Effects of High-Phenolic Extra Virgin Olive Oil (EVOO) on the Lipid Profile of Patients with Hyperlipidemia: A Randomized Clinical Trial †
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Eligibility Criteria
2.3. EVOO and Intervention
- Group 1: lower-phenolic content EVOO (414 mg/kg phenols) at a dose of 20 g daily.
- Group 2: higher-phenolic content EVOO (1021 mg/kg phenols) at a dose of 8 g daily.
2.4. Endpoints
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Comparison Between Patients with Hyperlipidemia and Healthy Individuals
3.3. Comparison Between the Two Groups of Hyperlipidemic Patients with EVOO of Different Phenolic Content
3.4. The Effect of Gender on the Intervention in Hyperlipidemic Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EVOO | Extra virgin olive oil |
LDL | Low-density lipoprotein |
HDL | High-density lipoprotein |
Lp(a) | Lipoprotein-a |
ROS | Reactive oxygen species |
ICAM-1 | Intercellular adhesion molecule-1 |
Appendix A
Lipid Profile Parameters | Time × Group × Gender Interaction | Group × Gender Interaction | Time × Gender Interaction |
---|---|---|---|
p Value | p Value | p Value | |
Total blood cholesterol (mg/dL) | 0.084 | 0.520 | 0.572 |
LDL-C (mg/dL) | 0.138 | 0.408 | 0.474 |
HDL-C (mg/dL) | 0.827 | 0.444 | 0.421 |
Triglycerides (mg/dL) | 0.469 | 0.653 | 0.615 |
Lp(a) (mg/dL) | 0.873 | 0.314 | 0.886 |
ApoA1 (mg/dL) | 0.977 | 0.813 | 0.405 |
ApoB (mg/dL) | 0.418 | 0.430 | 0.418 |
Appendix B
References
- Riolo, R.; De Rosa, R.; Simonetta, I.; Tuttolomondo, A. Olive Oil in the Mediterranean Diet and Its Biochemical and Molecular Effects on Cardiovascular Health through an Analysis of Genetics and Epigenetics. Int. J. Mol. Sci. 2022, 23, 16002. [Google Scholar] [CrossRef] [PubMed]
- Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef]
- Karković Marković, A.; Torić, J.; Barbarić, M.; Jakobušić Brala, C. Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef]
- Kindernay, L.; Ferenczyová, K.; Farkašová, V.; Duľová, U.; Strapec, J.; Barteková, M. Beneficial Effects of Polyphenol-Rich Food Oils in Cardiovascular Health and Disease. Rev. Cardiovasc. Med. 2023, 24, 190. [Google Scholar] [CrossRef]
- Kronenberg, F.; Mora, S.; Stroes, E.S.G.; Ference, B.A.; Arsenault, B.J.; Berglund, L.; Dweck, M.R.; Koschinsky, M.; Lambert, G.; Mach, F.; et al. Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: A European Atherosclerosis Society consensus statement. Eur. Heart J. 2022, 43, 3925–3946. [Google Scholar] [CrossRef]
- Bezsonov, E.; Khotina, V.; Glanz, V.; Sobenin, I.; Orekhov, A. Lipids and Lipoproteins in Atherosclerosis. Biomedicines 2023, 11, 1424. [Google Scholar] [CrossRef]
- Pirillo, A.; Norata, G.D. The burden of hypercholesterolemia and ischemic heart disease in an ageing world. Pharmacol. Res. 2023, 193, 106814. [Google Scholar] [CrossRef] [PubMed]
- Abera, A.; Worede, A.; Hirigo, A.T.; Alemayehu, R.; Ambachew, S. Dyslipidemia and associated factors among adult cardiac patients: A hospital-based comparative cross-sectional study. Eur. J. Med. Res. 2024, 29, 237. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Health Observatory Data. Cholesterol. Available online: http://www.who.int/gho/ncd/risk_factors/cholesterol_prevalence/en/ (accessed on 27 July 2025).
- Martin, S.S.; Niles, J.K.; Kaufman, H.W.; Awan, Z.; Elgaddar, O.; Choi, R.; Ahn, S.; Verma, R.; Nagarajan, M.; Don-Wauchope, A.; et al. Lipid distributions in the Global Diagnostics Network across five continents. Eur. Heart J. 2023, 44, 2305–2318. [Google Scholar] [CrossRef]
- Banach, M.; Surma, S.; Toth, P.P.; Endorsed by the International Lipid Expert Panel (ILEP). 2023: The year in cardio-vascular disease—The year of new and prospective lipid lowering therapies. Can we render dyslipidemia a rare disease by 2024? Arch. Med. Sci. 2023, 19, 1602–1615. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- European Commission Regulation EC No. 432/2012 establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Off. J. Eur. Union 2012, L136, 1–40.
- Castañer, O.; Fitó, M.; López-Sabater, M.C.; Poulsen, H.E.; Nyyssönen, K.; Schröder, H.; Salonen, J.T.; De la Torre-Carbot, K.; Zunft, H.F.; De la Torre, R.; et al. The effect of olive oil polyphenols on antibodies against oxidized LDL. A randomized clinical trial. Clin. Nutr. 2011, 30, 490–493. [Google Scholar] [CrossRef]
- Diamantakos, P.; Giannara, T.; Skarkou, M.; Melliou, E.; Magiatis, P. Influence of Harvest Time and Malaxation Conditions on the Concentration of Individual Phenols in Extra Virgin Olive Oil Related to Its Healthy Properties. Molecules 2020, 25, 2449. [Google Scholar] [CrossRef]
- Kourek, C.; Makaris, E.L.; Zouganeli, V.; Koudounis, G.; Magiatis, P. Comparing the effects of different extra virgin olive oil (EVOO) doses and polyphenols concentration on the lipidemic profile and hemodynamic parameters in patients with hyperlipidemia. Eur. J. Prev. Cardiol. 2024, 31 (Suppl. S1), zwae175.372. [Google Scholar] [CrossRef]
- Sarapis, K.; George, E.S.; Marx, W.; Mayr, H.L.; Willcox, J.; Powell, K.L.; Folasire, O.S.; Lohning, A.E.; Prendergast, L.A.; Itsiopoulos, C.; et al. Extra virgin olive oil improves HDL lipid fraction but not HDL-mediated cholesterol efflux capacity: A double-blind, randomised, controlled, cross-over study (OLIVAUS). Br. J. Nutr. 2023, 130, 641–650. [Google Scholar] [CrossRef]
- Jabbarzadeh-Ganjeh, B.; Jayedi, A.; Shab-Bidar, S. The effects of olive oil consumption on blood lipids: A systematic review and dose-response meta-analysis of randomised controlled trials. Br. J. Nutr. 2023, 130, 728–736. [Google Scholar] [CrossRef]
- Saeedi, R.; Frohlich, J. Lipoprotein (a), an independent cardiovascular risk marker. Clin. Diabetes Endocrinol. 2016, 2, 7. [Google Scholar] [CrossRef]
- Reyes-Soffer, G.; Ginsberg, H.N.; Berglund, L.; Duell, P.B.; Heffron, S.P.; Kamstrup, P.R.; Lloyd-Jones, D.M.; Marcovina, S.M.; Yeang, C.; Koschinsky, M.L.; et al. Lipoprotein(a): A Genetically Determined, Causal, and Prevalent Risk Factor for Atherosclerotic Cardiovascular Disease: A Scientific Statement From the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 2022, 42, e48–e60. [Google Scholar] [CrossRef] [PubMed]
- Covas, M.I.; Nyyssönen, K.; Poulsen, H.E.; Kaikkonen, J.; Zunft, H.J.; Kiesewetter, H.; Gaddi, A.; de la Torre, R.; Mursu, J.; Bäumler, H.; et al. The effect of polyphenols in olive oil on heart disease risk factors: A randomized trial. Ann. Intern. Med. 2006, 145, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Poli, A.; Gall, C. Antioxidant and other biological activities of phenols from olives and olive oil. Med. Res. Rev. 2002, 22, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Bonfiglio, C.; Cuccaro, F.; Campanella, A.; Rosso, N.; Tatoli, R.; Giannelli, G.; Donghia, R. Effect of Intake of Extra Virgin Olive Oil on Mortality in a South Italian Cohort with and without NAFLD. Nutrients 2023, 15, 4593. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Li, Y.; Willett, W.C.; Sun, Q.; Sampson, L.; Salas-Salvadó, J.; Martínez-González, M.A.; Stampfer, M.J.; Hu, F.B. Consumption of Olive Oil and Risk of Total and Cause-Specific Mortality Among U.S. Adults. J. Am. Coll. Cardiol. 2022, 79, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Hedayatnia, M.; Asadi, Z.; Zare-Feyzabadi, R.; Yaghooti-Khorasani, M.; Ghazizadeh, H.; Ghaffarian-Zirak, R.; Nosrati-Tirkani, A.; Mohammadi-Bajgiran, M.; Rohban, M.; Sadabadi, F.; et al. Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids Health Dis. 2020, 19, 42. [Google Scholar] [CrossRef]
- Xu, S.; Lyu, Q.R.; Ilyas, I.; Tian, X.Y.; Weng, J. Vascular homeostasis in atherosclerosis: A holistic overview. Front. Immunol. 2022, 13, 976722. [Google Scholar] [CrossRef]
- Tucker, B.; Ephraums, J.; King, T.W.; Abburi, K.; Rye, K.A.; Cochran, B.J. Impact of Impaired Cholesterol Homeostasis on Neutrophils in Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Salekeen, R.; Haider, A.N.; Akhter, F.; Billah, M.M.; Islam, M.E.; Didarul Islam, K.M. Lipid oxidation in pathophysiology of atherosclerosis: Current understanding and therapeutic strategies. Int. J. Cardiol. Cardiovasc. Risk Prev. 2022, 14, 200143. [Google Scholar] [CrossRef]
- Batty, M.; Bennett, M.R.; Yu, E. The Role of Oxidative Stress in Atherosclerosis. Cells 2022, 11, 3843. [Google Scholar] [CrossRef]
- Scioli, M.G.; Storti, G.; D’Amico, F.; Rodríguez Guzmán, R.; Centofanti, F.; Doldo, E.; Céspedes Miranda, E.M.; Orlandi, A. Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J. Clin. Med. 2020, 9, 1995. [Google Scholar] [CrossRef]
- Förstermann, U.; Xia, N.; Li, H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ. Res. 2017, 120, 713–735. [Google Scholar] [CrossRef]
- Liang, X.; Arullampalam, P.; Yang, Z.; Ming, X.F. Hypoxia Enhances Endothelial Intercellular Adhesion Molecule 1 Protein Level Through Upregulation of Arginase Type II and Mitochondrial Oxidative Stress. Front. Physiol. 2019, 10, 1003. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F.; Stefani, M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants 2021, 10, 1044. [Google Scholar] [CrossRef] [PubMed]
- Marcelino, G.; Hiane, P.A.; Freitas, K.C.; Santana, L.F.; Pott, A.; Donadon, J.R.; Guimarães, R.C.A. Effects of Olive Oil and Its Minor Components on Cardiovascular Diseases, Inflammation, and Gut Microbiota. Nutrients 2019, 11, 1826. [Google Scholar] [CrossRef] [PubMed]
- Fki, I.; Sayadi, S.; Mahmoudi, A.; Daoued, I.; Marrekchi, R.; Ghorbel, H. Comparative Study on Beneficial Effects of Hydroxytyrosol- and Oleuropein-Rich Olive Leaf Extracts on High-Fat Diet-Induced Lipid Metabolism Disturbance and Liver Injury in Rats. Biomed. Res. Int. 2020, 2020, 1315202. [Google Scholar] [CrossRef]
- Summerhill, V.; Karagodin, V.; Grechko, A.; Myasoedova, V.; Orekhov, A. Vasculoprotective Role of Olive Oil Compounds via Modulation of Oxidative Stress in Atherosclerosis. Front. Cardiovasc. Med. 2018, 5, 188. [Google Scholar] [CrossRef]
- Jiang, H.; Zhou, Y.; Nabavi, S.M.; Sahebkar, A.; Little, P.J.; Xu, S.; Weng, J.; Ge, J. Mechanisms of Oxidized LDL-Mediated Endothelial Dysfunction and Its Consequences for the Development of Atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 925923. [Google Scholar] [CrossRef]
- Malekmohammad, K.; Bezsonov, E.E.; Rafieian-Kopaei, M. Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Front. Cardiovasc. Med. 2021, 8, 707529. [Google Scholar] [CrossRef]
- Mokhtary, N.; Mousavi, S.N.; Sotoudeh, G.; Qorbani, M.; Dehghani, M.; Koohdani, F. Deletion allele of Apo B gene is associated with higher inflammation, oxidative stress and dyslipidemia in obese type 2 diabetic patients: An analytical cross-sectional study. BMC Endocr. Disord. 2022, 22, 73. [Google Scholar] [CrossRef]
- Bhale, A.S.; Venkataraman, K. Leveraging knowledge of HDLs major protein ApoA1: Structure, function, mutations, and potential therapeutics. Biomed. Pharmacother. 2022, 154, 113634. [Google Scholar] [CrossRef]
- Lozano-Castellón, J.; López-Yerena, A.; Rinaldi de Alvarenga, J.F.; Romero Del Castillo-Alba, J.; Vallverdú-Queralt, A.; Escribano-Ferrer, E.; Lamuela-Raventós, R.M. Health-promoting properties of oleocanthal and oleacein: Two secoiridoids from extra-virgin olive oil. Crit. Rev. Food Sci. Nutr. 2020, 60, 2532–2548. [Google Scholar] [CrossRef] [PubMed]
- Nikou, T.; Sakavitsi, M.E.; Kalampokis, E.; Halabalaki, M. Metabolism and Bioavailability of Olive Bioactive Constituents Based on In Vitro, In Vivo and Human Studies. Nutrients 2022, 14, 3773. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Perles, R.; Auñón, D.; Ferreres, F.; Gil-Izquierdo, A. Gender differences in plasma and urine metabolites from Sprague-Dawley rats after oral administration of normal and high doses of hydroxytyrosol, hydroxytyrosol acetate, and DOPAC. Eur. J. Nutr. 2017, 56, 215–224. [Google Scholar] [CrossRef]
- Martínez, N.; Prieto, I.; Hidalgo, M.; Segarra, A.B.; Martínez-Rodríguez, A.M.; Cobo, A.; Ramírez, M.; Gálvez, A.; Martínez-Cañamero, M. Refined versus Extra Virgin Olive Oil High-Fat Diet Impact on Intestinal Microbiota of Mice and Its Relation to Different Physiological Variables. Microorganisms 2019, 7, 61. [Google Scholar] [CrossRef]
- Ciuffarin, F.; Alongi, M.; Plazzotta, S.; Lucci, P.; Schena, F.P.; Manzocco, L.; Calligaris, S. Oleogelation of extra virgin olive oil by different gelators affects lipid digestion and polyphenol bioaccessibility. Food Res. Int. 2023, 173, 113239. [Google Scholar] [CrossRef]
- Öngoren, B.; Kara, A.; Serrano, D.R.; Lalatsa, A. Novel enabling strategies for oral peptide delivery. Int. J. Pharm. 2025, 681, 125888. [Google Scholar] [CrossRef]
- Agrawal, K.; Melliou, E.; Li, X.; Pedersen, T.L.; Wang, S.C.; Magiatis, P.; Newman, J.W.; Holt, R.R. Oleocanthal-rich extra virgin olive oil demonstrates acute anti-platelet effects in healthy men in a randomized trial. J. Funct. Foods 2017, 36, 84–93. [Google Scholar] [CrossRef] [PubMed]
Demographics | Patient Group | Healthy Individuals | p Value * |
Number of participants (N) | 50 | 20 | |
Gender (Males/Females) | 24/26 | 9/11 | 0.954 |
Age (years) | 52.2 ± 9.3 | 48.9 ± 8.7 | 0.432 |
BMI (kg/m2) | 27.2 ± 4.2 | 26.7 ± 5.1 | 0.865 |
Lipid Blood Profile | |||
Total blood cholesterol (mg/dL) | 224.8 ± 52.6 | 170.7 ± 45.2 | <0.001 |
LDL-C (mg/dL) | 142.7 ± 45.8 | 110.2 ± 32.7 | <0.001 |
HDL-C (mg/dL) | 56.9 ± 15.1 | 55.0 ± 12.3 | 0.276 |
Triglycerides (mg/dL) | 112.5 ± 54.7 | 89.4 ± 25.2 | 0.021 |
Lp(a) (mg/dL) | 30.2 ± 31.1 | 26.3 ± 19.2 | 0.460 |
ApoA1 (mg/dL) | 202.8 ± 27.9 | 136.6 ± 24.5 | <0.001 |
ApoB (mg/dL) | 123.8 ± 32.5 | 110.8 ± 29.8 | 0.145 |
Demographics | Group 1 | Group 2 | p Value * |
Number of patients (N) | 22 | 28 | 0.433 |
Gender (Males/Females) | 11/11 | 13/15 | 0.802 |
Age (years) | 52.7 ± 8.0 | 51.8 ± 10.3 | 0.736 |
BMI (kg/m2) | 26.5 ± 3.9 | 27.8 ± 4.5 | 0.289 |
Lipid profile | |||
Total blood cholesterol (mg/dL) | 235.8 ± 59.3 | 216.1 ± 46.0 | 0.192 |
LDL-C (mg/dL) | 151.9 ± 54.1 | 135.4 ± 37.4 | 0.232 |
HDL-C (mg/dL) | 59.4 ± 14.4 | 55.0 ± 15.6 | 0.319 |
Triglycerides (mg/dL) | 101.8 ± 44.2 | 120.9 ± 61.2 | 0.224 |
Lp(a) (mg/dL) | 32.3 ± 30.8 | 28.5 ± 31.8 | 0.672 |
ApoA1 (mg/dL) | 207.2 ± 28.6 | 199.3 ± 29.2 | 0.324 |
ApoB (mg/dL) | 129.1 ± 37.6 | 119.6 ± 27.8 | 0.327 |
Values | Estimator (β) | 95% CI | p Value | AIC |
---|---|---|---|---|
Total blood cholesterol (mg/dL) | ||||
(Intercept) | 235.82 | 213.99–257.64 | <0.001 | Full model: 729.1 vs. Partial model: 727.4 |
Time (After) | 14.46 | 2.31–26.60 | 0.024 | |
Group (Group 2) | −19.71 | −48.87–9.45 | 0.191 | |
Time × Group (After × Group 2) | −17.06 | −33.29–−0.83 | 0.045 | |
LDL-C (mg/dL) | ||||
(Intercept) | 151.86 | 132.37–171.36 | <0.001 | Full model: 989.2 vs. Partial model: 987.4 |
Time (After) | 5.96 | −3.95–15.86 | 0.245 | |
Group (Group 2) | −16.44 | −42.49–9.62 | 0.222 | |
Time × Group (After × Group 2) | −2.88 | −16.12–10.35 | 0.671 | |
HDL-C (mg/dL) | ||||
(Intercept) | 59.36 | 52.80–65.93 | <0.001 | Full model: 789.7 vs. Partial model: 788.0 |
Time (After) | 5.73 | 1.66–9.80 | 0.008 | |
Group (Group 2) | −4.33 | −13.10–4.44 | 0.338 | |
Time × Group (After × Group 2) | −1.37 | −6.81–4.07 | 0.624 | |
Triglycerides (mg/dL) | ||||
(Intercept) | 101.77 | 77.78–125.77 | <0.001 | Full model: 1062.2 vs. Partial model: 1061.2 |
Time (After) | 9.14 | −8.18–26.46 | 0.306 | |
Group (Group 2) | 19.12 | −12.95–51.19 | 0.247 | |
Time × Group (After × Group 2) | −11.39 | −34.53–11.76 | 0.340 | |
Lp(a) (mg/dL) | ||||
(Intercept) | 32.29 | 19.39–45.19 | <0.001 | Full model: 836.9 vs. Partial model: 835.0 |
Time (After) | −2.89 | −6.07–0.29 | 0.081 | |
Group (Group 2) | −3.81 | −21.04–13.43 | 0.667 | |
Time × Group (After × Group 2) | 0.66 | −3.59–4.91 | 0.763 | |
ApoA1 (mg/dL) | ||||
(Intercept) | 207.19 | 194.76–219.61 | <0.001 | Full model: 887.4 vs. Partial model: 885.4 |
Time (After) | 5.13 | −0.44–10.71 | 0.077 | |
Group (Group 2) | −7.91 | −24.51–8.69 | 0.355 | |
Time × Group (After × Group 2) | −0.45 | −7.89–7.00 | 0.907 | |
ApoB (mg/dL) | ||||
(Intercept) | 129.11 | 115.85–142.37 | <0.001 | Full model: 904.9 vs. Partial model: 904.1 |
Time (After) | 6.02 | −0.22–12.26 | 0.065 | |
Group (Group 2) | −9.51 | −27.23–8.21 | 0.298 | |
Time × Group (After × Group 2) | −4.52 | −12.86–3.82 | 0.293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kourek, C.; Makaris, E.; Magiatis, P.; Zouganeli, V.; Benetou, V.; Briasoulis, A.; Xanthopoulos, A.; Paraskevaidis, I.; Melliou, E.; Koudounis, G.; et al. Effects of High-Phenolic Extra Virgin Olive Oil (EVOO) on the Lipid Profile of Patients with Hyperlipidemia: A Randomized Clinical Trial. Nutrients 2025, 17, 2543. https://doi.org/10.3390/nu17152543
Kourek C, Makaris E, Magiatis P, Zouganeli V, Benetou V, Briasoulis A, Xanthopoulos A, Paraskevaidis I, Melliou E, Koudounis G, et al. Effects of High-Phenolic Extra Virgin Olive Oil (EVOO) on the Lipid Profile of Patients with Hyperlipidemia: A Randomized Clinical Trial. Nutrients. 2025; 17(15):2543. https://doi.org/10.3390/nu17152543
Chicago/Turabian StyleKourek, Christos, Emmanouil Makaris, Prokopios Magiatis, Virginia Zouganeli, Vassiliki Benetou, Alexandros Briasoulis, Andrew Xanthopoulos, Ioannis Paraskevaidis, Eleni Melliou, Georgios Koudounis, and et al. 2025. "Effects of High-Phenolic Extra Virgin Olive Oil (EVOO) on the Lipid Profile of Patients with Hyperlipidemia: A Randomized Clinical Trial" Nutrients 17, no. 15: 2543. https://doi.org/10.3390/nu17152543
APA StyleKourek, C., Makaris, E., Magiatis, P., Zouganeli, V., Benetou, V., Briasoulis, A., Xanthopoulos, A., Paraskevaidis, I., Melliou, E., Koudounis, G., & Orfanos, P. (2025). Effects of High-Phenolic Extra Virgin Olive Oil (EVOO) on the Lipid Profile of Patients with Hyperlipidemia: A Randomized Clinical Trial. Nutrients, 17(15), 2543. https://doi.org/10.3390/nu17152543