You are currently viewing a new version of our website. To view the old version click .

Technologies

Technologies is an international, peer-reviewed, open access journal singularly focusing on emerging scientific and technological trends and is published monthly online by MDPI.

Quartile Ranking JCR - Q1 (Engineering, Multidisciplinary)

All Articles (1,705)

  • Systematic Review
  • Open Access

Protected agriculture increasingly requires solutions that reduce energy consumption and environmental impacts while maintaining stable microclimatic conditions. The integration of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) with solar technologies has emerged as a pathway toward autonomous and energy-efficient greenhouses and solar dryers. This study analyzes the scientific and technological evolution of this convergence using a mixed review approach bibliometric and systematic, following PRISMA 2020 guidelines. From Scopus records (2012–2025), 115 documents were screened and 79 met the inclusion criteria. Bibliometric results reveal accelerated growth since 2019, led by Engineering, Computer Science, and Energy, with China, India, Saudi Arabia, and the United Kingdom as dominant contributors. Thematic analysis identifies four major research fronts: (i) thermal modeling and energy efficiency, (ii) predictive control and microclimate automation, (iii) integration of photovoltaic–thermal (PV/T) systems and phase change materials (PCMs), and (iv) sustainability and agrivoltaics. Systematic evidence shows that AI, ML, and DL based models improve solar forecasting, microclimate regulation, and energy optimization; model predictive control (MPC), deep reinforcement learning (DRL), and energy management systems (EMS) enhance operational efficiency; and PV/T–PCM hybrids strengthen heat recovery and storage. Remaining gaps include long-term validation, metric standardization, and cross-context comparability. Overall, the field is advancing toward near-zero-energy greenhouses powered by Internet of Things (IoT), AI, and solar energy, enabling resilient, efficient, and decarbonized agro-energy systems.

6 December 2025

Flow chart of the systematic review.

In the context of intelligent manufacturing, the integrated scheduling problem of dual rail-guided vehicles (RGVs) and multiple parallel processing equipment in flexible manufacturing systems has gained increasing importance. This problem exhibits spatiotemporal coupling and dynamic constraint characteristics, making traditional optimization methods ineffective at finding optimal solutions. At the problem formulation level, the dual resource scheduling task is modeled as a mixed-integer optimization problem. An intelligent scheduling framework based on action mask-constrained Proximal Policy Optimization (PPO) deep reinforcement learning is proposed to achieve integrated decision-making for production equipment allocation and RGV path planning. The approach models the scheduling problem as a Markov Decision Process, designing a high-dimensional state space, along with a multi-discrete action space that integrates machine selection and RGV motion control. The framework employs a shared feature extraction layer and dual-head Actor-Critic network architecture, combined with parallel experience collection and synchronous parameter update mechanisms. In computational experiments across different scales, the proposed method achieves an average makespan reduction of 15–20% compared with numerical methods, while exhibiting excellent robustness under uncertain conditions including processing time fluctuations.

5 December 2025

Schematic diagram of dual RGVs operation.

The integration of connected vehicles into smart city infrastructure introduces critical cybersecurity challenges for the Internet of Vehicles (IoV), where resource-constrained vehicles and powerful roadside units (RSUs) must collaborate for secure communication. We propose H-RT-IDPS, a hierarchical real-time intrusion detection and prevention system targeting two high-priority IoV security pillars: availability (traffic overload) and integrity/authenticity (spoofing), with spoofing evaluated across multiple subclasses (GAS, RPM, SPEED, and steering wheel). In the offline phase, deep learning and hybrid models were benchmarked on the vehicular CAN bus dataset CICIoV2024, with the BiLSTM-XGBoost hybrid chosen for its balance between accuracy and inference speed. Real-time deployment uses a TinyML-distilled CNN on vehicles for ultra-lightweight, low-latency detection, while RSU-level BiLSTM-XGBoost performs a deeper temporal analysis. A Kafka–Spark Streaming pipeline supports localized classification, prevention, and dashboard-based monitoring. In baseline, stealth, and coordinated modes, the evaluation achieved accuracy, precision, recall, and F1-scores all above 97%. The mean end-to-end inference latency was 148.67 ms, and the resource usage was stable. The framework remains robust in both high-traffic and low-frequency attack scenarios, enhancing operator situational awareness through real-time visualizations. These results demonstrate a scalable, explainable, and operator-focused IDPS well suited for securing SC-IoV deployments against evolving threats.

5 December 2025

Conceptual overview of IoV architecture and data exchange in smart city environments.

To improve the load frequency control (LFC) performance of power systems incorporating virtual power plants (VPPs) while reducing network resource consumption, a model predictive control (MPC) method based on a mixed time/event-triggered mechanism (MTETM) is proposed. This mechanism integrates an event-triggered mechanism (ETM) with a time-triggered mechanism (TTM), where ETM avoids unnecessary signal transmission and TTM ensures fundamental control performance. Subsequently, for the LFC system incorporating VPPs, a state hard constrained MPC problem is formulated and transformed into a “min-max” optimisation problem. Through linear matrix inequalities, the original optimisation problem is equivalently transformed into an auxiliary optimisation problem, with the optimal control law solved via rolling optimisation. Theoretical analysis demonstrates that the proposed auxiliary optimisation problem possesses recursive feasibility, whilst the closed-loop system satisfies input-to-state stability. Finally, validation through case studies of two regional power systems demonstrates that the MPC approach based on MTETM outperforms the ETM-based MPC approach in terms of control performance while maintaining a triggering rate of 33.3%. Compared with the TTM-based MPC algorithm, the MTETM-based MPC method reduces the triggering rate by 66.7%, while maintaining nearly equivalent control performance. Consequently, the results validate the effectiveness of the MTETM-based MPC approach in conserving network resources while maintaining control performance.

5 December 2025

Model of the ith LFC area incorporating VPP.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Assistive Technologies in Care and Rehabilitation
Reprint

Assistive Technologies in Care and Rehabilitation

Research, Developments, and International Initiatives
Editors: Daniele Giansanti
Emerging Technologies, Law and Policies
Reprint

Emerging Technologies, Law and Policies

Editors: Esther Salmerón-Manzano, Francisco Manzano Agugliaro

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Technologies - ISSN 2227-7080