the degranulation of sensitized basophils, and to elicit interleukin secretion in sensitized people. These allergens include members from the different families of higher plant lectins, including legume lectins, type II ribosome-inactivating proteins (RIP-II), wheat germ agglutinin (WGA), jacalin-related lectins, GNA (Galanthus nivalis agglutinin)-like lectins, and Nictaba-related lectins. Most of these potentially active lectin allergens belong to the group of seed storage proteins (legume lectins), pathogenesis-related protein family PR-3 comprising hevein and class I, II, IV, V, VI, and VII chitinases containing a hevein domain, and type II ribosome-inactivating proteins containing a ricin B-chain domain (RIP-II). In the present review, we present an exhaustive survey of both the structural organization and structural features responsible for the allergenic potency of lectins, with special reference to lectins from dietary plant species/tissues consumed in Western countries. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

11 pages, 2919 KB  
Article
Fabrication of Carbohydrate Chips Based on Polydopamine for Real-Time Determination of Carbohydrate–Lectin Interactions by QCM Biosensor
by Kun Shang, Siyu Song, Yaping Cheng, Lili Guo, Yuxin Pei, Xiaomeng Lv, Teodor Aastrup and Zhichao Pei
Polymers 2018, 10(11), 1275; https://doi.org/10.3390/polym10111275 - 16 Nov 2018
Cited by 16 | Viewed by 6142
Abstract
A novel approach for preparing carbohydrate chips based on polydopamine (PDA) surface to study carbohydrate–lectin interactions by quartz crystal microbalance (QCM) biosensor instrument has been developed. The amino-carbohydrates were immobilized on PDA-coated quartz crystals via Schiff base reaction and/or Michael addition reaction. The [...] Read more.
A novel approach for preparing carbohydrate chips based on polydopamine (PDA) surface to study carbohydrate–lectin interactions by quartz crystal microbalance (QCM) biosensor instrument has been developed. The amino-carbohydrates were immobilized on PDA-coated quartz crystals via Schiff base reaction and/or Michael addition reaction. The resulting carbohydrate-chips were applied to QCM biosensor instrument with flow-through system for real-time detection of lectin–carbohydrate interactions. A series of plant lectins, including wheat germ agglutinin (WGA), concanavalin A (Con A), Ulex europaeus agglutinin I (UEA-I), soybean agglutinin (SBA), and peanut agglutinin (PNA), were evaluated for the binding to different kinds of carbohydrate chips. Clearly, the results show that the predicted lectin selectively binds to the carbohydrates, which demonstrates the applicability of the approach. Furthermore, the kinetics of the interactions between Con A and mannose, WGA and N-Acetylglucosamine were studied, respectively. This study provides an efficient approach to preparing carbohydrate chips based on PDA for the lectin–carbohydrate interactions study. Full article
(This article belongs to the Special Issue Polymer Based Bio-Sensors)
Show Figures

Graphical abstract

18 pages, 3080 KB  
Article
Integrins Were Involved in Soybean Agglutinin Induced Cell Apoptosis in IPEC-J2
by Li Pan, Yuan Zhao, Mohammed Hamdy Farouk, Nan Bao, Tao Wang and Guixin Qin
Int. J. Mol. Sci. 2018, 19(2), 587; https://doi.org/10.3390/ijms19020587 - 16 Feb 2018
Cited by 15 | Viewed by 4947
Abstract
Abstract: Soybean agglutinin (SBA), is a non-fiber carbohydrate related protein and a major anti-nutritional factor. Integrins, transmembrane glycoproteins, are involved in many biological processes. Although recent work suggested that integrins are involved in SBA-induced cell-cycle alterations, no comprehensive study has reported whether integrins [...] Read more.
Abstract: Soybean agglutinin (SBA), is a non-fiber carbohydrate related protein and a major anti-nutritional factor. Integrins, transmembrane glycoproteins, are involved in many biological processes. Although recent work suggested that integrins are involved in SBA-induced cell-cycle alterations, no comprehensive study has reported whether integrins are involved in SBA-induced cell apoptosis (SCA) in IPEC-J2. The relationship between SBA and integrins are still unclear. We aimed to elucidate the effects of SBA on IPEC-J2 cell proliferation and cell apoptosis; to study the roles of integrins in IPEC-J2 normal cell apoptosis (NCA) and SCA; and to illustrate the relationship and connection type between SBA and integrins. Thus, IPEC-J2 cells were treated with SBA at the levels of 0, 0.125, 0.25, 0.5, 1.0 or 2.0 mg/mL to determine cell proliferation and cell apoptosis. The cells were divided into control, SBA treated groups, integrin inhibitor groups, and SBA + integrin inhibitor groups to determine the integrin function in SCA. The results showed that SBA significantly (p < 0.05) lowered cell proliferation and induced cell apoptosis in IPEC-J2 (p < 0.05). Inhibition of any integrin type induced the cell apoptosis (p < 0.05) and these integrins were involved in SCA (p < 0.05). Even SBA had no physical connection with integrins, an association was detected between SBA and α-actinin-2 ACTN2 (integrin-binding protein). Additionally, SBA reduced the mRNA expression of integrins by down regulating the gene expression level of ACTN2. We concluded an evidence for the anti-nutritional mechanism of SBA by ACTN2 with integrins. Further trials are needed to prove whether ACTN2 is the only protein for connecting SBA with integrin. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

18 pages, 896 KB  
Review
The Influences of Soybean Agglutinin and Functional Oligosaccharides on the Intestinal Tract of Monogastric Animals
by Li Pan, Mohammed Hamdy Farouk, Guixin Qin, Yuan Zhao and Nan Bao
Int. J. Mol. Sci. 2018, 19(2), 554; https://doi.org/10.3390/ijms19020554 - 12 Feb 2018
Cited by 69 | Viewed by 9816
Abstract
Soybean agglutinin (SBA) is a non-fiber carbohydrate-related protein and the main anti-nutritional factor that exists in soybean or soybean products. SBA possesses a specific binding affinity for N-glyphthalide-d-galactosamine or galactose and has a covalently linked oligosaccharide chain. SBA mediates negative [...] Read more.
Soybean agglutinin (SBA) is a non-fiber carbohydrate-related protein and the main anti-nutritional factor that exists in soybean or soybean products. SBA possesses a specific binding affinity for N-glyphthalide-d-galactosamine or galactose and has a covalently linked oligosaccharide chain. SBA mediates negative effects on animal intestinal health by influencing the intestinal structure, barrier function, mucosal immune system, and the balance of the intestinal flora. Functional oligosaccharides are non-digestible dietary oligosaccharides that are commonly applied as prebiotics since the biological effects of the functional oligosaccharides are to increase the host health by improving mucosal structure and function, protecting the integrity of the intestinal structure, modulating immunity, and balancing the gastrointestinal microbiota. The purpose of this review is to describe the structure and anti-nutritional functions of SBA, summarize the influence of SBA and functional oligosaccharides on the intestinal tract of monogastric animals, and emphasize the relationship between SBA and oligosaccharides. This review provides perspectives on applying functional oligosaccharides for alleviating the anti-nutritional effects of SBA on the intestinal tract. Full article
(This article belongs to the Special Issue Dietary Fibre: New Insights on Biochemistry and Health Benefits)
Show Figures

Graphical abstract

12 pages, 258 KB  
Article
Development of Lectin-Linked Immunomagnetic Separation for the Detection of Hepatitis A Virus
by Sang-Mu Ko, Joseph Kwon, Bipin Vaidya, Jong Soon Choi, Hee-Min Lee, Myung-Joo Oh, Hyeun-Jong Bae, Se-Young Cho, Kyung-Seo Oh and Duwoon Kim
Viruses 2014, 6(3), 1037-1048; https://doi.org/10.3390/v6031037 - 4 Mar 2014
Cited by 12 | Viewed by 6799
Abstract
The accuracy and sensitivity of PCR-based methods for detection of hepatitis A virus (HAV) are dependent on the methods used to separate and concentrate the HAV from the infected cells. The pH and ionic strength affect the binding affinity of the virus to [...] Read more.
The accuracy and sensitivity of PCR-based methods for detection of hepatitis A virus (HAV) are dependent on the methods used to separate and concentrate the HAV from the infected cells. The pH and ionic strength affect the binding affinity of the virus to cells. In this study, we initially investigated the effects of pH (4.0–10.0) and metal ions (Fe2+, Co2+, Cu2+, Mg2+, K+, and Ca2+) on the binding of HAV to oyster digestive cells. The lowest relative binding (RB) of HAV to the cells was found at pH 4.0 and in FeSO4 solution (64.6% and 68.1%, respectively). To develop an alternative to antibody-dependent immunomagnetic separation prior to detection of HAV using RT-PCR, the binding of HAV to five lectins, peanut agglutinin (PNA), Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Ulex europaeus agglutinin (UEA-1) and soybean agglutinin (SBA), was evaluated using ELISAs. SBA showed significantly higher RB to HAV than the other lectins tested. In addition, HAV could be concentrated within 30 min using SBA-linked magnetic bead separation (SMS) prior to the RT-PCR assay. Our findings demonstrate the feasibility of using SMS combined with RT-PCR to detect HAV at dilutions ranging from 10−1–10−4 of a HAV stock (titer: 104 TCID50/mL). Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

16 pages, 446 KB  
Article
Effects of Soybean Agglutinin on Mechanical Barrier Function and Tight Junction Protein Expression in Intestinal Epithelial Cells from Piglets
by Li Pan, Guixin Qin, Yuan Zhao, Jun Wang, Feifei Liu and Dongsheng Che
Int. J. Mol. Sci. 2013, 14(11), 21689-21704; https://doi.org/10.3390/ijms141121689 - 1 Nov 2013
Cited by 41 | Viewed by 7787
Abstract
In this study, we sought to investigate the role of soybean agglutinin (SBA) in mediating membrane permeability and the mechanical barrier function of intestinal epithelial cells. The IPEC-J2 cells were cultured and treated with 0, 0.5, 1.0, 1.5, 2.0, 2.5, or 3.0 mg/mL [...] Read more.
In this study, we sought to investigate the role of soybean agglutinin (SBA) in mediating membrane permeability and the mechanical barrier function of intestinal epithelial cells. The IPEC-J2 cells were cultured and treated with 0, 0.5, 1.0, 1.5, 2.0, 2.5, or 3.0 mg/mL SBA. Transepithelial electrical resistance (TEER) and alkaline phosphatase (AP) activity were measured to evaluate membrane permeability. The results showed a significant decrease in TEER values (p < 0.05) in a time- and dose-dependent manner, and a pronounced increase in AP activity (p < 0.05). Cell growth and cell morphology were used to evaluate the cell viability. A significant cell growth inhibition (p < 0.05) and alteration of morphology were observed when the concentration of SBA was increased. The results of western blotting showed that the expression levels of occludin and claudin-3 were decreased by 31% and 64% compared to those of the control, respectively (p < 0.05). In addition, immunofluorescence labeling indicated an obvious decrease in staining of these targets and changes in their localizations. In conclusion, SBA increased the membrane permeability, inhibited the cell viability and reduced the levels of tight junction proteins (occludin and claudin-3), leading to a decrease in mechanical barrier function in intestinal epithelial cells. Full article
(This article belongs to the Section Biochemistry)
Show Figures

11 pages, 844 KB  
Article
Effects of Soybean Agglutinin on Intestinal Barrier Permeability and Tight Junction Protein Expression in Weaned Piglets
by Yuan Zhao, Guixin Qin, Zewei Sun, Dongsheng Che, Nan Bao and Xiaodong Zhang
Int. J. Mol. Sci. 2011, 12(12), 8502-8512; https://doi.org/10.3390/ijms12128502 - 29 Nov 2011
Cited by 88 | Viewed by 11047
Abstract
This study was developed to provide further information on the intestinal barrier permeability and the tight junction protein expression in weaned piglets fed with different levels of soybean agglutinin (SBA). Twenty-five weaned crossbred barrows (Duroc × Landrace × Yorkshire) were selected and randomly [...] Read more.
This study was developed to provide further information on the intestinal barrier permeability and the tight junction protein expression in weaned piglets fed with different levels of soybean agglutinin (SBA). Twenty-five weaned crossbred barrows (Duroc × Landrace × Yorkshire) were selected and randomly allotted to five groups, each group with five replicates. The piglets in the control group were not fed with leguminous products. 0.05, 0.1, 0.15 and 0.2% SBA was added to the control diet to form four experimental diets, respectively. After the experimental period of 7 days (for each group), all the piglets were anesthetized with excess procaine and slaughtered. The D-lactic acid in plasma and the Ileal mucosa diamine oxidase (DAO) was analyzed to observe the change in the intestinal permeability. The tight junction proteins occludin and ZO-1 in the jejunum tissue distribution and relative expression were detected by immunohistochemistry and Western Blot. The results illustrated that a high dose of SBA (0.1–0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no significant affects. The contents of DAO, D-lactic acid, occludin or ZO-1, had a linear relationship with the SBA levels (0–0.2%) in diets. The high dose SBA (0.1–0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no affects. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Back to TopTop