Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,691)

Search Parameters:
Keywords = blood lipids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 441 KiB  
Article
Cytokine Regulation and Oxidative Stress in Helicobacter Pylori-Associated Gastric Adenocarcinoma at Different Stages: Insights from a Cross-Sectional Study
by Olga Smirnova, Aleksander Sinyakov and Eduard Kasparov
Int. J. Mol. Sci. 2025, 26(15), 7609; https://doi.org/10.3390/ijms26157609 - 6 Aug 2025
Abstract
Gastric adenocarcinoma is a malignant tumor that develops from the glandular cells of the inner wall of the stomach. The prevalence of this type of disease varies from 90 to 95% of all types of gastric cancer. The aim of our study was [...] Read more.
Gastric adenocarcinoma is a malignant tumor that develops from the glandular cells of the inner wall of the stomach. The prevalence of this type of disease varies from 90 to 95% of all types of gastric cancer. The aim of our study was to investigate the differences in the content of cytokines and oxidative stress markers in patients with gastric adenocarcinoma associated with H. pylori infection depending on the stage. The study included 281 patients with gastric cancer. At stage I of the disease—75 people, stage II—70 people, stage III—69 people, and stage IV of the disease—67 people. The levels of TNF-α, IL-2, IL-8, IFNγ, TNF-β, IL-17A, IL-6, IL-10, and IL-4 in the blood serum of patients and healthy individuals were determined by enzyme immunoassay and plasma oxidative stress scores (MDA, SOD, CAT, GST, GPO, CP). The present study revealed that H. pylori-infected gastric adenocarcinoma at different stages is associated with different plasma levels of cytokines, lipid peroxidation products, and antioxidant defense factors. Further studies are needed to evaluate the effectiveness of therapeutic strategies combining cytokine regulation and oxidative stress to improve clinical outcomes in gastric cancer. Full article
Show Figures

Figure 1

17 pages, 4422 KiB  
Systematic Review
The Impact of Blood Flow Restriction Training on Glucose and Lipid Metabolism in Overweight or Obese Adults: A Systematic Review and Meta-Analysis
by Hao Chen, Peng Liu, Yidi Deng, Haibo Cai, Pu Liang and Xin Jiang
Life 2025, 15(8), 1245; https://doi.org/10.3390/life15081245 - 6 Aug 2025
Abstract
Blood flow restriction training (BFRT) offers notable advantages, including simplicity and time efficiency. However, no meta-analysis has yet comprehensively evaluated its effects on glucose and lipid metabolism in overweight or obese adults. This meta-analysis examines the potential efficacy of BFRT in improving glycemic [...] Read more.
Blood flow restriction training (BFRT) offers notable advantages, including simplicity and time efficiency. However, no meta-analysis has yet comprehensively evaluated its effects on glucose and lipid metabolism in overweight or obese adults. This meta-analysis examines the potential efficacy of BFRT in improving glycemic and lipid control in overweight/obese adults. The literature was searched in six databases, with the search period up to 31 March 2025. A total of eight randomized controlled trials involving 267 participants were identified. Data were analyzed using Stata 18.0 and RevMan 5.4 with random effects models. Outcomes included fasting blood glucose (FBG), homeostasis model assessment of insulin resistance (HOMA-IR), and lipid profiles, and risk of bias and publication bias (Egger’s test) were assessed. BFRT significantly reduced FBG (Hedges’ g = −1.13, 95% CI: −1.65 to −0.62, p < 0.01; I2 = 66.34%) and HOMA-IR (Hedges’ g = −0.98, 95% CI: −1.35 to −0.61, p < 0.01; I2 = 17.33%) compared with the controls. However, no significant changes were observed in lipid profiles. Our analysis demonstrates that BFRT exhibits the favorable effect of improving glucose metabolism in overweight/obese adults; however, current evidence does not support significant advantages of BFRT for lipid metabolism improvement. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

17 pages, 3095 KiB  
Article
Haplotypes, Genotypes, and DNA Methylation Levels of Neuromedin U Gene Are Associated with Cardio-Metabolic Parameters: Results from the Moli-sani Study
by Fabrizia Noro, Annalisa Marotta, Simona Costanzo, Benedetta Izzi, Alessandro Gialluisi, Amalia De Curtis, Antonietta Pepe, Sarah Grossi, Augusto Di Castelnuovo, Chiara Cerletti, Maria Benedetta Donati, Giovanni de Gaetano, Francesco Gianfagna and Licia Iacoviello
Biomedicines 2025, 13(8), 1906; https://doi.org/10.3390/biomedicines13081906 - 5 Aug 2025
Abstract
Background/Objectives: Neuromedin U (NMU) is a highly conserved gene encoding a neuropeptide involved in the regulation of feeding behavior and energy homeostasis. We aimed to analyze the association between NMU genetic and epigenetic variations and cardio-metabolic parameters in an Italian population to identify [...] Read more.
Background/Objectives: Neuromedin U (NMU) is a highly conserved gene encoding a neuropeptide involved in the regulation of feeding behavior and energy homeostasis. We aimed to analyze the association between NMU genetic and epigenetic variations and cardio-metabolic parameters in an Italian population to identify the role of these variants in cardio-metabolic risk. Methods: A total of 4028 subjects were randomly selected from the Moli-sani study cohort. NMU haplotypes were estimated using seven SNPs located in the gene body and in the promoter region; DNA methylation levels in the promoter region, previously associated with lipid-related variables in the same population, were also used. Results: Among the haplotypes inferred, the haplotype carrying the highest number of minor variants (frequency 16.6%), when compared with the most frequent haplotype, was positively associated with insulin levels, HOMA-IR, and diastolic blood pressure, and negatively with HDL-cholesterol. The multivariable analysis that considered methylation levels along with their interactions with SNPs showed that increased methylation levels in two close CpG sites were associated with higher levels of lipid-related variables. Conclusions: This study supports a role for NMU as a regulator of human metabolism. This finding suggests that NMU could be a potential target for preventive interventions against coronary and cerebrovascular diseases, and that NMU genetic and epigenetic variability may serve as a biomarker for cardio-metabolic risk. Full article
(This article belongs to the Special Issue Epigenetics and Metabolic Disorders)
Show Figures

Figure 1

11 pages, 579 KiB  
Case Report
Thirty-Three Years Follow-Up of a Greek Family with Abetalipoproteinemia: Absence of Liver Damage on Long-Term Medium Chain Triglycerides Supplementation
by John K. Triantafillidis, Areti Manioti, Theodoros Pittaras, Theodoros Kozonis, Emmanouil Kritsotakis, Georgios Malgarinos, Konstantinos Pantos, Konstantinos Sfakianoudis, Manousos M. Konstadoulakis and Apostolos E. Papalois
J. Pers. Med. 2025, 15(8), 354; https://doi.org/10.3390/jpm15080354 - 4 Aug 2025
Abstract
Background: The long-term clinical and laboratory results of a 33-year follow-up of a Greek family with abetalipoproteinemia (ABL) are described. Case Report: The patients (two brothers and their sister, aged 57, 49, and 62 years, respectively) are still alive, being under close surveillance. [...] Read more.
Background: The long-term clinical and laboratory results of a 33-year follow-up of a Greek family with abetalipoproteinemia (ABL) are described. Case Report: The patients (two brothers and their sister, aged 57, 49, and 62 years, respectively) are still alive, being under close surveillance. In two of the three patients, diarrhea appeared in early infancy, while in the third, it appeared during adolescence. CNS symptomatology worsened after the second decade of life. At the same time, night blindness appeared in the advanced stages of the disease, resulting in almost complete loss of vision in one of the male patients and severe impairment in the other. The diagnosis was based on the clinical picture, ophthalmological findings, serum lipid estimations, and presence of peripheral acanthocytosis. All patients exhibited typical serum lipidemic profile, ophthalmological findings, and acanthocytes in the peripheral blood. During the follow-up period, strict dietary modifications were applied, including the substitution of fat with medium-chain triglycerides (MCT oil). After 33 years since the initial diagnosis, all patients are alive without any sign of liver dysfunction despite continuous use of MCT oil. However, symptoms from the central nervous system and vision impairment worsened. Conclusion: The course of these patients suggests that the application of a modified diet, including MCT oil, along with close surveillance, could prolong the survival of patients without significant side effects from the liver. Full article
(This article belongs to the Special Issue Clinical and Experimental Surgery in Personalized Molecular Medicine)
Show Figures

Figure 1

16 pages, 424 KiB  
Article
Evaluation of Clinical and Quality of Life Effects of Oral Semaglutide Use in Type 2 Diabetes from a Public Health View: A Prospective Study in Italy
by Paola Pantanetti, Vanessa Ronconi, Stefano Mancin, Cristina De Carolis, Sara Alberti, Orietta Pazzi, Sandra Di Marco, Grazia Michetti, Silvia Coacci, Veronica Mignini, Franco Gregorio, Giulia Baldoni, Sara Toderi, Sara Morales Palomares, Fabio Petrelli, Gabriele Caggianelli, Mauro Parozzi and Giovanni Cangelosi
Diabetology 2025, 6(8), 80; https://doi.org/10.3390/diabetology6080080 - 4 Aug 2025
Viewed by 23
Abstract
Background and Aim: Type 2 diabetes (T2D) continues to pose a significant public health challenge worldwide. Among therapeutic options, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have proven effective in optimizing glycemic control and improving cardiometabolic profiles. Semaglutide, now available in an oral formulation, [...] Read more.
Background and Aim: Type 2 diabetes (T2D) continues to pose a significant public health challenge worldwide. Among therapeutic options, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have proven effective in optimizing glycemic control and improving cardiometabolic profiles. Semaglutide, now available in an oral formulation, represents a modern strategy to improve patient adherence while supporting glucose and weight regulation. This study primarily investigated the effects of oral semaglutide on key metabolic indicators and secondary endpoints included cardiovascular risk markers (blood pressure and lipid profile) and patient-reported quality of life (QoL). Study Design and Methods: A longitudinal, prospective observational study was conducted involving patients with T2D across two Italian healthcare facilities. Participants were assessed at baseline (T0) and at three subsequent intervals—6 months (T1), 12 months (T2), and 18 months (T3)—following the initiation of oral semaglutide use. Key Findings: Out of 116 participants enrolled, 97 had complete and analyzable data. Across the 18-month follow-up, significant improvements were observed in glycemic parameters, with a notable reduction in HbA1c levels (T0 vs. T3, p = 0.0028; p ≤ 0.05, statistically significant). Self-reported outcomes showed enhanced quality of life, especially in treatment satisfaction and perceived flexibility (T0 vs. T3, p < 0.001). Conclusions: Daily administration of 14 mg oral semaglutide in individuals with T2D resulted in substantial benefits in glycemic regulation, weight reduction, cardiovascular risk management, and overall patient satisfaction. These findings reinforce its potential role as a sustainable and effective option in long-term diabetes care from both a clinical and public health perspective. Full article
Show Figures

Figure 1

16 pages, 1508 KiB  
Article
Altered Expression of the MEG3, FTO, ATF4, and Lipogenic Genes in PBMCs from Children with Obesity and Its Associations with Added Sugar Intake
by Adrián Hernández-DíazCouder, Pablo J. Paz-González, Maryori Valdez-Garcia, Claudia I. Ramírez-Silva, Karol Iliana Avila-Soto, Araceli Pérez-Bautista, Miguel Vazquez-Moreno, Ana Nava-Cabrera, Rodrigo Romero-Nava, Fengyang Huang and Miguel Cruz
Nutrients 2025, 17(15), 2546; https://doi.org/10.3390/nu17152546 - 2 Aug 2025
Viewed by 237
Abstract
Background: Obesity and its complications have increased in both adults and children, with pediatric populations developing metabolic disorders at earlier ages. Long non-coding RNAs, particularly MEG3, are involved in obesity through regulation of lipogenic genes including ATF4, FTO, SREBP1, [...] Read more.
Background: Obesity and its complications have increased in both adults and children, with pediatric populations developing metabolic disorders at earlier ages. Long non-coding RNAs, particularly MEG3, are involved in obesity through regulation of lipogenic genes including ATF4, FTO, SREBP1, FASN, and ACACA. However, data on MEG3 expression in pediatric obesity are limited. This study evaluated MEG3, FTO, and ATF4 expression in PBMCs from children with obesity and their associations with added sugar intake and lipid metabolism genes. Methods: In this cross-sectional study 71 children within the age range of 6 to 12 years were included (28 normal weight and 43 with obesity). Anthropometrical and clinical parameters and dietary added sugar consumption were analyzed. Real-time PCR was performed to assess MEG3, FTO, ATF4, SREBP1, FASN, and ACACA gene expression in peripheral blood mononuclear cells. Results: The expression of MEG3, ATF4, FTO, SREBP1, FASN, and ACACA was decreased in children with obesity. MEG3 and FTO showed sex-dependent expression in children without obesity, while additional sex-related differences were observed for SREBP1, FASN, ACACA, FTO, and MEG3 in children with obesity. MEG3 was associated with the expression of SREBP1, FASN, ACACA, FTO, and ATF4. In insulin-resistant (IR) children, MEG3, ATF4, FTO, ACACA, and SREBP1 were reduced, while FASN was increased. Added sugar intake negatively correlated with FTO, SREBP1, and ACACA. Conclusions: The MEG3, FTO, and ATF4 expression was altered in children with obesity, showing sex- and IR-related differences. Added sugar intake correlated negatively with lipogenic gene expression. Full article
(This article belongs to the Special Issue Dietary Effects on Gene Expression and Metabolic Profiles)
Show Figures

Figure 1

22 pages, 5182 KiB  
Article
Effects of High-Phenolic Extra Virgin Olive Oil (EVOO) on the Lipid Profile of Patients with Hyperlipidemia: A Randomized Clinical Trial
by Christos Kourek, Emmanouil Makaris, Prokopios Magiatis, Virginia Zouganeli, Vassiliki Benetou, Alexandros Briasoulis, Andrew Xanthopoulos, Ioannis Paraskevaidis, Eleni Melliou, Georgios Koudounis and Philippos Orfanos
Nutrients 2025, 17(15), 2543; https://doi.org/10.3390/nu17152543 - 2 Aug 2025
Viewed by 500
Abstract
Background/Objectives: Hyperlipidemia is a major risk factor for cardiovascular disease and atherosclerosis. Polyphenols found in polyphenol-rich extra virgin olive oil (EVOO) have been shown to possess strong antioxidant, anti-inflammatory, and cardioprotective properties. The present study aimed to assess the effects of two types [...] Read more.
Background/Objectives: Hyperlipidemia is a major risk factor for cardiovascular disease and atherosclerosis. Polyphenols found in polyphenol-rich extra virgin olive oil (EVOO) have been shown to possess strong antioxidant, anti-inflammatory, and cardioprotective properties. The present study aimed to assess the effects of two types of EVOO with different polyphenol content and dosages on the lipid profile of hyperlipidemic patients. Methods: In this single-blind, randomized clinical trial, 50 hyperlipidemic patients were randomized to receive either a higher-dose, lower-phenolic EVOO (414 mg/kg phenols, 20 g/day) or a lower-dose, higher-phenolic EVOO (1021 mg/kg phenols, 8 g/day), for a period of 4 weeks. These doses were selected to ensure equivalent daily polyphenol intake in both groups (~8.3 mg of total phenols/day), based on chemical analysis performed using NMR spectroscopy. The volumes used (8–20 g/day) reflect typical daily EVOO intake and were well tolerated by participants. A group of 20 healthy individuals, separated into two groups, also received the two types of EVOO, respectively, for the same duration. Primary endpoints included blood levels of total blood cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, lipoprotein-a (Lpa), and apolipoproteins A1 and B. Measurements were performed at baseline and at the end of the 4-week intervention. Linear mixed models were performed for the data analysis. Results: The higher-phenolic, lower-dose EVOO group showed a more favorable change in total blood cholesterol (p = 0.045) compared to the lower-phenolic, higher-dose group. EVOO intake was associated with a significant increase in HDL (p < 0.001) and reduction in Lp(a) (p = 0.040) among hyperlipidemic patients in comparison to healthy individuals. Conclusions: EVOO consumption significantly improved the lipid profile of hyperlipidemic patients. Higher-phenolic EVOO at lower dosages appears to be more effective in improving the lipid profile than lower-phenolic EVOO in higher dosages. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

28 pages, 820 KiB  
Systematic Review
The Effects of Nutritional Education and School-Based Exercise Intervention Programs on Preschool and Primary School Children’s Cardiometabolic Biomarkers: A Systematic Review of Randomized Controlled Trials
by Markel Rico-González, Daniel González-Devesa, Carlos D. Gómez-Carmona and Adrián Moreno-Villanueva
Appl. Sci. 2025, 15(15), 8564; https://doi.org/10.3390/app15158564 (registering DOI) - 1 Aug 2025
Viewed by 148
Abstract
Childhood obesity increases chronic disease risk, but no comprehensive synthesis has evaluated the impact of school-based combined nutrition education and physical activity interventions on cardiometabolic biomarkers in children aged 3 to 12 years. This systematic review was conducted in accordance with PRISMA guidelines [...] Read more.
Childhood obesity increases chronic disease risk, but no comprehensive synthesis has evaluated the impact of school-based combined nutrition education and physical activity interventions on cardiometabolic biomarkers in children aged 3 to 12 years. This systematic review was conducted in accordance with PRISMA guidelines and registered in PROSPERO (CRD420251085194). Five databases were systematically searched through June 2025. Twelve randomized controlled trials involving 18,231 children were included and assessed using the PEDro scale. Ten trials demonstrated significant improvements in at least one cardiometabolic biomarker. Blood pressure (8 studies) outcomes showed systolic reductions of 1.41–6.0 mmHg in six studies. Glucose metabolism (5 studies) improved in two studies with reductions of 0.20–0.22 mmol/L. Lipid profiles (7 studies) improved in three studies, including total cholesterol (−0.32 mmol/L). Insulin levels (5 studies) decreased significantly in two investigations. Anthropometric improvements included BMI and body fat. Physical activity increased by >45 min/week and dietary habits improved significantly. Programs with daily implementation (90-min sessions 4x/week), longer duration (≥12 months), family involvement (parent education), and curriculum integration (classroom lessons) showed superior effectiveness. Interventions targeting children with overweight/obesity demonstrated higher changes compared to the general population. However, methodological limitations included a lack of assessor blinding, absence of subject/therapist blinding, and inadequate retention rates. School-based interventions combining nutrition and physical activity can produce significant improvements in cardiometabolic biomarkers, supporting comprehensive, sustained multicomponent programs for early chronic disease prevention. Full article
(This article belongs to the Special Issue Research of Sports Medicine and Health Care: Second Edition)
Show Figures

Figure 1

15 pages, 1218 KiB  
Article
Genetic Risk of MASLD in Mongolians: Role of PNPLA3 and FTO SNPs
by Yumchinsuren Tsedendorj, Dolgion Daramjav, Yesukhei Enkhbat, Ganchimeg Dondov, Gantogtokh Dashjamts, Enkhmend Khayankhyarvaa, Amin-Erdene Ganzorig, Bolor Ulziitsogt, Tegshjargal Badamjav, Batbold Batsaikhan, Shiirevnyamba Avirmed and Tulgaa Lonjid
Curr. Issues Mol. Biol. 2025, 47(8), 605; https://doi.org/10.3390/cimb47080605 - 1 Aug 2025
Viewed by 126
Abstract
Background: This study aimed to determine the association between PNPLA3 rs738409, rs2896019, and FTO rs9939609, rs17817449 single-nucleotide polymorphisms and the risk of metabolic dysfunction-associated steatotic liver disease (MASLD) in Mongolian individuals. Methods: We conducted a case-control study, enrolling 100 MASLD patients and 50 [...] Read more.
Background: This study aimed to determine the association between PNPLA3 rs738409, rs2896019, and FTO rs9939609, rs17817449 single-nucleotide polymorphisms and the risk of metabolic dysfunction-associated steatotic liver disease (MASLD) in Mongolian individuals. Methods: We conducted a case-control study, enrolling 100 MASLD patients and 50 subjects without MASLD. We used the PCR-RFLP technique on three genotype SNPs (rs738409, rs2896019 in PNPLA3, and rs9939609 in FTO). We analyzed liver function and lipid metabolism parameters in the peripheral blood of study participants. A p-value below 0.05 was considered a statistically significant result. Results: This study, which included 150 participants aged 23 to 75, had a mean age of 46.73 ± 11.45 years, with 40% of participants being male (60 individuals). We observed the rs738409 (G), rs2896019 (G), and rs9939609 (A) alleles at a statistically significantly enhanced frequency in the case group (32.5%, 33%, and 21%) compared to the control group (19%, 25%, and 19%), indicating an increased risk of MASLD. The FTO rs17817449 SNP did not show a significant difference between groups. PNPLA3 rs738409 GC/GG genotype (OR = 2.39, p = 0.019) and FTO rs9939609 AT/AA (OR = 2.55, p = 0.025) genotype showed a significant association with MASLD. In the evaluation of the FTO rs9939609, rs17817449, and PNPLA3 rs738409, rs2896019 single-nucleotide polymorphisms among the research individuals, 18.7% had no SNPs, 15.3% had one SNP, 29.3% had two SNPs, 25.3% had three SNPs, and 11.3% had four SNPs. The risk of MASLD increased significantly for individuals having four SNPs (OR = 4.23, p = 0.007). Conclusions: We found that PNPLA3 rs738409 GC/GG genotype and FTO rs9939609 AT/AA genotype are strongly associated with an increased risk of MASLD. Notably, individuals with a higher rate of SNP number, had a significantly higher risk of MASLD. Full article
Show Figures

Figure 1

21 pages, 719 KiB  
Review
Intra-Arterial Administration of Stem Cells and Exosomes for Central Nervous System Disease
by Taishi Honda, Masahito Kawabori and Miki Fujimura
Int. J. Mol. Sci. 2025, 26(15), 7405; https://doi.org/10.3390/ijms26157405 - 31 Jul 2025
Viewed by 423
Abstract
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating [...] Read more.
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating brain damage and restoring neural connectivity, owing to their multifaceted properties, including anti-apoptotic, anti-inflammatory, neurogenic, and vasculogenic effects. Recent research has also identified exosomes—small vesicles enclosed by a lipid bilayer, secreted by stem cells—as a key mechanism underlying the therapeutic effects of stem cell therapies, and given their enhanced stability and superior blood–brain barrier permeability compared to the stem cells themselves, exosomes have emerged as a promising alternative treatment for CNS disorders. A key challenge in the application of both stem cell and exosome-based therapies for CNS diseases is the method of delivery. Currently, several routes are being investigated, including intracerebral, intrathecal, intravenous, intranasal, and intra-arterial administration. Intracerebral injection can deliver a substantial quantity of stem cells directly to the brain, but it carries the potential risk of inducing additional brain injury. Conversely, intravenous transplantation is minimally invasive but results in limited delivery of cells and exosomes to the brain, which may compromise the therapeutic efficacy. With advancements in catheter technology, intra-arterial administration of stem cells and exosomes has garnered increasing attention as a promising delivery strategy. This approach offers the advantage of delivering a significant number of stem cells and exosomes to the brain while minimizing the risk of additional brain damage. However, the investigation into the therapeutic potential of intra-arterial transplantation for CNS injury is still in its early stages. In this comprehensive review, we aim to summarize both basic and clinical research exploring the intra-arterial administration of stem cells and exosomes for the treatment of CNS diseases. Additionally, we will elucidate the underlying therapeutic mechanisms and provide insights into the future potential of this approach. Full article
(This article belongs to the Special Issue Stem Cells Research: Advancing Science and Medicine)
Show Figures

Graphical abstract

27 pages, 2012 KiB  
Article
Dual Effects of Maternal Diet and Perinatal Organophosphate Flame Retardant Treatment on Offspring Development, Behavior and Metabolism
by Ali Yasrebi, Catherine M. Rojas, Shabree Anthony, Samantha Feltri, Jamilah Evelyn, Kimberly Wiersielis, Samantha Adams, Veronia Basaly, Grace L. Guo, Lauren M. Aleksunes and Troy A. Roepke
Toxics 2025, 13(8), 639; https://doi.org/10.3390/toxics13080639 - 29 Jul 2025
Viewed by 270
Abstract
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) [...] Read more.
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) formation, influencing brain regions involved in energy regulation and behavior. This study examined the combined effects of maternal obesity and perinatal OPFR treatment on offspring development. Female mice were fed either a low-fat (LFD) or a high-fat diet (HFD) for 8 weeks, mated, and treated with either sesame oil or an OPFR mixture (tris(1,3-dichloro-2-propyl)phosphate, tricresyl phosphate, and triphenyl phosphate, 1 mg/kg each) from gestational day 7 to postnatal day 14. Results showed that both maternal diet and OPFR treatment disrupted blood–brain barrier integrity, energy balance, and reproductive gene expression in the hypothalamus of neonates. The expression of hepatic genes related to lipid and xenobiotic metabolism was also altered. In adulthood, LFD OPFR-treated female offspring exhibited increased avoidance behavior, while HFD OPFR-treated females demonstrated memory impairments. Metabolic assessments revealed decreased energy expenditure and nighttime activity in LFD OPFR-treated females. These findings suggest that maternal diet and OPFR treatment alter hypothalamic and liver gene expression in neonates, potentially leading to long-term metabolic and behavioral changes. Full article
Show Figures

Graphical abstract

11 pages, 938 KiB  
Review
Sensory Circumventricular Organ Insulin Signaling in Cardiovascular and Metabolic Regulation
by Han Rae Kim, Jin Kwon Jeong and Colin N. Young
Curr. Issues Mol. Biol. 2025, 47(8), 595; https://doi.org/10.3390/cimb47080595 - 29 Jul 2025
Viewed by 181
Abstract
Central nervous system (CNS) insulin signaling is involved in a broad array of cardiometabolic physiology, including glucose and lipid metabolism, feeding, energy expenditure, and blood pressure regulation. A key role for hypothalamic neuroendocrine and autonomic centers in regulating insulin-associated cardiovascular and metabolic physiology [...] Read more.
Central nervous system (CNS) insulin signaling is involved in a broad array of cardiometabolic physiology, including glucose and lipid metabolism, feeding, energy expenditure, and blood pressure regulation. A key role for hypothalamic neuroendocrine and autonomic centers in regulating insulin-associated cardiovascular and metabolic physiology has been highlighted. However, it is still unclear which CNS site(s) initiate insulin-dependent neural cascades. While some investigations have suggested that circulating insulin can access hypothalamic regions by crossing the blood-brain barrier, other studies point to a necessity of other brain areas upstream of the hypothalamus to initiate central insulin actions. In this context, accumulating evidence points to a possible involvement of the sensory circumventricular organs (CVOs), unique areas located outside of the blood-brain barrier, in insulin-dependent cardiometabolic homeostasis. Here, the multifaceted roles for the sensory CVOs in cardiovascular and metabolic regulation, with a special emphasis on insulin receptor pathways, are discussed. Full article
Show Figures

Graphical abstract

14 pages, 1385 KiB  
Article
Is TGF-β Associated with Cytokines and Other Biochemical or Clinical Risk Parameters in Early-Onset CAD Patients?
by Bartosz Rakoczy, Violetta Dziedziejko, Krzysztof Safranow and Monika Rac
Biomedicines 2025, 13(8), 1840; https://doi.org/10.3390/biomedicines13081840 - 29 Jul 2025
Viewed by 326
Abstract
Background: TGF-β is an immunosuppressive cytokine. Its signaling pathway plays a role in anti-inflammatory responses. Coronary artery disease (CAD) is a clinical consequence of atherosclerosis, which manifests as chronic inflammation and involves platelet mediators, including TGF-β. The aim of this study is to [...] Read more.
Background: TGF-β is an immunosuppressive cytokine. Its signaling pathway plays a role in anti-inflammatory responses. Coronary artery disease (CAD) is a clinical consequence of atherosclerosis, which manifests as chronic inflammation and involves platelet mediators, including TGF-β. The aim of this study is to validate the diagnostic utility of TGF-β levels in relation to classical and molecular risk factors for CAD. Methods: The study group included 25 women and 75 men, all aged up to 55 and 50 years, respectively, who had been diagnosed with early-onset CAD. Fasting blood samples were taken to measure plasma levels of TGF-β, sCD36, PCSK9, TNF, VEGF, IL-6, and E-selectin using the ELISA method. Furthermore, a full lipid profile, apolipoproteins (Lp(a), ApoA1, and ApoB), C-reactive protein (hsCRP), and blood morphology were analyzed at the Central Hospital Laboratory. A physical examination was also performed. Results: Positive associations were observed between TGF-β concentration and TNF, platelet count, PTC, and triglyceride levels. TNF and platelet concentration were significant independent predictors of increased plasma TGF-β levels. None of the clinical parameters showed statistically significant associations with plasma TGF-β concentration. Conclusions: Our research has demonstrated that TGF-β levels, including circulating TNF, triglycerides, and platelets, are linked to specific biochemical risk factors in early-onset CAD cases. Full article
Show Figures

Figure 1

14 pages, 839 KiB  
Article
Biochemical Profile Variations Among Type 2 Diabetic Patients Stratified by Hemoglobin A1c Levels in a Saudi Cohort: A Retrospective Study
by Abdulrahman Alshalani, Nada AlAhmari, Hajar A. Amin, Abdullah Aljedai and Hamood AlSudais
J. Clin. Med. 2025, 14(15), 5324; https://doi.org/10.3390/jcm14155324 - 28 Jul 2025
Viewed by 370
Abstract
Background: The global increase in type 2 diabetes mellitus (T2DM) cases necessitates the need for early detection of metabolic changes. This study investigated variations in liver enzymes, renal markers, electrolytes, and lipid profiles among T2DM patients stratified by hemoglobin A1c (HbA1c) categories [...] Read more.
Background: The global increase in type 2 diabetes mellitus (T2DM) cases necessitates the need for early detection of metabolic changes. This study investigated variations in liver enzymes, renal markers, electrolytes, and lipid profiles among T2DM patients stratified by hemoglobin A1c (HbA1c) categories to support early identification and better management of diabetes-related complications. Methods: A retrospective observational study at King Khalid University Hospital (KKUH), Riyadh, included 621 adult patients diagnosed with T2DM categorized into four HbA1c groups: normal (<5.7%), prediabetes (5.7–6.4%), controlled diabetes (6.5–7.9%), and uncontrolled diabetes (≥8.0%). Biochemical parameters included the liver profile: alkaline phosphatase (ALP) and bilirubin, renal profile: creatinine, blood urea nitrogen (BUN), glucose, sodium, and chloride, and lipid profile: cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides. Regression models identified predictors of ALP, cholesterol, and LDL. Results: ALP was higher in uncontrolled diabetes (89.0 U/L, Q1–Q3: 106.3–72.0) than in the prediabetes group (75.0 U/L, Q1–Q3: 96.8–62.3). Sodium and chloride were lower in uncontrolled diabetes (Na: 138.3 mmol/L, Q1–Q3: 140.3–136.4; Cl: 101.1 mmol/L, Q1–Q3: 102.9–99.4) compared to the normal group (Na: 139.5 mmol/L, Q1–Q3: 142.4–136.9; Cl: 103.5 mmol/L, Q1–Q3: 106.1–101.7). LDL was lower in uncontrolled diabetes (2.1 mmol/L, Q1–Q3: 2.8–1.7) than in the normal group (2.8 mmol/L, Q1–Q3: 3.7–2.2), while triglycerides were higher in patients with uncontrolled diabetes compared to the normal group (1.45 mmol/L, Q1–Q3: 2.02–1.11 vs. 1.26 mmol/L, Q1–Q3: 1.44–0.94). Regression models showed low explanatory power (R2 = 2.1–7.3%), with weight, age, and sex as significant predictors of select biochemical markers. Conclusions: The study observed biochemical variations across HbA1c categories in T2DM patients, likely reflecting insulin resistance. Monitoring these markers in conjunction with HbA1c can enhance early detection and improve the management of complications. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

16 pages, 1127 KiB  
Article
Effects of Corn–Soybean Meal-Based Fermented Feed Supplementation on Growth Performance, Meat Quality, Fatty Acid Profiles, Nutritional Values, and Gut Microbiota of Lean-Type Finishing Pigs
by Jiao Song, Xin Wang, Yuhan Cao, Yue He and Ye Yang
Foods 2025, 14(15), 2641; https://doi.org/10.3390/foods14152641 - 28 Jul 2025
Viewed by 421
Abstract
This research investigated the impact of corn–soybean meal-based fermented feed on the growth performance, pork quality, and fatty acid profiles of lean-type finishing pigs. A total of 80 lean-type growing DLY (Duroc × Landrace–Yorkshire) pigs were randomly assigned to 2 groups, with 5 [...] Read more.
This research investigated the impact of corn–soybean meal-based fermented feed on the growth performance, pork quality, and fatty acid profiles of lean-type finishing pigs. A total of 80 lean-type growing DLY (Duroc × Landrace–Yorkshire) pigs were randomly assigned to 2 groups, with 5 replicates of 8 pigs per pen. The pigs in control group (CON group) were fed a basal diet, while the pigs in fermented feed group (FF group) were fed a diet supplemented with 10% fermented feed. The experimental period lasted 70 days. Results exhibited that pigs in FF group had a significant increase in final body weight and average daily gain (ADG) (p < 0.05) and had a significant decrease in the feed-to-gain ratio (F/G) (p < 0.05). The FF group also exhibited significant promotion in muscle intramuscular fat content, marbling score, and meat color and significantly reduced the meat shear force and drip loss (p < 0.05). Serum analysis indicated that fermented feed significantly elevated blood glucose, total cholesterol, triglyceride levels, and serum hormones such as insulin, leptin, and IGF-1 (p < 0.05). Additionally, fermented feed significantly elevated the levels of polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs), whereas it decreased the saturated fatty acids (SFAs) contents (p < 0.05). The fermented feed also significantly enhanced pork nutritional values (p < 0.05). The fermented feed increased the expression of IGF-1, SREBP1c, PDE3, PPARγ, SCD5, and FAT/CD36 mRNA (p < 0.05). Furthermore, microbial 16S rDNA analysis uncovered that FF supplementation significantly reduced the Campilobacterota phylum abundance, while increasing the genus abundances of Clostridium_sensu_stricto, norank_f_Oscillospiraceae, unclassified_c_Clostridia, and V9D2013 (p < 0.05). In summary, the results indicated that the microbial fermented feed exhibited the regulation effects on pork quality and nutritional values of lean-type pigs through regulating lipid metabolism and gut microbial composition. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

Back to TopTop