Haplotypes, Genotypes, and DNA Methylation Levels of Neuromedin U Gene Are Associated with Cardio-Metabolic Parameters: Results from the Moli-sani Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Biochemical Analyses
2.4. NMU Genetic Variant Analysis
2.5. NMU DNA Methylation Analysis
2.6. Statistical Analysis
3. Results
3.1. Association Between Haplotypes and Metabolic Indices
3.2. Association Between SNPs and Metabolic Indices
3.3. Association Between SNPs, CpG Methylation Levels, and Metabolic Indices
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body mass index |
CCTF | CCCTC-binding factor |
CEU | Caucasian population, Utah residents with Northern and Western European ancestry |
CI | Confidence interval |
CVD | Cardiovascular disease |
FDR | False discovery rate |
GWAS | Genome-wide association study |
HDL | High-density lipoprotein |
HOMA-IR | Homeostatic model assessment of insulin resistance |
HWE | Hardy–Weinberg equilibrium |
LDL | Low-density lipoprotein |
MAF | Minor allele frequency |
NMU | Neuromedin U |
OR | Odds ratio |
SD | Standard deviation |
SE | Standard error |
SNP | Single nucleotide polymorphism |
TSI | Tuscan population |
Appendix A. Moli-sani Study Investigators
- Steering Committee: Licia Iacoviello *# (Chairperson), Giovanni de Gaetano *, Maria Benedetta Donati *.
- Scientific Secretariat: Chiara Cerletti * (Coordinator), Marialaura Bonaccio *, Americo Bonanni *, Simona Costanzo *°, Amalia De Curtis *, Augusto Di Castelnuovo *, Alessandro Gialluisi *#, Francesco Gianfagna °, Mariarosaria Persichillo *.
- Safety and Ethical Committee: JosVermylen (Catholic University, Leuven, Belgio) (Chairperson), Renzo Pegoraro (Pontificia Accademia per la Vita, Roma, Italy), Antonio G. Spagnolo (Catholic University, Roma, Italy).
- External Event Adjudicating Committee: Deodato Assanelli (Brescia, Italy), Livia Rago (Campobasso, Italy).
- Baseline and Follow-up Data Management: Simona Costanzo *° (Coordinator), Sabatino Orlandi *, Teresa Panzera *.
- Data Analysis: Augusto Di Castelnuovo * (Coordinator), Marialaura Bonaccio *, Francesca Bracone *, Simona Costanzo *°, Giuseppe Di Costanzo *, Simona Esposito *, Alessandro Gialluisi *#, Anwal Ghulam °, Francesco Gianfagna °, Martina Morelli *†, Maria Loreto MuñozVenegas *†, Antonietta Pepe *, Emilia Ruggiero *§.
- Biobank, Molecular and Genetic Laboratory: Amalia De Curtis * (Coordinator), Concetta Civitillo *†, Alisia Cretella *†, Sara Magnacca *.
- Recruitment Staff: Mariarosaria Persichillo * (Coordinator), Francesca Bracone *, Giuseppe Di Costanzo *, Martina Morelli *†.
- Communication and Press Office: Americo Bonanni *.
- Regional Institutions: Direzione Generale per la Salute—Regione Molise; Azienda Sanitaria Regionale del Molise (ASReM, Italy); Agenzia Regionale per la Protezione Ambientale del Molise (ARPA Molise, Italy); Molise Dati Spa (Campobasso, Italy); Offices of vital statistics of the Molise region.
- Hospitals: Presidi Ospedalieri ASReM: Ospedale A. Cardarelli—Campobasso, Ospedale F. Veneziale—Isernia, Ospedale San Timoteo—Termoli (CB), Ospedale Ss. Rosario—Venafro (IS), Ospedale Vietri—Larino (CB), Ospedale San Francesco Caracciolo—Agnone (IS); Casa di Cura Villa Maria—Campobasso; Responsible Research Hospital—Campobasso; IRCCS Neuromed—Pozzilli (IS).
- * Research Unit of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy.
- # Department of Medicine and Surgery, LUM University “Giuseppe Degennaro”, Casamassima, Italy.
- ° Department of Medicine and Surgery, University of Insubria, Varese, Italy.
- § Fellow of the Fondazione Umberto Veronesi, Italy.
- † Fondazione Veronesi—Piattaforma UMBERTO.
- Moli-sani study past investigators are available at https://www.moli-sani.org/?page_id=173 (accessed on 12 April 2025).
References
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef]
- Galmés, S.; Cifre, M.; Palou, A.; Oliver, P.; Serra, F. A Genetic Score of Predisposition to Low-Grade Inflammation Associated with Obesity May Contribute to Discern Population at Risk for Metabolic Syndrome. Nutrients 2019, 11, 298. [Google Scholar] [CrossRef] [PubMed]
- Sardu, C.; Paolisso, G.; Marfella, R. Inflammatory Related Cardiovascular Diseases: From Molecular Mechanisms to Therapeutic Targets. Curr. Pharm. Des. 2020, 26, 2565–2573. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Koliaki, C.; Liatis, S.; Kokkinos, A. Obesity and cardiovascular disease: Revisiting an old relationship. Metabolism 2019, 92, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Martinez, V.G.; O’DRiscoll, L. Neuromedin U: A multifunctional neuropeptide with pleiotropic roles. Clin. Chem. 2015, 61, 471–482. [Google Scholar] [CrossRef]
- Teranishi, H.; Hanada, R. Neuromedin U, a Key Molecule in Metabolic Disorders. Int. J. Mol. Sci. 2021, 22, 4238. [Google Scholar] [CrossRef]
- Minamino, N.; Kangawa, K.; Matsuo, H. Neuromedin U-8 and U-25: Novel uterus stimulating and hypertensive peptides identified in porcine spinal cord. Biochem. Biophys. Res. Commun. 1985, 130, 1078–1085. [Google Scholar] [CrossRef]
- Przygodzka, P.; Soboska, K.; Sochacka, E.; Boncela, J. Neuromedin U: A Small Peptide in the Big World of Cancer. Cancers 2019, 11, 1312. [Google Scholar] [CrossRef]
- Ye, Y.; Liang, Z.; Xue, L. Neuromedin U: Potential roles in immunity and inflammation. Immunology 2021, 162, 17–29. [Google Scholar] [CrossRef]
- Dalbøge, L.S.; Pedersen, S.L.; Secher, T.; Holst, B.; Vrang, N.; Jelsing, J. Neuromedin U inhibits food intake partly by inhibiting gastric emptying. Peptides 2015, 69, 56–65. [Google Scholar] [CrossRef]
- Howard, A.D.; Wang, R.; Pong, S.-S.; Mellin, T.N.; Strack, A.; Guan, X.-M.; Zeng, Z.; Williams, D.L.; Feighner, S.D.; Nunes, C.N.; et al. Identification of receptors for neuromedin U and its role in feeding. Nature 2000, 406, 70–74. [Google Scholar] [CrossRef]
- Malendowicz, L.K.; Ziolkowska, A.; Rucinski, M. Neuromedins U and S involvement in the regulation of the hypothalamo-pituitary-adrenal axis. Front. Endocrinol. 2012, 3, 156. [Google Scholar] [CrossRef]
- Hanadaa, R.; Nakazato, M.; Murakamic, N.; Sakiharad, S.; Yoshimatsua, H.; Toshinaib, K.; Hanadae, T.; Sudad, T.; Kangawaf, K.; Matsukurab, S.; et al. A role for neuromedin U in stress response. Biochem. Biophys. Res. Commun. 2001, 289, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Wren, A.M.; Small, C.J.; Abbott, C.R.; Jethwa, P.H.; Kennedy, A.R.; Murphy, K.G.; Stanley, S.A.; Zollner, A.N.; Ghatei, M.A.; Bloom, S.R. Hypothalamic actions of neuromedin U. Endocrinology 2002, 143, 4227–4234. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, V.; Chesné, J.; Ribeiro, H.; García-Cassani, B.; Carvalho, T.; Bouchery, T.; Shah, K.; Barbosa-Morais, N.L.; Harris, N.; Veiga-Fernandes, H. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 2017, 549, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Grippi, C.; Izzi, B.; Gianfagna, F.; Noro, F.; Falcinelli, E.; Di Pardo, A.; Amico, E.; Donati, M.; de Gaetano, G.; Iacoviello, L.; et al. Neuromedin U potentiates ADP- and epinephrine-induced human platelet activation. Thromb. Res. 2017, 159, 100–108. [Google Scholar] [CrossRef]
- Hainerová, I.; Torekov, S.S.; Ek, J.; Finková, M.; Borch-Johnsen, K.; Jørgensen, T.; Madsen, O.D.; Lebl, J.; Hansen, T.; Pedersen, O. Association between neuromedin U gene variants and overweight and obesity. J. Clin. Endocrinol. Metab. 2006, 91, 5057–5063. [Google Scholar] [CrossRef]
- Gianfagna, F.; Grippi, C.; Ahrens, W.; Bailey, M.E.S.; Börnhorst, C.; De Henauw, S.; Foraita, R.; Koni, A.C.; Krogh, V.; Mårild, S.; et al. The role of neuromedin U in adiposity regulation. Haplotype analysis in European children from the IDEFICS Cohort. PLoS ONE 2017, 12, e0172698. [Google Scholar] [CrossRef]
- Botticelli, L.; Di Bonaventura, E.M.; Del Bello, F.; Giorgioni, G.; Piergentili, A.; Quaglia, W.; Bonifazi, A.; Cifani, C.; Di Bonaventura, M.V.M. The neuromedin U system: Pharmacological implications for the treatment of obesity and binge eating behavior. Pharmacol. Res. 2023, 195, 106875. [Google Scholar] [CrossRef]
- Grippi, C.; Ahrens, W.; Buchecker, K.; Chadjigeorgiou, C.; De Henauw, S.; Koni, A.C.; Foraita, R.; Lissner, L.; Molnár, D.; Moreno, L.A.; et al. Association between variants of neuromedin U gene and taste thresholds and food preferences in European children: Results from the IDEFICS study. Appetite 2019, 142, 104376. [Google Scholar] [CrossRef] [PubMed]
- Gianfagna, F.; Cugino, D.; Ahrens, W.; Bailey, M.E.S.; Bammann, K.; Herrmann, D.; Koni, A.C.; Kourides, Y.; Marild, S.; Molnár, D.; et al. Understanding the links among neuromedin U gene, beta2-adrenoceptor gene and bone health: An observational study in European children. PLoS ONE 2013, 8, e70632. [Google Scholar] [CrossRef]
- Marotta, A.; Noro, F.; Parisi, R.; Gialluisi, A.; Tirozzi, A.; De Curtis, A.; Costanzo, S.; Di Castelnuovo, A.; Cerletti, C.; Donati, M.B.; et al. NMU DNA methylation in blood is associated with metabolic and inflammatory indices: Results from the Moli-sani study. Epigenetics 2021, 16, 1347–1360. [Google Scholar] [CrossRef] [PubMed]
- Iacoviello, L.; Bonanni, A.; Costanzo, S.; De Curtis, A.; Di Castelnuovo, A.; Olivieri, M.; Zito, F.; Donati, M.B.; de Gaetano, G. The Moli-Sani Project, a randomized, prospective cohort study in the Molise region in Italy; design, rationale and objectives. Ital. J. Public Health 2007, 4. [Google Scholar] [CrossRef]
- Di Castelnuovo, A.; Costanzo, S.; Persichillo, M.; Olivieri, M.; de Curtis, A.; Zito, F.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. MOLI-SANI Project Investigators. Distribution of short and lifetime risks for cardiovascular disease in Italians. Eur. J. Prev. Cardiol. 2012, 19, 723–730. [Google Scholar] [CrossRef]
- Di Castelnuovo, A.; de Curtis, A.; Costanzo, S.; Persichillo, M.; Olivieri, M.; Zito, F.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; MOLI-SANI Project Investigators. Association of D-dimer levels with all-cause mortality in a healthy adult population: Findings from the MOLI-SANI study. Haematologica 2013, 98, 1476–1480. [Google Scholar] [CrossRef]
- Clinical Guidelines on the Identification Evaluation Treatment of Overweight Obesity in Adults—The Evidence Report National Institutes of Health. Obes. Res. 1998, 6 (Suppl. S2), 51S–209S, Erratum in Obes. Res. 1998, 6, 464.
- Bener, A.; Zirie, M.; Musallam, M.; Khader, Y.S.; Al-Hamaq, A.O. Prevalence of metabolic syndrome according to Adult Treatment Panel III and International Diabetes Federation criteria: A population-based study. Metab. Syndr. Relat. Disord. 2009, 7, 221–230. [Google Scholar] [CrossRef]
- Zeller, T.; Hughes, M.; Tuovinen, T.; Schillert, A.; Conrads-Frank, A.; RuijterHd Schnabel, R.B.; Kee, F.; Salomaa, V.; Siebert, U.; Thorand, B.; et al. BiomarCaRE: Rationale and design of the European BiomarCaRE project including 300,000 participants from 13 European countries. Eur. J. Epidemiol. 2014, 29, 777–790. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Iacoviello, L.; De Curtis, A.; Donati, M.B.; de Gaetano, G. Biobanks for cardiovascular epidemiology and prevention. Future Cardiol. 2014, 10, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Malferrari, G.; Monferini, E.; DeBlasio, P.; Diaferia, G.; Saltini, G.; Del Vecchio, E.; Rossi-Bernardi, L.; Biunno, I. High-qualitygenomic DNA from human wholeblood and mononuclearcells. BioTechniques 2002, 33, 1228–1230. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef]
- Zhang, W.; Sakoda, H.; Nakazato, M. Neuromedin U suppresses insulin secretion by triggering mitochondrial dysfunction and endoplasmic reticulum stress in pancreatic β-cells. FASEB J. 2020, 34, 133–147. [Google Scholar] [CrossRef]
- Kowalski, T.J.; Spar, B.D.; Markowitz, L.; Maguire, M.; Golovko, A.; Yang, S.; Farley, C.; Cook, J.A.; Tetzloff, G.; Hoos, L.; et al. Transgenic overexpression of neuromedin U promotes leanness and hypophagia in mice. J. Endocrinol. 2005, 185, 151–164. [Google Scholar] [CrossRef]
- Alfa, R.W.; Park, S.; Skelly, K.R.; Poffenberger, G.; Jain, N.; Gu, X.; Kockel, L.; Wang, J.; Liu, Y.; Powers, A.C.; et al. Suppression of insulin production and secretion by a decretin hormone. Cell Metab. 2015, 21, 323–334, Erratum in Cell Metab. 2018, 27, 479. https://doi.org/10.1016/j.cmet.2018.01.003. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, H.; He, J.; Sun, H.; Zhu, D.; Bi, Y. Peripheral Administration of NMU Promotes White Adipose Tissue Beiging and Improves Glucose Tolerance. Int. J. Endocrinol. 2021, 2021, 6142096. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peier, A.M.; Desai, K.; Hubert, J.; Du, X.; Yang, L.; Qian, Y.; Kosinski, J.R.; Metzger, J.M.; Pocai, A.; Nawrocki, A.R.; et al. Effects of peripherally administered neuromedin U on energy and glucose homeostasis. Endocrinology 2011, 152, 2644–2654. [Google Scholar] [CrossRef]
- Jarry, A.C.; Merah, N.; Cisse, F.; Cayetanot, F.; Fiamma, M.N.; Willemetz, A.; Gueddouri, D.; Barka, B.; Valet, P.; Guilmeau, S.; et al. Neuromedin U is a gut peptide that alters oral glucose tolerance by delaying gastric emptying via direct contraction of the pylorus and vagal-dependent mechanisms. FASEB J. 2019, 33, 5377–5388. [Google Scholar] [CrossRef]
- Hirano, T. Pathophysiology of Diabetic Dyslipidemia. J. Atheroscler. Thromb. 2018, 25, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Bahiru, E.; Hsiao, R.; Phillipson, D.; Watson, K.E. Mechanisms and Treatment of Dyslipidemia in Diabetes. Curr. Cardiol. Rep. 2021, 23, 26. [Google Scholar] [CrossRef] [PubMed]
- McDonald, K.L.; Rapkins, R.W.; Olivier, J.; Zhao, L.; Nozue, K.; Lu, D.; Tiwari, S.; Kuroiwa-Trzmielina, J.; Brewer, J.; Wheeler, H.R.; et al. The T genotype of the MGMT C>T (rs16906252) enhancer single-nucleotide polymorphism (SNP) is associated with promoter methylation and longer survival in glioblastoma patients. Eur. J. Cancer 2013, 49, 360–368. [Google Scholar] [CrossRef]
- Izzi, B.; Pistoni, M.; Cludts, K.; Akkor, P.; Lambrechts, D.; Verfaillie, C.; Verhamme, P.; Freson, K.; Hoylaerts, M.F. Allele-specific DNA methylation reinforces PEAR1 enhancer activity. Blood 2016, 128, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Plank, J.L.; Dean, A. Enhancer function: Mechanistic and genome-wide insights come together. Mol. Cell. 2014, 55, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhang, K.; Zhao, H. Haplotype-association analysis. Adv. Genet. 2008, 60, 335–405. [Google Scholar] [CrossRef] [PubMed]
- Vanuzzo, D.; Lo Noce, C.; Pilotto, L.; Palmieri, L.; Donfrancesco, C.; Dima, F.; Gattone, M.; Goldoni, C.A.; Boccanelli, A.; Iacoviello, L.; et al. Osservatorio Epidemiologico Cardiovascolare 2008–2011: Primi risultati [Cardiovascularepidemiologic observatory 2008–2011: Preliminary results]. G. Ital. Di Cardiol. 2010, 11, 25–30. (In Italian) [Google Scholar] [CrossRef]
Continuous Variables | Mean | SD |
---|---|---|
Age (years) | 55.7 | 12.1 |
Mediterranean diet score | 4.3 | 1.6 |
Alcohol intake (g/day) | 17.3 | 23.9 |
Energy intake (kcal/day) | 2109 | 683 |
BMI (kg/m2) | 28.11 | 4.63 |
Waist-to-hip ratio | 0.93 | 0.08 |
Blood glucose (mg/dL) | 102.26 | 25.10 |
Insulin (pmol/L) | 57.89 | 41.76 |
HOMA-IR | 2.17 | 1.88 |
Systolic blood pressure (mm Hg) | 141.60 | 20.50 |
Diastolic blood pressure (mm Hg) | 82.24 | 9.33 |
Total cholesterol (mg/dL) | 216.32 | 41.24 |
LDL-cholesterol (mg/dL) | 132.21 | 35.55 |
Apolipoprotein B (g/L) | 0.97 | 0.23 |
HDL-cholesterol (mg/dL) | 58.22 | 14.56 |
Apolipoprotein A-I (g/L) | 1.54 | 0.31 |
Triglycerides (mg/dL) | 131.97 | 84.85 |
Categorical variables | n | % |
Sex (male) | 1934 | 48.9 |
Ever smoked | 1983 | 50.2 |
Overweight or obesity | 2893 | 73.2 |
Diabetes mellitus | 384 | 9.8 |
Hypertension | 2280 | 58.0 |
Hypercholesterolemia | 1304 | 33.5 |
Metabolic syndrome | 1102 | 28.0 |
Previous CVD | 207 | 5.3 |
Minor Alleles, N | Haplotype * | n/n | n/H | H/H | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N | Freq. | n | % | n | % | n | % | |||
1 | H1 | [GAC]GTT[C]TCTG | 3953 | 25.2% | 2215 | 56.0 | 1486 | 37.6 | 252 | 6.4 |
1 | H2 | [GAC]GTT[C]TCCT | 3953 | 6.0% | 3499 | 88.5 | 435 | 11.0 | 19 | 0.5 |
2 | H3 | [GAC]GTT[C]TATG | 3953 | 14.1% | 2921 | 73.9 | 951 | 24.1 | 81 | 2.0 |
3 | H4 | [GAT]GCT[C]TCCT | 3953 | 5.3% | 3546 | 89.7 | 393 | 9.9 | 14 | 0.4 |
3 | H5 | [AAC]ATT[G]TCTT | 3953 | 3.2% | 3702 | 93.6 | 248 | 6.3 | 3 | 0.1 |
4 | H6 | [GAT]GCC[C]TCCT | 3953 | 15.4% | 2830 | 71.6 | 1029 | 26.0 | 94 | 2.4 |
4 | H7 | [GAT]GCC[C]TCTG | 3953 | 10.0% | 3199 | 80.9 | 715 | 18.1 | 39 | 1.0 |
5 | H8 | [GGC]ACT[C]CCCT | 3953 | 16.6% | 2768 | 70.0 | 1058 | 26.8 | 127 | 3.2 |
Rare | Low-frequency haplotypes ° | 3953 | 4.2% | 3635 | 91.9 | 303 | 7.7 | 15 | 0.4 |
Homozygotes, Major | Heterozygotes | Homozygotes, Minor | ||||||
---|---|---|---|---|---|---|---|---|
Genotype | N | Imputed | Freq. | % | Freq. | % | Freq. | % |
[rs140220080] | 3953 | 3953 | 3655 | 92.5 | 289 | 7.3 | 9 | 0.2 |
[rs28435401] | 3953 | 3953 | 2733 | 69.1 | 1082 | 27.4 | 138 | 3.5 |
[rs11945489] | 3953 | 3953 | 1829 | 46.3 | 1698 | 42.9 | 426 | 10.8 |
rs3805383 | 3953 | 226 | 2476 | 62.6 | 1281 | 32.4 | 196 | 5.0 |
rs6827359 | 3953 | 77 | 1032 | 26.1 | 1930 | 48.8 | 991 | 25.1 |
rs12500837 | 3953 | 223 | 2136 | 54.0 | 1537 | 38.9 | 280 | 7.1 |
[rs12501006] | 3953 | 3953 | 3672 | 92.9 | 276 | 7.0 | 5 | 0.1 |
rs73236170 | 3953 | 32 | 2630 | 66.5 | 1169 | 29.6 | 154 | 3.9 |
rs62308715 | 3953 | 24 | 2910 | 73.6 | 960 | 24.3 | 83 | 2.1 |
rs4865020 | 3953 | 31 | 1180 | 29.9 | 1931 | 48.8 | 842 | 21.3 |
rs55796004 | 3953 | 34 | 1069 | 27.1 | 1938 | 49.0 | 946 | 23.9 |
H8 [GGC]ACT[C]CCCT § 5 Minor Alleles, 16.6% | HA6 [GAT]GCC[C]TCCT 4 Minor Alleles, 15.4% | H7 [GAT]GCC[C]TCTG 4 Minor Alleles, 10.0% | H3 [GAC]GTT[C]TATG 2 Minor Alleles, 14.1% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | β * | SE | p ° | β | SE | p | β | SE | p | β | SE | p | |
BMI | 3949 | 0.081 | 0.035 | 0.021 | 0.002 | 0.037 | 0.96 | 0.076 | 0.044 | 0.083 | 0.046 | 0.037 | 0.22 |
Waist-to-hip ratio | 3948 | 0.017 | 0.032 | 0.60 | −0.090 | 0.034 | 0.008 | −0.021 | 0.040 | 0.61 | −0.023 | 0.034 | 0.50 |
Blood glucose | 3940 | 0.003 | 0.031 | 0.91 | −0.069 | 0.033 | 0.033 | 0.060 | 0.037 | 0.11 | 0.009 | 0.033 | 0.78 |
HOMA-IR | 3858 | 0.087 | 0.035 | 0.013 | −0.017 | 0.036 | 0.64 | 0.060 | 0.044 | 0.17 | 0.039 | 0.036 | 0.28 |
Insulin | 3870 | 0.112 | 0.037 | 0.002 | 0.001 | 0.038 | 0.97 | 0.064 | 0.046 | 0.16 | 0.054 | 0.038 | 0.16 |
Systolic BP | 3950 | 0.045 | 0.030 | 0.14 | −0.004 | 0.032 | 0.89 | 0.060 | 0.037 | 0.11 | 0.040 | 0.032 | 0.22 |
Diastolic BP | 3950 | 0.093 | 0.035 | 0.008 | 0.023 | 0.037 | 0.52 | 0.093 | 0.043 | 0.03 | 0.059 | 0.037 | 0.11 |
Total cholesterol | 3940 | −0.054 | 0.036 | 0.13 | −0.055 | 0.037 | 0.14 | −0.045 | 0.044 | 0.31 | −0.042 | 0.038 | 0.27 |
HDL-cholesterol | 3940 | −0.092 | 0.034 | 0.006 | 0.016 | 0.035 | 0.65 | −0.007 | 0.042 | 0.86 | −0.054 | 0.036 | 0.13 |
LDL-cholesterol | 3879 | −0.041 | 0.036 | 0.25 | −0.069 | 0.038 | 0.066 | −0.084 | 0.044 | 0.060 | −0.034 | 0.038 | 0.38 |
Triglycerides | 3940 | 0.051 | 0.035 | 0.15 | −0.007 | 0.037 | 0.85 | 0.073 | 0.044 | 0.093 | 0.036 | 0.037 | 0.34 |
Apolipoprotein B | 3909 | −0.034 | 0.035 | 0.34 | −0.073 | 0.037 | 0.048 | −0.056 | 0.043 | 0.20 | −0.032 | 0.037 | 0.39 |
Apolipoprotein A-I | 3903 | −0.059 | 0.034 | 0.088 | 0.033 | 0.036 | 0.37 | 0.009 | 0.042 | 0.83 | −0.048 | 0.036 | 0.18 |
OR | LL | UL | OR | LL | UL | OR | LL | UL | OR | LL | UL | ||
Overweight/obesity | 3949 | 1.17 | 1.00 | 1.37 | 0.95 | 0.81 | 1.12 | 1.09 | 0.90 | 1.32 | 1.10 | 0.93 | 1.30 |
Diabetes mellitus | 3919 | 0.91 | 0.71 | 1.16 | 0.95 | 0.74 | 1.21 | 1.17 | 0.89 | 1.54 | 0.90 | 0.70 | 1.17 |
Hypertension | 3930 | 1.11 | 0.94 | 1.30 | 0.99 | 0.83 | 1.17 | 1.13 | 0.93 | 1.38 | 1.17 | 0.99 | 1.39 |
Hypercholesterolemia | 3894 | 0.82 | 0.71 | 0.96 | 0.90 | 0.77 | 1.05 | 0.91 | 0.76 | 1.08 | 0.90 | 0.77 | 1.05 |
Metabolic syndrome | 3938 | 1.07 | 0.92 | 1.25 | 0.99 | 0.84 | 1.17 | 1.21 | 1.00 | 1.46 | 1.11 | 0.94 | 1.31 |
rs14022008 | rs28451532 | rs11945489 | rs3805383 | rs6827359 | rs12501006 | rs73236170 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | β * ± SE | p ° | β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | |
Glucose metabolism | |||||||||||||||
Insulin | 3871 | - | - | 0.09 ± 0.03 | 0.003 | - | - | - | - | - | - | 0.12 ± 0.06 | 0.048 | - | - |
HOMA-IR | 3859 | - | - | 0.08 ± 0.03 | 0.006 | - | - | - | - | - | - | 0.18 ± 0.06 | 0.002 | - | - |
Lipid-related metabolism | |||||||||||||||
HDL-cholesterol | 3941 | −1.05 ± 0.47 | 0.025 | - | - | 1.09 ± 0.47 | 0.020 | 1.00 ± 0.47 | 0.032 | −1.08 ± 0.47 | 0.021 | - | - | - | - |
Total cholesterol | 3941 | −1.91 ± 0.50 | 0.0001 | - | - | 2.14 ± 0.50 | <0.0001 | 1.92 ± 0.50 | 0.0001 | −2.17 ± 0.50 | <0.0001 | - | - | 0.22 ± 0.07 | 0.002 |
LDL-cholesterol | 3880 | −2.08 ± 0.50 | <0.0001 | - | - | 2.28 ± 0.50 | <0.0001 | 2.07 ± 0.50 | <0.0001 | −2.32 ± 0.50 | <0.0001 | - | - | 0.22 ± 0.07 | 0.002 |
Apolipoprotein B | −0.19 ± 0.07 | 0.006 | 0.19 ± 0.07 | 0.006 |
Total Cholesterol (n = 1129) | LDL-Cholesterol (n = 1106) | Apolipoprotein B (n = 1115) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | Model 1 | Model 2 | |||||||
β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | |
SNPs | ||||||||||||
rs3805383 | −0.43 ± 0.14 | 0.0020 | - | - | −0.44 ± 0.14 | 0.002 | - | - | - | - | - | - |
rs73236170 | 0.42 ± 0.14 | 0.0030 | - | - | 0.48 ± 0.15 | 0.001 | 1.91 ± 0.72 | 0.008 | - | - | 2.44 ± 0.79 | 0.002 |
rs4865020 | −0.4 ± 0.16 | 0.015 | −0.3 ± 0.11 | 0.006 | −0.43 ± 0.17 | 0.010 | −0.39 ± 0.13 | 0.003 | - | - | - | - |
rs55796004 | 0.38 ± 0.16 | 0.016 | 0.29 ± 0.11 | 0.008 | 0.39 ± 0.16 | 0.014 | 0.36 ± 0.13 | 0.005 | - | - | - | - |
CpG | ||||||||||||
CpG04 § | - | - | - | - | 0.11 ± 0.03 | 0.0002 | 0.18 ± 0.03 | <0.0001 | - | - | ||
CpG05 § | 0.13 ± 0.03 | 0.0001 | - | - | 0.2 ± 0.09 | 0.019 | - | - | 0.38 ± 0.09 | 0.0001 | ||
CpG09 § | −0.09 ± 0.03 | 0.0050 | −0.09 ± 0.03 | 0.003 | −0.11 ± 0.03 | 0.0005 | −0.12 ± 0.03 | 0.0001 | −0.09 ± 0.03 | 0.006 | −0.1 ± 0.03 | 0.004 |
Interactions | ||||||||||||
rs73236170 × CpG04 | 0.17 ± 0.04 | <0.0001 | - | - | - | - | ||||||
rs73236170 × CpG05 | - | - | −0.57 ± 0.28 | 0.041 | −0.9 ± 0.31 | 0.004 | ||||||
rs3805383(inv) × CpG04 | 0.17 ± 0.04 | <0.0001 | 0.2 ± 0.05 | 0.0001 | 0.34 ± 0.08 | <0.0001 | ||||||
rs3805383(inv) × CpG05 | - | - | - | - | −0.23 ± 0.07 | 0.0008 | ||||||
R-square | 0.046 | 0.045 | 0.034 | 0.043 | 0.045 | 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noro, F.; Marotta, A.; Costanzo, S.; Izzi, B.; Gialluisi, A.; De Curtis, A.; Pepe, A.; Grossi, S.; Di Castelnuovo, A.; Cerletti, C.; et al. Haplotypes, Genotypes, and DNA Methylation Levels of Neuromedin U Gene Are Associated with Cardio-Metabolic Parameters: Results from the Moli-sani Study. Biomedicines 2025, 13, 1906. https://doi.org/10.3390/biomedicines13081906
Noro F, Marotta A, Costanzo S, Izzi B, Gialluisi A, De Curtis A, Pepe A, Grossi S, Di Castelnuovo A, Cerletti C, et al. Haplotypes, Genotypes, and DNA Methylation Levels of Neuromedin U Gene Are Associated with Cardio-Metabolic Parameters: Results from the Moli-sani Study. Biomedicines. 2025; 13(8):1906. https://doi.org/10.3390/biomedicines13081906
Chicago/Turabian StyleNoro, Fabrizia, Annalisa Marotta, Simona Costanzo, Benedetta Izzi, Alessandro Gialluisi, Amalia De Curtis, Antonietta Pepe, Sarah Grossi, Augusto Di Castelnuovo, Chiara Cerletti, and et al. 2025. "Haplotypes, Genotypes, and DNA Methylation Levels of Neuromedin U Gene Are Associated with Cardio-Metabolic Parameters: Results from the Moli-sani Study" Biomedicines 13, no. 8: 1906. https://doi.org/10.3390/biomedicines13081906
APA StyleNoro, F., Marotta, A., Costanzo, S., Izzi, B., Gialluisi, A., De Curtis, A., Pepe, A., Grossi, S., Di Castelnuovo, A., Cerletti, C., Donati, M. B., de Gaetano, G., Gianfagna, F., & Iacoviello, L., on behalf of the Moli-sani Study Investigators. (2025). Haplotypes, Genotypes, and DNA Methylation Levels of Neuromedin U Gene Are Associated with Cardio-Metabolic Parameters: Results from the Moli-sani Study. Biomedicines, 13(8), 1906. https://doi.org/10.3390/biomedicines13081906