Evaluation of Clinical and Quality of Life Effects of Oral Semaglutide Use in Type 2 Diabetes from a Public Health View: A Prospective Study in Italy
Abstract
1. Introduction
Aims and Research Questions
2. Methods
2.1. Study Design
2.2. Ethical Considerations
2.3. Sample and Criteria
2.3.1. Inclusion Criteria
2.3.2. Exclusion Criteria
2.4. Outcomes Analyzed
- -
- Primary outcomes analyzed: glycated hemoglobin (HbA1c, %), fasting plasma glucose (FPG, mg/dL), and body composition and anthropometric parameters, including BW (kg), BMI (kg/m2), body water (kg), fat mass (%), and muscle mass (%).
- -
- Secondary outcomes analyzed: systolic blood pressure (SBP, mmHg), diastolic blood pressure (DBP, mmHg), total cholesterol (TC, mg/dL), low-density lipoprotein cholesterol (LDL-C, mg/dL), high-density lipoprotein cholesterol (HDL-C, mg/dL), triglycerides (TG, mg/dL), and QoL adopting the Italian versions of the Short Form Health Survey (SF-36) [38] and the WHO-Diabetes Treatment Satisfaction Questionnaire (WHO-DTSQ) (original version Supplementary File S1 and S2) [39].
2.5. Timing and Tools
2.6. Statistical Analysis
3. Results
3.1. Sample and Baseline Characteristics of Participants
3.2. Time Evolution and Variable Correlations
3.3. QoL
3.3.1. General Scores
3.3.2. Time Evolution of QoL
4. Discussion
4.1. Effects of Oral Semaglutide on Clinical Outcomes
4.2. Impact on QoL and Treatment Satisfaction
4.3. Perspective for Clinical Practice in Public Health View
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, E.; Lim, S.; Lamptey, R.; Webb, D.R.; Davies, M.J. Type 2 diabetes. Lancet 2022, 400, 1803–1820. [Google Scholar] [CrossRef]
- Word Health Organization (WHO). The Global Diabetes Compact: Progress in Supporting its Workstreams: Technical Report. 2024. Available online: https://www.who.int/publications/i/item/9789240103092 (accessed on 23 December 2024).
- Word Health Organization (WHO). Guidance on Global Monitoring for Diabetes Prevention and Control: Framework, Indicators and Application. 2024. Available online: https://www.who.int/publications/i/item/9789240102248 (accessed on 23 December 2024).
- Tönnies, T.; Rathmann, W.; Hoyer, A.; Brinks, R.; Kuss, O. Quantifying the underestimation of projected global diabetes prevalence by the International Diabetes Federation (IDF) Diabetes Atlas. BMJ Open Diabetes Res. Care 2021, 9, e002122. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021, and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Istituto Nazionale di Statistica (ISTAT). Il Diabete in Italia. Available online: https://www.istat.it/it/archivio/202600 (accessed on 23 December 2024).
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47 (Suppl. S1), S158–S178. [Google Scholar] [CrossRef]
- Buse, J.B.; Wexler, D.J.; Tsapas, A.; Rossing, P.; Mingrone, G.; Mathieu, C.; D’alessio, D.A.; Davies, M.J. 2019, update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2020, 63, 221–228. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47 (Suppl. S1), S179–S218. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 11. Chronic Kidney Disease and Risk Management: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47 (Suppl. S1), S219–S230. [Google Scholar] [CrossRef]
- Lin, D.S.; Lee, J.K.; Hung, C.S.; Chen, W.J. The efficacy and safety of novel classes of glucose-lowering drugs for cardiovascular outcomes: A network meta-analysis of randomised clinical trials. Diabetologia 2021, 64, 2676–2686. [Google Scholar] [CrossRef]
- Brønden, A.; Christensen, M.B.; Glintborg, D.; Snorgaard, O.; Kofoed-Enevoldsen, A.; Madsen, G.K.; Toft, K.; Kristensen, J.K.; Højlund, K.; Hansen, T.K.; et al. Effects of DPP-4 inhibitors, GLP-1 receptor agonists, SGLT-2 inhibitors and sulphonylureas on mortality, cardiovascular and renal outcomes in type 2 diabetes: A network meta-analyses-driven approach. Diabetes Med. 2023, 40, e15157. [Google Scholar] [CrossRef]
- Pantanetti, P.; Cangelosi, G.; Alberti, S.; Di Marco, S.; Michetti, G.; Cerasoli, G.; Di Giacinti, M.; Coacci, S.; Francucci, N.; Petrelli, F.; et al. Changes in body weight and composition, metabolic parameters, and quality of life in patients with type 2 diabetes treated with subcutaneous semaglutide in real-world clinical practice. Front. Endocrinol. 2024, 15, 1394506. [Google Scholar] [CrossRef]
- Saravanan, P.; Bell, H.; Braae, U.C.; Collins, E.; Deinega, A.; Dhatariya, K.; Machell, A.; Trent, A.; Strzelecka, A. PIONEER REAL UK: A Multi-Centre, Prospective, Real-World Study of Once-Daily Oral Semaglutide Use in Adults with Type 2 Diabetes. Adv. Ther. 2024, 41, 4266–4281. [Google Scholar] [CrossRef]
- Pantanetti, P.; Ronconi, V.; Sguanci, M.; Palomares, S.M.; Mancin, S.; Tartaglia, F.C.; Cangelosi, G.; Petrelli, F. Oral Semaglutide in Type 2 Diabetes: Clinical-Metabolic Outcomes and Quality of Life in Real-World Practice. J. Clin. Med. 2024, 13, 4752. [Google Scholar] [CrossRef]
- van Houtum, W.; Schrömbges, P.; Amadid, H.; van Bon, A.C.; Braae, U.C.; Hoogstraten, C.; Herrings, H. Real-World Use of Oral Semaglutide in Adults with Type 2 Diabetes in the PIONEER REAL Netherlands Multicentre, Prospective, Observational Study. Diabetes Ther. 2024, 15, 1749–1768. [Google Scholar] [CrossRef]
- Buckley, S.T.; Bækdal, T.A.; Vegge, A.; Maarbjerg, S.J.; Pyke, C.; Ahnfelt-Rønne, J.; Madsen, K.G.; Scheele, S.G.; Alanentalo, T.; Kirk, R.K.; et al. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci. Transl. Med. 2018, 10, eaar7047. [Google Scholar] [CrossRef]
- Baekdal, T.A.; Donsmark, M.; Hartoft-Nielsen, M.L.; Søndergaard, F.L.; Connor, A. Relationship Between Oral Semaglutide Tablet Erosion and Pharmacokinetics: A Pharmacoscintigraphic Study. Clin. Pharmacol. Drug Dev. 2021, 10, 453–462. [Google Scholar] [CrossRef]
- García-Pérez, L.E.; Alvarez, M.; Dilla, T.; Gil-Guillén, V.; Orozco-Beltrán, D. Adherence to therapies in patients with type 2 diabetes. Diabetes Ther. 2013, 4, 175–194. [Google Scholar] [CrossRef]
- Tiktin, M.; Celik, S.; Berard, L. Understanding adherence to medications in type 2 diabetes care and clinical trials to overcome barriers: A narrative review. Curr. Med. Res. Opin. 2016, 32, 277–287. [Google Scholar] [CrossRef]
- Losi, S.; Berra, C.C.F.; Fornengo, R.; Pitocco, D.; Biricolti, G.; Federici, M.O. The role of patient preferences in adherence to treatment in chronic disease: A narrative review. Drug Target. Insights 2021, 15, 13–20. [Google Scholar] [CrossRef]
- Hauber, B.; Hand, M.V.; Hancock, B.C.; Zarrella, J.; Harding, L.; Ogden-Barker, M.; Antipas, A.S.; Watt, S.J. Patient Acceptability and Preferences for Solid Oral Dosage Form Drug Product Attributes: A Scoping Review. Patient Prefer. Adherence 2024, 18, 1281–1297. [Google Scholar] [CrossRef]
- Aroda, V.R.; Rosenstock, J.; Terauchi, Y.; Altuntas, Y.; Lalic, N.M.; Villegas, E.C.M.; Jeppesen, O.K.; Christiansen, E.; Hertz, C.L.; Haluzík, M. PIONEER 1: Randomized Clinical Trial of the Efficacy and Safety of Oral Semaglutide Monotherapy in Comparison with Placebo in Patients with Type 2 Diabetes. Diabetes Care 2019, 42, 1724–1732. [Google Scholar] [CrossRef]
- Rodbard, H.W.; Rosenstock, J.; Canani, L.H.; Deerochanawong, C.; Gumprecht, J.; Lindberg, S.; Lingvay, I.; Søndergaard, A.L.; Treppendahl, M.B.; Montanya, E. Oral Semaglutide versus Empagliflozin in Patients with Type 2 Diabetes Uncontrolled on Metformin: The PIONEER 2 Trial. Diabetes Care 2019, 42, 2272–2281. [Google Scholar] [CrossRef]
- Ji, L.; Agesen, R.M.; Bain, S.C.; Fu, F.; Gabery, S.; Geng, J.; Li, Y.; Lu, Y.; Luo, B.; Pang, W. Efficacy and safety of oral semaglutide vs sitagliptin in a predominantly Chinese population with type 2 diabetes uncontrolled with metformin: PIONEER 12, a double-blind, Phase IIIa, randomised trial. Diabetologia 2024, 67, 1800–1816. [Google Scholar] [CrossRef]
- Pratley, R.; Amod, A.; Hoff, S.T.; Kadowaki, T.; Lingvay, I.; Nauck, M.; Pedersen, K.B.; Saugstrup, T.; Meier, J.J. Oral Semaglutide versus Subcutaneous Liraglutide and Placebo in Type 2 Diabetes (PIONEER 4): A Randomised, Double-Blind, Phase 3a Trial. Lancet 2019, 394, 39–50. [Google Scholar] [CrossRef]
- Mosenzon, O.; Blicher, T.M.; Rosenlund, S.; Eriksson, J.W.; Heller, S.; Hels, O.H.; Pratley, R.; Sathyapalan, T.; Desouza, C.; Abramof, R.; et al. Efficacy and Safety of Oral Semaglutide in Patients with Type 2 Diabetes and Moderate Renal Impairment (PIONEER 5): A PlaceboControlled, Randomised, Phase 3a Trial. Lancet Diabetes Endocrinol. 2019, 7, 515–527. [Google Scholar] [CrossRef]
- Pieber, T.R.; Bode, B.; Mertens, A.; Cho, Y.M.; Christiansen, E.; Hertz, C.L.; Wallenstein, S.O.R.; Buse, J.B.; Akın, S.; Aladağ, N.; et al. Efficacy and Safety of Oral Semaglutide with Flexible Dose Adjustment versus Sitagliptin in Type 2 Diabetes (PIONEER 7): A Multicentre, OpenLabel, Randomised, Phase 3a Trial. Lancet Diabetes Endocrinol. 2019, 7, 528–539. [Google Scholar] [CrossRef]
- Zinman, B.; Aroda, V.R.; Buse, J.B.; Cariou, B.; Harris, S.B.; Hoff, S.T.; Pedersen, K.B.; Tarp-Johansen, M.J.; Araki, E. Efficacy, Safety, and Tolerability of Oral Semaglutide versus Placebo Added to Insulin with or without Metformin in Patients with Type 2 Diabetes: The PIONEER 8 Trial. Diabetes Care 2019, 42, 2262–2271. [Google Scholar] [CrossRef]
- Yamada, Y.; Katagiri, H.; Hamamoto, Y.; Deenadayalan, S.; Navarria, A.; Nishijima, K.; Seino, Y.; Fukushima, Y.; Hisatomi, A.; Ide, Y.; et al. Dose-Response, Efficacy, and Safety of Oral Semaglutide Monotherapy in Japanese Patients with Type 2 Diabetes (PIONEER 9): A 52-Week, Phase 2/3a, Randomised, Controlled Trial. Lancet Diabetes Endocrinol. 2020, 8, 377–391. [Google Scholar] [CrossRef]
- Yabe, D.; Nakamura, J.; Kaneto, H.; Deenadayalan, S.; Navarria, A.; Gislum, M.; Inagaki, N.; Arisaka, T.; Asakura, T.; Azuma, N.; et al. Safety and Efficacy of Oral Semaglutide versus Dulaglutide in Japanese Patients with Type 2 Diabetes (PIONEER 10): An Open-Label, Randomised, Active-Controlled, Phase 3a Trial. Lancet Diabetes Endocrinol. 2020, 8, 392–406. [Google Scholar] [CrossRef]
- Mansoor, H.; Birkenfeld, A.L.; Donsmark, M.; Dungan, K.; Eliaschewitz, F.G.; Franco, D.R.; Jeppesen, O.K.; Lingvay, I.; Mosenzon, O.; Pedersen, S.D.; et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 841–851. [Google Scholar] [CrossRef]
- Andersen, A.; Knop, F.K.; Vilsboll, T. A Pharmacological and Clinical Overview of Oral Semaglutide for the Treatment of Type 2 Diabetes. Drugs 2021, 81, 1003–1030. [Google Scholar] [CrossRef]
- Yanai, H.; Hakoshima, M.; Adachi, H.; Katsuyama, H. A Significant Effect of Oral Semaglutide on Cardiovascular Risk Factors in Patients with Type 2 Diabetes. Cardiol. Res. 2022, 13, 303–308. [Google Scholar] [CrossRef]
- Klobučar, S.; Belančić, A.; Bukša, I.; Morić, N.; Rahelić, D. Effectiveness of Oral versus Injectable Semaglutide in Adults with Type 2 Diabetes: Results from a Retrospective Observational Study in Croatia. Diabetology 2023, 5, 60–68. [Google Scholar] [CrossRef]
- Candido, R.; Gaiotti, S.; Giudici, F.; Toffoli, B.; De Luca, F.; Velardi, V.; Petrucco, A.; Gottardi, C.; Manca, E.; Buda, I.; et al. Real-World Retrospective Study into the Effects of Oral Semaglutide (As a Switchover or Add-On Therapy) in Type 2 Diabetes. J. Clin. Med. 2023, 12, 6052. [Google Scholar] [CrossRef]
- Nicolucci, A.; Giorgino, R.; Cucinotta, D.; Zoppini, G.; Muggeo, M.; Squatrito, S.; Corsi, A.; Lostia, S.; Pappalardo, L.; Benaduce, E.; et al. Validation of the italian version of the WHO well-being questionnaire (WHO-WBQ) and the WHO-diabetes treatment satisfaction questionnaire (WHO-DTSQ). Diabetes Nutr. Metab. 2004, 17, 235–243. [Google Scholar]
- Apolone, G.; Mosconi, P. The Italian SF-36 Health Survey: Translation, validation and norming. J. Clin. Epidemiol. 1998, 51, 1025–1036. [Google Scholar] [CrossRef]
- Ishii, H.; Hansen, B.B.; Langer, J.; Horio, H. Effect of Orally Administered Semaglutide Versus Dulaglutide on Diabetes-Related Quality of Life in Japanese Patients with Type 2 Diabetes: The PIONEER 10 Randomized, Active-Controlled Trial. Diabetes Ther. 2021, 12, 613–623. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ 2007, 335, 806–808. [Google Scholar] [CrossRef]
- McHorney, C.A.; Ware, J.E.J.; Lu, J.F.R.; Sherbourne, C.D. The MOS 36-item shortform health survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Med. Care 1994, 32, 40–66. [Google Scholar] [CrossRef]
- Musa, A.F.; Yasin, M.S.M.; Smith, J.; Yakub, M.A.; Nordin, R.B. The Malay version of SF-36 health survey instrument: Testing data quality, scaling assumptions, reliability and validity in post-coronary artery bypass grafting (CABG) surgery patients at the National Heart Institute (Institut Jantung Negara-IJN), Kuala Lumpur. Health Qual. Life Outcomes 2021, 19, 50. [Google Scholar] [CrossRef]
- Heymans, M.W.; Twisk, J.W.R. Handling missing data in clinical research. J. Clin. Epidemiol. 2022, 151, 185–188. [Google Scholar] [CrossRef]
- Kang, H. The prevention and handling of the missing data. Korean J. Anesthesiol. 2013, 64, 402–406. [Google Scholar] [CrossRef]
- Perais, J.; Agarwal, R.; Evans, J.R.; Loveman, E.; Colquitt, J.L.; Owens, D.; Hogg, R.E.; Lawrenson, J.G.; Takwoingi, Y.; Lois, N.; et al. Prognostic factors for the development and progression of proliferative diabetic retinopathy in people with diabetic retinopathy. Cochrane Database Syst. Rev. 2023, 2, CD013775. [Google Scholar] [CrossRef]
- Pei, J.; Wang, X.; Pei, Z.; Hu, X. Glycemic control, HbA1c variability, and major cardiovascular adverse outcomes in type 2 diabetes patients with elevated cardiovascular risk: Insights from the ACCORD study. Cardiovasc. Diabetol. 2023, 22, 287. [Google Scholar] [CrossRef]
- Cavero-Redondo, I.; Peleteiro, B.; Álvarez-Bueno, C.; Rodriguez-Artalejo, F.; Martínez-Vizcaíno, V. Glycated haemoglobin A1c as a risk factor of cardiovascular outcomes and all-cause mortality in diabetic and non-diabetic populations: A systematic review and meta-analysis. BMJ Open 2017, 7, e015949. [Google Scholar] [CrossRef]
- Cangelosi, G.; Acito, M.; Grappasonni, I.; Nguyen, C.T.T.; Tesauro, M.; Pantanetti, P.; Morichetti, L.; Ceroni, E.; Benni, A.; Petrelli, F. Yoga or Mindfulness on Diabetes: Scoping Review for Theoretical Experimental Framework. Ann. Ig. 2024, 36, 153–168. [Google Scholar] [CrossRef] [PubMed]
- White, L.; Kirwan, M.; Christie, V.; Hurst, L.; Gwynne, K. The Effectiveness of Clinician-Led Community-Based Group Exercise Interventions on Health Outcomes in Adults with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2024, 21, 601. [Google Scholar] [CrossRef]
- Petrelli, F.; Cangelosi, G.; Scuri, S.; Cuc Thi Thu, N.; Debernardi, G.; Benni, A.; Vesprini, A.; Rocchi, R.; De Carolis, C.; Pantanetti, P.; et al. Food knowledge of patients at the first access to a Diabetology center. Acta Biomed. 2020, 91, 160–164. [Google Scholar] [CrossRef]
- Moore, P.W.; Malone, K.; VanValkenburg, D.; Rando, L.L.; Williams, B.C.; Matejowsky, H.G.; Ahmadzadeh, S.; Shekoohi, S.; Cornett, E.M.; Kaye, A.D. GLP-1 Agonists for Weight Loss: Pharmacology and Clinical Implications. Adv. Ther. 2023, 40, 723–742. [Google Scholar] [CrossRef]
- White, G.E.; Shu, I.; Rometo, D.; Arnold, J.; Korytkowski, M.; Luo, J. Real-world weight-loss effectiveness of glucagon-like peptide-1 agonists among patients with type 2 diabetes: A retrospective cohort study. Obesity 2023, 31, 537–544. [Google Scholar] [CrossRef]
- Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur. J. Prev. Cardiol. 2019, 26 (Suppl. S2), 25–32. [Google Scholar] [CrossRef]
- Hasheminasabgorji, E.; Jha, J.C. Dyslipidemia, Diabetes and Atherosclerosis: Role of Inflammation and ROS-Redox-Sensitive Factors. Biomedicines 2021, 9, 1602. [Google Scholar] [CrossRef]
- Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [Google Scholar] [CrossRef]
- Rezaei, S.; Tabrizi, R.; Nowrouzi-Sohrabi, P.; Jalali, M.; Atkin, S.L.; Al-Rasadi, K.; Jamialahmadi, T.; Sahebkar, A. GLP-1 Receptor Agonist Effects on Lipid and Liver Profiles in Patients with Nonalcoholic Fatty Liver Disease: Systematic Review and Meta-Analysis. Can. J. Gastroenterol. Hepatol. 2021, 2021, 8936865. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, A.; Li, D.; Wu, Y.; Wang, C.-Z.; Wan, J.-Y.; Yuan, C.-S. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: Systematic review and network meta-analysis. BMJ 2024, 384, e076410. [Google Scholar] [CrossRef]
- Husain, M.; Bain, S.C.; Jeppesen, O.K.; Lingvay, I.; Sorrig, R.; Treppendahl, M.B.; Vilsboll, T. Semaglutide (SUSTAIN and PIONEER) reduces cardiovascular events in type 2 diabetes across varying cardiovascular risk. Diabetes Obes. Metab. 2020, 22, 442–451. [Google Scholar] [CrossRef]
- Nauck, M.A.; Quast, D.R. Cardiovascular Safety and Benefits of Semaglutide in Patients with Type 2 Diabetes: Findings from SUSTAIN 6 and PIONEER 6. Front. Endocrinol. 2021, 12, 645566. [Google Scholar] [CrossRef]
- Aroda, V.R.; Faurby, M.; Lophaven, S.; Noone, J.; Wolden, M.L.; Lingvay, I. Insights into the early use of oral semaglutide in routine clinical practice: The IGNITE study. Diabetes Obes. Metab. 2021, 23, 2177–2182. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Allison, D.; Birkenfeld, A.L.; Blicher, T.M.; Deenadayalan, S.; Jacobsen, J.B.; Serusclat, P.; Violante, R.; Watada, H.; Davies, M. PIONEER 3 Investigators. Effect of Additional Oral Semaglutide vs Sitagliptin on Glycated Hemoglobin in Adults with Type 2 Diabetes Uncon-trolled With Metformin Alone or With Sulfonylurea: The PIONEER 3 Randomized Clinical Trial. JAMA 2019, 321, 1466–1480. [Google Scholar] [CrossRef]
- Billing, L.K.; Handelsman, Y.; Heile, M.; Schneider, D.; Wyne, K. Health-Related Quality of Life Assessments with Once-Weekly Glucagon-Like Peptide-1 Receptor Agonists in Type 2 Diabetes Mellitus. J. Manag. Care Spec. Pharm. 2018, 24 (9-a Suppl), S30–S41. [Google Scholar] [CrossRef]
- Majeed, A.; Rehman, M.; Hussain, I.; Imran, I.; Saleem, M.U.; Saeed, H.; Hashmi, F.K.; Akbar, M.; Abrar, M.A.; Ramzan, B.; et al. The Impact of Treatment Adherence on Quality of Life Among Type 2 Diabetes Mellitus Patients—Findings from a Cross-Sectional Study. Patient Prefer. Adherence 2021, 15, 475–481. [Google Scholar] [CrossRef]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef]
- Ezendu, K.; Pohl, G.; Lee, C.J.; Wang, H.; Li, X.; Dunn, J.P. Prevalence of Obesity-Related Multimorbidity and Its Health Care Costs among Adults in the United States. J. Manag. Care Spec. Pharm. 2025, 31, 179–188. [Google Scholar] [CrossRef]
- Marassi, M.; Fadini, G.P. Real-World Evidence on Oral Semaglutide for the Management of Type 2 Diabetes: A Narrative Review for Clinical Practice. Clin. Ther. 2025, 47, 102–110. [Google Scholar] [CrossRef]
- Jialal, I.; Olatunbosun, S.T. Oral Semaglutide Therapy Reduces Cardiovascular Events in Patients with Type 2 Diabetes: Deciphering the Soul of the Study. J. Clin. Med. 2025, 14, 3335. [Google Scholar] [CrossRef]
- Cangelosi, G.; Mancin, S.; Pantanetti, P.; Nguyen, C.T.T.; Morales Palomares, S.; Biondini, F.; Sguanci, M.; Petrelli, F. Lifestyle Medicine Case Manager Nurses for Type Two Diabetes Patients: An Overview of a Job Description Framework—A Narrative Review. Diabetology 2024, 5, 375–388. [Google Scholar] [CrossRef]
- Whitley, H.P.; Smith, W.D.; Hanson, C.; Parton, J.M. Interdisciplinary Speed Dating Augments Diabetes Self-Management Education and Support to Improve Health Outcomes. Patient Educ. Couns. 2020, 103, 2305–2311. [Google Scholar] [CrossRef]
- Alshowair, A.; Altamimi, S.; Alshahrani, S.; Almubrick, R.; Ahmed, S.; Tolba, A.; Alkawai, F.; Alruhaimi, F.; Alsafwani, E.; AlSuwailem, F.; et al. Effectiveness of Case Manager Led Multi-Disciplinary Team Approach on Glycemic Control Amongst T2DM Patients in Primary Care in Riyadh: A Retrospective Follow-Up Study. J. Prim. Care Community Health 2023, 14, 21501319231204592. [Google Scholar] [CrossRef]
- Sguanci, M.; Mancin, S.; Gazzelloni, A.; Diamanti, O.; Ferrara, G.; Morales Palomares, S.; Parozzi, M.; Petrelli, F.; Cangelosi, G. The Internet of Things in the Nutritional Management of Patients with Chronic Neurological Cognitive Impairment: A Scoping Review. Healthcare 2024, 13, 23. [Google Scholar] [CrossRef]
- Basharat, A.; Thayanithy, A.; Barnett-Cowan, M. A Scoping Review of Audiovisual Integration Methodology: Screening for Auditory and Visual Impairment in Younger and Older Adults. Front. Aging Neurosci. 2022, 13, 772112. [Google Scholar] [CrossRef]
- Greenwood, D.A.; Litchman, M.L.; Isaacs, D.; Blanchette, J.E.; Dickinson, J.K.; Hughes, A.; Colicchio, V.D.; Ye, J.; Yehl, K.; Todd, A.; et al. A New Taxonomy for Technology-Enabled Diabetes Self-Management Interventions: Results of an Umbrella Review. J. Diabetes Sci. Technol. 2022, 16, 812–824. [Google Scholar] [CrossRef] [PubMed]
- Kerr, D.; Ahn, D.; Waki, K.; Wang, J.; Breznen, B.; Klonoff, D.C. Digital Interventions for Self-Management of Type 2 Diabetes Mellitus: Systematic Literature Review and Meta-Analysis. J. Med. Internet Res. 2024, 26, e55757. [Google Scholar] [CrossRef]
- Pantanetti, P.; Cangelosi, G.; Morales Palomares, S.; Ferrara, G.; Biondini, F.; Mancin, S.; Caggianelli, G.; Parozzi, M.; Sguanci, M.; Petrelli, F. Real-World Life Analysis of a Continuous Glucose Monitoring and Smart Insulin Pen System in Type 1 Diabetes: A Cohort Study. Diabetology 2025, 6, 7. [Google Scholar] [CrossRef]
- Cranston, I.; Jamdade, V.; Liao, B.; Newson, R.S. Clinical, Economic, and Patient-Reported Benefits of Connected Insulin Pen Systems: A Systematic Literature Review. Adv. Ther. 2023, 40, 2015–2037. [Google Scholar] [CrossRef] [PubMed]
- Akturk, H.K.; Bindal, A. Advances in Diabetes Technology within the Digital Diabetes Ecosystem. J. Manag. Care Spec. Pharm. 2024, 30 (10-b Suppl), S7–S20. [Google Scholar] [CrossRef] [PubMed]
95% CI | Shapiro–Wilk | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SE Mean | Lower Limit | Upper Limit | Median | SD | IQR | W | p | |
Age | 62.67 | 10.06 | 60.67 | 64.66 | 64.00 | 9.85 | 12 | 0.916 | <0.001 |
Years of T2D | 5.73 | 0.35 | 5.03 | 6.43 | 5 | 3.46 | 6 | 0.896 | <0.001 |
Weight (Kg) | 94.53 | 19.8 | 90.58 | 98.47 | 93.90 | 18.49 | 20.05 | 0.977 | 0.122 |
Height (m) | 1.67 | 0.01 | 1.65 | 1.69 | 1.67 | 0.09 | 0.13 | 0.988 | 0.576 |
BMI | 35.61 | 18.09 | 32.01 | 39.21 | 34.30 | 16.87 | 8.83 | 0.355 | <0.001 |
Total Body Water | 42.60 | 10.55 | 40.50 | 44.70 | 41.60 | 9.84 | 15.40 | 0.979 | 0.161 |
Fat Mass (Kg) | 34.18 | 12.38 | 31.72 | 36.64 | 34.50 | 11.48 | 18.15 | 0.987 | 0.576 |
Fat Mass (%) | 35.15 | 0.97 | 33.21 | 37.10 | 34.50 | 9.11 | 15 | 0.972 | 0.056 |
Lean Body Mass (Kg) | 58.52 | 13.51 | 55.84 | 61.21 | 58 | 12.60 | 19.05 | 0.984 | 0.344 |
Lean Body Mass (%) | 65.64 | 12.51 | 63.16 | 68.13 | 65.50 | 11.93 | 15.55 | 0.936 | <0.001 |
Basal Metabolic Rate (Kcal) | 1756.70 | 420.66 | 1673.07 | 1840.32 | 1696 | 39.23 | 467 | 0.938 | <0.001 |
Total Body Water (%) | 44.95 | 0.79 | 43.38 | 46.53 | 44.96 | 7.38 | 11.28 | 0.970 | 0.041 |
WC | 113.42 | 15.05 | 110.43 | 116.41 | 112.50 | 14.11 | 18.62 | 0.990 | 0.757 |
FBG (mg/dL) | 154.08 | 45.42 | 145.05 | 163.12 | 146.00 | 416.36 | 51 | 0.936 | <0.001 |
HbA1c (%) | 7.79 | 0.12 | 7.54 | 8.05 | 7.60 | 1.18 | 1.46 | 0.972 | 0.060 |
HbA1c (mmol/mol) | 61.54 | 13.84 | 58.79 | 64.29 | 60 | 12.76.5 | 16 | 0.970 | 0.045 |
TC (mg/dL) | 170.07 | 48.87 | 160.32 | 179.82 | 169 | 41.47 | 57 | 0.983 | 0.418 |
HDL (mg/dL) | 45.07 | 12.70 | 42.54 | 47.61 | 45.50 | 10.47 | 14 | 0.989 | 0.791 |
LDL (mg/dL) | 100.32 | 40.96 | 92.15 | 108.49 | 97 | 34.51 | 51 | 0.984 | 0.516 |
TG (mg/dL) | 178.01 | 134.77 | 151.15 | 204.88 | 148 | 115.14 | 68 | 0.736 | <0.001 |
SBP (mmHg) | 137.21 | 20.76 | 133.08 | 141.35 | 140 | 18.571 | 30 | 0.948 | 0.003 |
DBP (mmHg) | 80.42 | 15.87 | 77.26 | 83.58 | 80 | 14.01 | 20 | 0.843 | <0.001 |
Variable | Friedman’s Anova | Durbin–Conover’s Pairwise Comparison p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
χ2 | DF | p | T0 vs. T1 | T0 vs. T2 | T0 vs. T3 | T1 vs. T2 | T1 vs. T3 | T2 vs. T3 | |
Weight | 48.3 | 3 | <0.001 | <0.001 | <0.001 | <0.001 | 0.013 | 0.004 | 0.694 |
BMI | 45.5 | 3 | <0.001 | <0.001 | <0.001 | <0.001 | 0.006 | 0.007 | 0.924 |
TBW | 29.6 | 3 | <0.001 | <0.001 | <0.001 | <0.001 | 0.551 | 0.014 | 0.061 |
TBW (%) | 15.0 | 3 | 0.002 | 0.289 | <0.001 | 0.028 | 0.006 | 0.252 | 0.099 |
FM (KG) | 37.7 | 3 | <0.001 | <0.001 | <0.001 | <0.001 | 0.048 | 0.186 | 0.507 |
FM (%) | 12.1 | 3 | 0.007 | 0.527 | 0.004 | 0.009 | 0.021 | 0.044 | 0.768 |
LBM (Kg) | 37.7 | 3 | <0.001 | <0.001 | <0.001 | <0.001 | 0.048 | 0.186 | 0.507 |
LBM (%) | 15.6 | 3 | 0.001 | 1.0 | 0.002 | 0.012 | 0.002 | 0.012 | 0.498 |
BMR | 32.5 | 3 | <0.001 | <0.001 | <0.001 | <0.001 | 0.108 | 0.066 | 0.817 |
WC | 20.0 | 3 | <0.001 | 0.016 | <0.001 | <0.001 | 0.053 | 0.172 | 0.566 |
FBG | 35.5 | 3 | <0.001 | <0.001 | <0.001 | <0.001 | 0.009 | 0.019 | 0.777 |
HbA1c (%) | 52.2 | 3 | <0.001 | <0.001 | <0.001 | <0.001 | 0.001 | <0.001 | 0.0028 |
HbA1c (mmol/mol) | 51.9 | 3 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | <0.001 | 0.067 |
TC (mg/dL) | 10.1 | 3 | 0.018 | 0.041 | 0.018 | 0.002 | 0.743 | 0.277 | 0.445 |
HDL-C (mg/dL) | 6.65 | 3 | 0.084 | 0.906 | 0.032 | 0.768 | 0.024 | 0.679 | 0.062 |
LDL-C (mg/dL) | 10.0 | 3 | 0.018 | 0.031 | 0.005 | 0.006 | 0.479 | 0.549 | 0.913 |
TG | 6.47 | 3 | 0.091 | 0.357 | 0.012 | 0.195 | 0.106 | 0.704 | 0.214 |
SBP (mmHg) | 3.50 | 3 | 0.321 | 0.376 | 0.086 | 0.190 | 0.376 | 0.656 | 0.656 |
DBP (mmHg) | 3.00 | 3 | 0.392 | 0.544 | 0.125 | 0.232 | 0.335 | 0.544 | 0.715 |
SF-36 Score | WHO-DTSQ | ||||||||
---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | T0 | T1 | T2 | T3 | ||
1 | Mean | 65.22 | 74.72 | 73.3 | 74.1 | 1.078 | 2.203 | 2.309 | 2.25 |
Median | 70 | 80 | 80 | 80 | 1 | 2 | 2 | 2 | |
2 | Mean | 75.36 | 80.56 | 76.79 | 75.64 | 0.636 | −0.12 | −0.11 | −0.48 |
Median | 100 | 100 | 100 | 100 | 1 | 0 | 0 | −1 | |
3 | Mean | 69.08 | 78.24 | 74.4 | 77.78 | −0.74 | −0.43 | −0.17 | −0.53 |
Median | 100 | 100 | 100 | 100 | −2 | −0.5 | 0 | 0 | |
4 | Mean | 49.28 | 51.25 | 51.7 | 54.74 | 1.27 | 2.059 | 2.196 | 2.297 |
Median | 50 | 55 | 55 | 55 | 1 | 2 | 3 | 2 | |
5 | Mean | 48.93 | 50.17 | 51.21 | 54.05 | 0.889 | 1.809 | 1.846 | 1.658 |
Median | 52 | 56 | 56 | 56 | 1 | 2 | 2 | 2 | |
6 | Mean | 63.04 | 66.67 | 66.96 | 66.99 | 1.338 | 1.809 | 2.091 | 1.789 |
Median | 62.5 | 62.5 | 75 | 62.5 | 2 | 2 | 2 | 2 | |
7 | Mean | 69.24 | 68.13 | 67.28 | 72.37 | 1.468 | 2.418 | 2.375 | 2.632 |
Median | 77.5 | 67.5 | 67.5 | 77.5 | 2 | 3 | 3 | 3 | |
8 | Mean | 46.01 | 49.86 | 49.38 | 51.92 | 1.29 | 2.382 | 2.436 | 2.447 |
Median | 45 | 55 | 50 | 55 | 1 | 3 | 3 | 3 |
SF-36 | |||||||||
Domain | χ2 | DF | p | T0 vs. T1 | T0 vs. T2 | T0 vs. T3 | T1 vs. T2 | T1 vs. T3 | T2 vs. T3 |
Physical Functioning | 1.14 | 3 | 0.768 | 0.815 | 0.483 | 0.350 | 0.640 | 0.483 | 0.815 |
Role Limitations—Physical | 1.77 | 3 | 0.622 | 0.519 | 0.628 | 0.628 | 0.260 | 0.260 | 1.000 |
Bodily Pain | 2.02 | 3 | 0.567 | 0.323 | 0.197 | 0.647 | 0.760 | 0.594 | 0.403 |
General Health | 4.97 | 3 | 0.174 | 0.503 | 0.031 | 0.301 | 0.130 | 0.714 | 0.249 |
Vitality | 0.63 | 3 | 0.889 | 0.953 | 0.635 | 0.767 | 0.678 | 0.722 | 0.441 |
Social Functioning | 0.72 | 3 | 0.868 | 0.443 | 0.701 | 0.898 | 0.701 | 0.522 | 0.798 |
Role Limitations—Emotional | 0.28 | 3 | 0.962 | 0.952 | 0.631 | 0.857 | 0.674 | 0.904 | 0.764 |
Mental Health | 3.67 | 3 | 0.300 | 0.128 | 0.182 | 0.088 | 0.848 | 0.848 | 0.701 |
WHO-DTSQ | |||||||||
Items | χ2 | gdl | p | T0 vs. T1 | T0 vs. T2 | T0 vs. T3 | T1 vs. T2 | T1 vs. T3 | T2 vs. T3 |
1 | 4.76 | 3 | 0.190 | 0.117 | 0.047 | 0.098 | 0.660 | 0.930 | 0.725 |
2 | 0.37 | 3 | 0.945 | 0.629 | 0.716 | 0.903 | 0.903 | 0.716 | 0.808 |
3 | 2.52 | 3 | 0.471 | 0.534 | 0.388 | 0.618 | 0.802 | 0.272 | 0.184 |
4 | 9.02 | 3 | 0.029 | 0.021 | 0.008 | 0.012 | 0.712 | 0.825 | 0.883 |
5 | 7.02 | 3 | 0.071 | 0.021 | 0.021 | 0.173 | 1.000 | 0.324 | 0.324 |
6 | 4.39 | 3 | 0.223 | 0.491 | 0.057 | 0.133 | 0.217 | 0.409 | 0.679 |
7 | 16.8 | 3 | <0.001 | <0.001 | 0.004 | <0.001 | 0.586 | 0.415 | 0.176 |
8 | 13.3 | 3 | 0.004 | <0.001 | 0.001 | 0.011 | 0.932 | 0.398 | 0.447 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantanetti, P.; Ronconi, V.; Mancin, S.; De Carolis, C.; Alberti, S.; Pazzi, O.; Di Marco, S.; Michetti, G.; Coacci, S.; Mignini, V.; et al. Evaluation of Clinical and Quality of Life Effects of Oral Semaglutide Use in Type 2 Diabetes from a Public Health View: A Prospective Study in Italy. Diabetology 2025, 6, 80. https://doi.org/10.3390/diabetology6080080
Pantanetti P, Ronconi V, Mancin S, De Carolis C, Alberti S, Pazzi O, Di Marco S, Michetti G, Coacci S, Mignini V, et al. Evaluation of Clinical and Quality of Life Effects of Oral Semaglutide Use in Type 2 Diabetes from a Public Health View: A Prospective Study in Italy. Diabetology. 2025; 6(8):80. https://doi.org/10.3390/diabetology6080080
Chicago/Turabian StylePantanetti, Paola, Vanessa Ronconi, Stefano Mancin, Cristina De Carolis, Sara Alberti, Orietta Pazzi, Sandra Di Marco, Grazia Michetti, Silvia Coacci, Veronica Mignini, and et al. 2025. "Evaluation of Clinical and Quality of Life Effects of Oral Semaglutide Use in Type 2 Diabetes from a Public Health View: A Prospective Study in Italy" Diabetology 6, no. 8: 80. https://doi.org/10.3390/diabetology6080080
APA StylePantanetti, P., Ronconi, V., Mancin, S., De Carolis, C., Alberti, S., Pazzi, O., Di Marco, S., Michetti, G., Coacci, S., Mignini, V., Gregorio, F., Baldoni, G., Toderi, S., Morales Palomares, S., Petrelli, F., Caggianelli, G., Parozzi, M., & Cangelosi, G. (2025). Evaluation of Clinical and Quality of Life Effects of Oral Semaglutide Use in Type 2 Diabetes from a Public Health View: A Prospective Study in Italy. Diabetology, 6(8), 80. https://doi.org/10.3390/diabetology6080080