Open AccessArticle
MDB-YOLO: A Lightweight, Multi-Dimensional Bionic YOLO for Real-Time Detection of Incomplete Taro Peeling
by
Liang Yu, Xingcan Feng, Yuze Zeng, Weili Guo, Xingda Yang, Xiaochen Zhang, Yong Tan, Changjiang Sun, Xiaoping Lu and Hengyi Sun
Electronics 2026, 15(1), 97; https://doi.org/10.3390/electronics15010097 (registering DOI) - 24 Dec 2025
Abstract
The automation of quality control in agricultural food processing, particularly the detection of incomplete peeling in taro, constitutes a critical frontier for ensuring food safety and optimizing production efficiency in the Industry 4.0 era. However, this domain is fraught with significant technical challenges,
[...] Read more.
The automation of quality control in agricultural food processing, particularly the detection of incomplete peeling in taro, constitutes a critical frontier for ensuring food safety and optimizing production efficiency in the Industry 4.0 era. However, this domain is fraught with significant technical challenges, primarily stemming from the inherent visual characteristics of residual peel: extremely minute scales relative to the vegetable body, highly irregular morphological variations, and the dense occlusion of objects on industrial conveyor belts. To address these persistent impediments, this study introduces a comprehensive solution comprising a specialized dataset and a novel detection architecture. We established the Taro Peel Industrial Dataset (TPID), a rigorously annotated collection of 18,341 high-density instances reflecting real-world production conditions. Building upon this foundation, we propose MDB-YOLO, a lightweight, multi-dimensional bionic detection model evolved from the YOLOv8s architecture. The MDB-YOLO framework integrates a synergistic set of innovations designed to resolve specific detection bottlenecks. To mitigate the conflict between background texture interference and tiny target detection, we integrated the C2f_EMA module with a Wise-IoU (WIoU) loss function, a combination that significantly enhances feature response to low-contrast residues while reducing the penalty on low-quality anchor boxes through a dynamic non-monotonic focusing mechanism. To effectively manage irregular peel shapes, a dynamic feature processing chain was constructed utilizing DySample for morphology-aware upsampling, BiFPN_Concat2 for weighted multi-scale fusion, and ODConv2d for geometric preservation. Furthermore, to address the issue of missed detections caused by dense occlusion in industrial stacking scenarios, Soft-NMS was implemented to replace traditional greedy suppression mechanisms. Experimental validation demonstrates the superiority of the proposed framework. MDB-YOLO achieves a mean Average Precision (mAP50-95) of 69.7% and a Recall of 88.0%, significantly outperforming the baseline YOLOv8s and advanced transformer-based models like RT-DETR-L. Crucially, the model maintains high operational efficiency, achieving an inference speed of 1.1 ms on an NVIDIA A100 and reaching 27 FPS on an NVIDIA Jetson Xavier NX using INT8 quantization. These findings confirm that MDB-YOLO provides a robust, high-precision, and cost-effective solution for real-time quality control in agricultural food processing, marking a significant advancement in the application of computer vision to complex biological targets.
Full article
►▼
Show Figures